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Preface 

This manual specifies the user's view of the Viking microprocessor. It is 
intended to provide all necessary infonnation for the use of Viking, both 
hardware and software. Detailed pin timing and other physical infonnation may 
be found in the TMS390ZS0 Data Sheet from Texas Instruments. 

The document is intended to fully specify the operation of Viking and includes: 

An introduction to Viking 
A simplified pipeline description 
Guidelines for code generation 
The programmer's model 
A description of IT AG-based In-Circuit Emulation facilities 
A description of internal software debugging facilities (breakpoints) 
A detailed system interface definition 

For background ~d supponing infonnation, the following documents are useful: 

The Version 8 SPARC Architecture Manual, including 
Reference MMU. Memory Model. and Suggested ASI appendices 

The Viking Cache Controller (MXCC) Specification (External Cache Controller: 
The SPARC MBUS Specification 
The DynaBus and XBus Specifications 
The IEEE P1149.1 ITAG Specification 
The Sun-4M System Architecture Specification 
11ie SunDragon Architecture Manual 
The Viking SRAM Test Documentation 
T.I. TMS390ZS0 (Viking) Data Sheet 
T.I. TMS390ZSS (MXCC) Data Sheet ;-:.: . 

. :;:-.... 
. ::;::::::: 

..... 

Effort has been made to make this an easy-to-use. ~:*Mt:oIllPi~re:doCU~> 
ment It may contain errors and/Or omissions. Please report any elTatlrin or .:. /i .... 

requests for additional information to Greg Blanck (gblanclc:@~g$~COM). 

>?;;:i. 
··:·:::\;L .. :.··:.::::::: 

.•. ::; ..... : 

-iii-



Revision History 

Revision Date Comment 
01 9-25-89 First Release 
02 11-1-90 Second Release 

.. 

-y-



Contents 

Preface .................................................................................................................................................... iii 

Revision History ........................... :................................................................................................... v 

Chapter 1 Introduction to Viking .................................................................................. 3 

1.1. High Integration ............................................................................................................... 4 

1.2. Full Testability .............................................................................................. _ ......... ___ 5 

1.3. High Perfonnance ................................................................................................... __ .. 6 

t Chapter 2 Processor Pipeline Overview .............................................. ___ ........... 11 

2.1. Pipeline Fundamentals ............................................................ : .......... ; ................. _..... .11 

2.2. Basic Pipeline Diagram ._ ... _ .......................................... _ ... _ ............... .;.................. 13 

2.3. Pipeline Examples ___ ....................................... _ .................. __ ............... _ ......... _.. 14 

Chapter 3 Code Generation Principles ....... __ .... _ ........ ___ .................. _ ... _..... 33 

3.1. Perfonnance of Existing Code ..................................... _ ........................ __ ... __ ... 33 

3.2. Areas that Hurt Perfonnance .. _ ............ _ ............ _ ......... __ ...... _ ...... _................. 33 
3.3. General Guidelines . ______ ... _____ .................. _ ... ____________ ... _.. 34 

3.4. Insttuction Grouping Rules .. __ .......... __ .......... __ ...... ____ ... ______ .. 42 
(:. ..... 

Chapter 4 Viking Programmer's Model .. _____ ~.,:·L;~ ... .;....... 51 

4.1. Viking Processor ......... _ ... _ ... ____ d;::::···::L;··:··\:/:~< :51 
.-:.::::::: .-:.:.:::-::.: .......... "::::::::::.;.:<' .. ::.-;.:.: 

4.2. CC orMBUS mode .. _... . ..... _____ ... ____ LL..;L ·ii<:;') . ;;;;~,...;L .... ::si 
4.3. Reset Operation ________ .... ___ ... __ .d2:~E:~.;:;:;;,; ... : .. £.5 •••••• : .~i 
4.4. Insttuctions ___________ ... _ .... _ ... ______ ~S: •. ·:i~j.~~2~~ 57 

4.5. Memory Model ... ____ ... ___ ... ______ ... _________ ~;;;~~.:;: ... ;L .. _ 60 
.. ::;;;::~;~:~~~}:::: 

-vii-



Contents - Continued 

""-j 
4.6. Floating Point Unit ........................................................................................................ . 65 

4.7. Insttuction Cache ............................................................................................................ . 68 

4.8. Data Cache .. ____ ................................................................................................................. . 74 

4.9. Data Prefetching .............................................................................................................. . 89 

4.10. Control Space Access ................................................................................................ . 80 

4.11. Memory Management Unit (MMU) .................................................................... . 81 

4.12. Store Buffer ..................................................................................................................... . 109 

4.13. Traps .................................................................................................................................... . 113 

4.14. Software I>ebugging Facilities ............................................................................. . 120 

4.15. ITAG and Emulation ........ __ .... _ .................................................................................. . 131 

4.16. ASI Map .............................................................................................................................. . 133 

Chapter S JTAG Serial Scan Interface ....................................................................... . 139 
5.1. Overview ....... __ ... _ ...... _ ............... __ ........................................................................ _ ..... . 139 

5.2. IT AG Requirements ....... _ ....... _ .......................................................... _ ................ _ .... _ .. 139 

5.3. ITAG Interface ............ _ .................................................................................... _ ......... _ .. 140 

5.4. IT AG Operations .. _ .... _ ... __ ...... ___ . __ ...... _ ................................. _ ............ _ ..... __ .. 140 

5 .5. TAP Controller __ ... _ ............. ___ ._ .... _ .......... _ .................................. _ ......................... .. 142 

5.6. Acce~ible Scan Chains inside Viking ............................................................ _ .. . 144 

5.7. IR Fonnat and Encodings ___ ....... _._ ......... _ ....................... _ .... __ .......... _ ....... __ .. 146 

5.8. System I..evel Test ... ____ ........................................................... _ ........................... _ .. 152 

Chapter 6 Remote Emulation Support ........ _ .............................. __ ....... __ ... _ .... . ISS 
6.1. Overview .... ______________ . __ ........................... _ ... __ .................. ..:. .... . 155 
6.2. Emulation Strategy . ____ ... _. ____ ........ _ ........... __ .. ____ ._._ .... _. _____ _ 15S 
6.3. Emulation Register Set ___________ . ___ ._ .... __ ._ ... ______ . ______ .. 156 

6.4. Supponed Emulation Primitives ___ ._ ... _. ___ ..... ________ ... __ . __ - 163 

6.5. Emulation Sequences ________ ._._. __ . _______ .____ 164 

6.6. Emulation Execution Details . ____ ... ______ .. _. ___________ .___ 165 

6.7. Emulation Insttuction Sequences for Common Emulator 
Functions ________ .... ____________ ... ___ ._______ 168 

6.8. Approximate Latencies for Each Emulator Primitive _._. ________ ._ 177 

6.9. Details about Entering Emulation __ ._ ... __ . _____ . __ . ____ ._____ 178 
.. 

-YiU-



Contents - Continued 

6.10. Emulation Exception Issues .................................................................................... 178 

Chapter 7 System Interlace ............................................................................................... 183 

7.1. Multiple System Interfaces ................................................................................ _ ....... 183 

7.2. Oock Operation .......................................................................................................... _.. 184 

7.3. Reset Operation ................................................................................................................ 185 

7.4. Interrupts ............................................................................................................................... 186 

7.5. Memory Model Support (PEND-l ........................................................................... 186 

7.6. Test Support ........................................................................................................................ 187 

Chapter 8 ~us Interface ................................................................................................... 191 

8.1. Compatibility ..................................................................................................................... 191 

8.2. Selecting MBUS Mode ........................................................................................... _..... 191 

8.3. Module ID ............................................................................................................................ 192 

8.4. Cache Policy ......................................................................................................... _ ... _..... 192 

8.5. Level-2 Consistency Operation ........................................................ _ ............ _.. 192 

8.6. MBUS Transactions ........ _............................................................................................... 194 

8.7. Store Buffer Operation in MBUS Mode .......................................................... _.. 197 

8.8. Bus Arbitration __ ...................................................................................................... _.. 198 

8.9. Error and Retry Handling .................................................................................... _..... 198 

8.10. Port Register ... __ .... _ ........................ _ .................................... ___ ... _ ............... __ .. 199 

8.11. MBUS Pin Connections _ ...................... _ .............................................. _ ......... _........ 200 

Chapter 9 Viking Bus Interlace ............................................................... _ ... ~ ....... _ ... _ 203 
9.1. Overview . _____ ... _._ .... __ .......................................... __ ....... __ ... ___ ... ___ .. 203 

9.2. Systems Without External Cache ._ ...... _ .................. ___ ......... __ ............ ___ 204 

9.3. External Cache Based Machines ___ ..................... _ ... _. __________ .. 218 

Chapter 10 Signal Description ___ ._. __ .......................... ___ . __ ._ ... __ . __ . ____ .. 247 

10.1. Electrical Issues .. ___ . ____ ._ ... _ ... __ .... __ .. ___ ._. ____ . ___ ._. ____ . ___ .. 247 

10.2. Pinout l)escriptions . _______ .... __ ._ ... _._. __ ... ___ . __ . ___ ....... __ . ____ .. 247 

10.3. Pin Summary _._ ... _. ___ ._. ___ . __ ... _. __ .... ___ ... _________ . ___ .. 255 

Chapter 11 Electrical.and Mechanical Specification _________ .___ 259 

[ 

-ix-



Contents - Continued 

11.1. Electrical Specification .................... _........................................................................ 259 

11.2. A.C. Characteristics ................................................................................ .-.................. 259 

11.3. Packaging Infonnation ............................................................................................... 259 

Index ................................................................................. _.................................................................... 261 

.. 

-lL-



L: 

Tables 

Table 2-1 Floating Point Operation Execution Time - 3 cycle latency __ 21 

Table 2-2 Floating Point Operation Execution Time -latency ........... ____ .. 22 

Table 3-1 Break After Rules ........................................................... _ ... _ ......... _ ... __ .... __ 43 

Table 3-2 Break Before Rules .. _ ................................................ _ ......................... _ ....... ___ 44 

Table 4-1 State after hardware reset ................................................................ _____ 53 

Table 4-2 BIST Diagnostic Registers within ASI Ox39 ... : ..... _ ............ _____ ..... 56 

Table 4-3 BIST status register values ................................................ _ .................. ____ .. 56 

Table 4-4 NaN Output Representation Values ......... _____ ._ ...... __ ._._____ 66 

Table 4-5 Floating Point Queue Fonnat _______ ..... _ ............ ___ ....... "' ... _._____ 67 

Table 4-6 Instruction Cache Cacheability . ___ ...... __ . __ .. ___ .. __________ .. 69 

Table 4-7 Data Cache Cacheability __________ . __ ._ ... _ .................. _ ... _ ... __ 75 

Table 4-8 Data Cache Snoop Mechanism (MBUS mode) _ ......... _._ .... ___ .___ 77 

Table 4-9 MMU Registers ___ . _____ ... ____ . __ . __ .......... _ ... ____ .... __ ... ______ 96 

Table 4-10 MFSR Overwrite Operations _. __________ . ________ .____ 102 

Table 4-11 MFSR Enor Priority ___ ._. __________ . __________ . _____ .. 102 
:\:::>:::;:::::':' 

Table 4-12 Access Permission vs Access Type . _________ .. ~o-... \;OOO'./ .... -.- 104 
Table 4-13 Exception Handler PC formation . ____ ... ___ ~U.,~::L ... :H 114 

Table 4-14 Table of Traps supported by Viking . ___ ....< .... -:.L.~:<:jj~..:t 16 

Table 4-15 Unimplemented Trap Types ------.--.£:(:/i) .. :. ::··:::~./.120 
Table 4-16 Breakpoints - Control and Status _____ ~J:::<: .. :::::.<~=;.{}123 

~::::~ ;:[::=~~~gi~~2~ :~ 
'" :;:::;:::.:: .. :. 

( 

-ix-



Tables - Continued 

r 
~. 

Table 4-19 ASIS supponed by Viking .............................................................................. _ .. 134 

Table 5-1 State afierTAP reset .................... _ ............... _ .... _ ........................ _ ...................... . 144 

Table 5-2 Categories of Viking IR instructions ................................................ _ ...... _ .. 146 

Table 5-3 TOR Scan Chain selection by IR Encoding ....................... _ ............... _ .... .. 147 

Table 5-4 Viking Boundary Scan bit definition ............................................................ . 149 

Table 6-1 Emulation register TOR Scan Olain selection by IR Encoding 157 

Table 6-2 MDIN Scan Register Format .. __ ... _. __ ............ _ ............ _ ...... _ ......... _ ...... .. 157 

Table 6-3 MDOUT (Emulation Data Out) Register Format ........... _ ..... _ ............... _ 159 

Table 6-4 MSTAT (Emulation Status) Register Format .............. _ ... _ ....................... . 159 

Table 6-5 Viking State upon entry into Emulation mode ........ __ .. _ ..... __ ...... _ .. 165 

Table 6-6 Valid compound emulation sequences __ ..................... _ ......... __ ...... _ .. 167 

Table 6-7 Symbolic Constants for Emulation Sequences .......... _ ...... ___ ... __ .. 168 

Table 7-1 PEND_ operation ______________ ... _ ........ _ ......... ____ . __ ... __ ..... . 187 

/ 

Table 8-1 Store buffer copyback moop hit actions .................. __ ._ .... _ .... ___ .. __ .. 198 "-

. Table 9-1 Broadcast ~Map Data Format . ___ ...... _ .......... __ . __ ._ .... _____ . __ .... . 204 
Table 9-2 Reply Codes __ ~ ____ . ___ . ________ . __ ...... _._. ___ ._ ... _____ ...... _ 207 

Table 10-1 SlZE(1:0] Encoding __________ . ___ . __ . __ . _______ .. 253 
Table 10-2 Viking Pin Summary ... _ .... _ .... _ ... _._ ... __ .......... _._._._ .... __ ._ ... _. ____ : __ 255 

.. 

-ll-



c 

Figures 

Figure 2-1 Basic Pipeline Description ...................................................... _ ..... _................ 14 

Figure 2-2 Basic load pipeline sequence ........................................................... _ .. __ ......... 16 

Figure 2-3 Store Pipeline Operation ............................................... __ ............. _ .......... _... 17 

Figure 2-4 Floating Point Pipeline ..... _ .............. _ ................ _ ......... _ ................ ___ ... _...... 20 

Figure 2-5 Untaken Branch Pipeline .................. _ .. _ ............................ _ ........ __ .. _ ... _._ 24 

Figure 2-6 Taken Branch Pipeline ___ ................ __ .......... __ ._ .... _._._ .... _ ... ___ . __ ._.. 25 

Figure 2-7 ,Exception Handling Pipeline ............. _ .................... _ .......... _ ......... __ .. _._.. 28 

[I Figure 2-8 Return from Trap Pipeline ............. _ ....... _ ........... : ... _ ................. ____ .... _ .... _ 30 

Figure 4-1 Generalized safe page table update algorithm .... _ ...... _ .... ___ ... _..... 64 

Figure 4-2 Example of Instruction Cache Replacement Policy .... _ .. ___ .... __ .. 70 

Figure 4-3 Address Translation Utilizing Four Levels of Page Tables ._ ... _.. 82 

Figure 4-4 Address Translation With Maximum Page Size .. _ ...... _._ .... __ .. 85 

Figure 4-5 Address Translation With 16 MB Page _._ ... _. ___ .... _ ... __ ... ____ .. 86 

Figure 4-6 Address Translation With 256 KB Page . __ ._. _____ .. _. __ . ___ .. 87 

Figure 4-7 Root Pointer Physical Address Generation .. __ .____________ 98 

..... : .... 

Figure 5-1 One Bit 1I'AG Scan Chain Datapath Element ____ .J<. __ 141 

Figure 5-2 1I'AG OperaDOOS -CAPI'URE, SHIFI'. and UPDA~{:;:·:t.::; .... \..:.;: 141 

::~~:==:-=:=~~;; 
Figure 5-5 Example of System Level1I'AG Test Hie~~.:;·:·~:!::::;:·/ Ji~~: .. ::;::::ls2 

-.:;; ::::{:::<~:; ::::';" ... :: ..... . 

. :.,:<. 
Figure 6-1 MCI (Emulation Command and Instruction) RegistC~ .. :.:. 

Fonnal . ____ ':.. _______ . _______ . ___________ 2:::::::: .. _____ 157 

-lli-



Figures - Continued 

,~, 

10 
Figure 8-1 Cache consistency algorithm: Data cache on the MBUS .................. . 193 

Figure 8-2 Cache consistency algorithm: Instruction cache on the 
MBUS ............................................................................................................................. . 194 

Figure 9-1 Viking Non-Cached System ............................................................................ . 205 

Figure 9-2 Read Single Protocol ...... _ ..................... _ ....... _ ............................ _ ... _ ............ .. 208 

Figure 9-3 SCRAM Read Block - Alternate Cycle Data ......... ___ ...................... . 209 

Figure 9-4 Read Block - Data on Consecutive Cycles .......................... _ ................ . 210 

Figure 9-5 Read from SCRAM with Exception ............................... _ ......................... . 211 

Figure 9-6 Overlapped Read Blocks ............................... , ............................. _ .................. .. 211 

Figure 9-7 Write Single to DRAM ...................................................................................... . 212 

Figure9-8 Write Single to DRAM with Exception ................................................... . 213 

Figure 9-9 Burst Write to SCRAM _ ............... _ .............................. _ ... __ ......... _._ ....... . 214 

Figure 9-10 Overlapped ReadlWrite Block ..................................... _ ... _ ... __ ............. . 215 

Figure 9-11 Swap with SCRAM ...... __ ... _ ..................... _ ..................... _ ... _ ......... _ ...... .. 216 

Figure 9-12 Processor Initiated Demap __ ......... __ ............... _ ... _ ...... __ ...... _ .......... . 217 

Figure 9-13 Extemally Generated Demap and Reply ....... _ ...... _____ ... _ ......... .. 218 
Figure 9-14 Viking with External Cache .......... __ ............... _ ... __ ... _..:. ___ ....... __ .. 219 '\: 
Figure 9-15 E-Cache Processor Configuration (four system busses) .. __ ..;._ .. 220 
Figure 9-16 E-Cache Read Hits .. ________ ...... _ ...... _ ...... _ ... _ ............ _ .... _._ ....... . 222 
Figure 9-17 Overlapped Read Hits _______ ......... _ ... _ ...... ________ ._ .. _ .. 223 
Figure 9-18 Write Single ,Hit . _______ ... _____ ... _____ ... _ ... ___ ... ___ .. 224 
Figure 9-19 Shared Write Single _______ ... __ ....... _____ ...... _ .. _ ... _ ... _ ... _ .... . 225 
Figure 9-20 Write Burst Hit _________ ... ____ ... __ ... _ ... _ ....... _ ... __ ..: ... .. 226 
Figure 9-21 Overlapped ReadlWrite Hits .. ____________________ _ 227 
Figure 9-22 Swap Hit (Shared. with inValidate) ___ ... ___________ . __ .. 228 
Figure 9-23 Read Miss _________________ ... ___ .. 230 
Figure 9-24 Write Miss __ .... _. __ . _____ . ___________________ .. 231 
Figure 9-25 Write Miss with Exception ___________________ .. 232 
Figure 9-26 Write Miss, Shared ,, __________________ _ 233 
Figure 9-27 Overlapped Write Miss and Read Hits _________ _ 234 
Figure 9-28 Overlapped Read Miss and Write Hits ______________ .. 235 
Figure 9-29 Overlapped ReadlWrite Miss __________________ .. .. 236 

r1 . 

. ~ 

-xii-



Figures - ContilUted 

Figure 9-30 Overlapped Write/Read Miss ...................................................... _._. __ ... 237 

Figure 9-31 Noncacheable Read ................................................................................. __ .... _ 238 

Figure 9-32 Noncacheable Write ................................................................................... __ 239 

Figure 9-33 Viking Cache Line Invalidation ........................................................... _._ ... - 240 

Figure 9-34 Invalidation During Line Read ..................................... _ ......... _ ........ __ .. _.. 240 

Figure 9-35 Slower Pipelined Reads ......................................................................... ____ 241 

Figure 9-36 3 Cycle Non-Pipelined Reads ............................................................... _._.. 242 

Figure 9-37 2 Cycle Non-Pipelined Reads ............................................................. ___ 243 

[r 

-xiii-



[Blank Page] 

.. 



L: 

1 
Introduction to Viking 

Introduction to Viking ............................................................................................................... 3 

1.1. High Integration .............................................................................................................. , 4 

Integer Unit _.................................................................................................................... 4 

Memory Management Unit .................................................................................... . 

Aoating Point Unit .................................. _ ....... _ .. __ .. _ ................ ___ ........... _ .......... . 

Instruction Cache ..... _._ ..................................... _ ................ _ ...................................... . 

Data Cache ....... _._ ....................................... _ .......... _ ......................... __ ........... _ ... _ ..... . 

Slore Buffer .. _ ................ _ .. _ ................................. _ ........ _ ..................... _ .......... _ ........ _ .. 

Exiemal Cache Support .......... _._ ....... __ .......... __ ... _ ............. _ ..... _ ............ _ ........ . 

4 

4 

4 

4 

4 

5 

Multi-Processor Cache Coherence support _._ .... _ ................ __ ... __ ............ 5 

Hardware Breakpoints ....... _ ................. __ ......... _ .... _. __ .... _ ......... __ ......•........ __ 5 

IT AG Emulation .... ___ ._._._ ....... _ ... _._._ .. ___ ..... _. __ . __ ... ____ ....... _ ....... _._... 5 

1.2. Full Testability . ___ ._ ... _ .......... __ .... _. __ ._ ...... _. __ ._ .... _.: .. __ . ____ ._._ ... _ ... _... 5 

1.3. High Perfonnance ... _ .... _ .................... __ . ___ . __ . ___ ._. ___ .. _ ... _ ...... _ .... _._ .... _ 6 
Oock rate/technology ._ ... _____ . _____ . _______________ . ____ .. 6 

J.LArchitecture _______ . _____ ._. _______ .. _________ . __ .... _._........ 6 

Multiple Instructions Per Cycle Execution ________ . _____ . __ .. 6 

Fast LOAD and STOR.E instructions ____________ . ______ .. 6 

Aoating Point Implementation . __________________ ._ .. ___ .. 7 



[Blank Page] 

.. 

• 



Ci 

1 
Introduction to Viking 

Viking is a highly integrated. high perfonnance implementation of the SPARC 
RISC architecture. It is a single chip processor implemented in full custom 
BiCMOS tecMology by Texas Instruments. It is intended for use in a broad 
spectrum of system environments: from large scale multiprocessor systems. to 
low cost single user workstations and high perfonnance embedded control 
applications. A simplified functional block diagram of Viking is shown below: 

Floating Point Control Floating Point Execution 

FP Queue Control 
Double Precision Addez' Array I--Double Precision Multiplier Array 

FP Exception Control 
Integer Multiply & Divide 

FP Exec Control 
S-Port, 32~ntry FP Register File 

; 
Inteffr Unit Control SuperScalar Integer Execution 

Prefetch ueue . Two independent, or cascadable ALU's, One Shifter 
BranchlPipeline Control LoadIStore Address Generator 
Instruction Grouping & Decode 64-bit Loads and Stores 
Exception Handling 8-port. 8-window (136 registers) Integer Register File 
Emulation & Brealcooint Control 

~ • t 1 
A 

"' 1 

Instruction Cacbe MMU DataCacbe 
4- ~ 

20KByte 64-Entry n..B 16KByte 
S-way set associative Fully Associative 4-way set associative 
Physical Cache Reference MMU Physical Cache 
(l28-bit access) wI Pl'P Cache (64-bit access) 

; ; ; 
CC or MBUS mode Bus Interface I Store Buffer I (8 Double Words) 

I . Sua Cycle Canavll and Bu_ 
AdcbuI(35:O] o.&ll(63:OJ PaDty(O:7) 

c-avU(35) II 
W(5J InU2J 0ut(l'1 

~ SuwlY 1 J T ..... bili&y A_I 
I.u; C1oc:k T1'AG(5] PIPE{lO]TES'1 

~ ~ ~ j 

,~ ,~ 

kl 
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4 TMS390Z50 - Viking User Doc:umengtion 

1.1. High Integration 

1.1.1. Integer Unit 

1.1.2. Memory Management 
Unit 

1.1.3. Floating Point Unit 

1.1.4. Instruction Cache 

1.1.5. Data Cache 

1.1.6. Store Buffer 

Integrated within the processor are most of the support functions nonnally 
required to build a SPARe based system. These features total approximately three 
million transistors, and include: 

A fully SPARe compatible integer unit is provided on chip. This integer unit is a... 
high perfonnance superscalar (multiple instructions per cycle) design. Eight 
register windows are provided. Integer multiply (IMUL) and integer divide (IDlY) 
instructions are implemented in hardware. 

An implementation of the SPARe Reference Memory Management Unit (MMU) is 
included within Viking. TheMMU provides a 64-entryTLB (franslation Looka­
side Buffer) to translate viJ'bJal to physical addresses. A second-level Page Table 
Pointer (PTP) cache and a root pointer cache are included to reduce TLB miss 
penalties. 

A standard SPARC floating point unit and controller are included on chip. This 
FPU provides high performance single and double precision floating point arith­
metic functions. Integer multiply and divide instructionS are also perfonned by 
theFPU. 

In order to increase perfonnance and reduce the demands on an external memory 
system, a large instruction cache is included. This instruction cache is as-way 
set associative cache with 200 total storage. 1be sets are independent; instruc­
tions at any physical address can be stored in any of the S set 1be cache is a 
physical address cache. The instruction cac~ is DOD-writable, but is kept con­
sistent with the data cache, and external memory. through extensive cache coher­
ence support. 

Fast execution of LOAD and STORE instructions is critical to high perfonnance 
RlSC processors. To achieve single-cycle execution of these instructions. a data 
cache is included on chip. This data cache is a 4-way set associative cache with 
160 total storage. 1bese sets are independent; data at any physical address can 
be stored in any of the 4 sets. This cache enforces cache coherence with other 
caches in a system. The coherence mechanism is described in the System inter­
face chapter. The data cache is a physical tMldress cache. Depending on the sys­
tem environment, the data cache works in either write-through or copy-back 
mode. The behavior of each mode is explained in the Programmer's Model and 
the System Interface chapters. 

An 8-doublewoRi entty store buffer is provided to reduce the latency on ST. This 
is a FIFO queue which holds the data until resources allow data to be written out 
to the extel'Dal cache and/or memory. This buffering allows the pipeline to con­
tinue execution, thereby increasing perfonnance • 

.. 
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1.1.7. External Cache 
Support 

1.1.8. Multi-Processor Cache 
Coherence support 

1.1.9. Hardware Breakpoints 

1.1.10. JTAG Emulation 

1.2. Full Testability 

Chapter 1 - Introduction to Viking 5 

Viking provides a flexible external cache interface. An external cache controller 
chip, such as the MXCC, can provide a complete implementation of a large, direct 
mapped, physically addressed external cache. This interface is described in detail 
in the System Interface chapter. The MXCC provides a single chip interface to the 
SPARe MBUS standard (level-2). It also provides a general purpose packet 
switched interface (the XBus) that can be used to interface to a variety of bus­
standards. 

Both Viking and the MXCC are independently optimized to worX with fully pipe­
lined cache RAMS, and they both support SPARe's TSO (Total Store Ordering) 
and PSO (partial Store Ordering) memory models. See SPARe Architecture 
Manual for more details. 

Viking provides built-in cache coherence. The protocols are described in detail 
in the System Interface chapter. The protocol supports multiple cached copies of 
shared data for reading and in some systems for writing. 

Physical address bus snooping is used to implement the coherence algorithms. 

To simplify software debugging, and reduce system development time, Viking 
provides on-chip hardware breakpoints. Code and data access breakpoints are 
provided. Virtual and Physical addresses can be selected. 

A 16-bit instruction counter and a 16-bit cycle counter are provided for debug 
and performance analysis. 

These breakpoints all have programmable actions when they occur. 1bey may 
generate exceptions, interrupts, or toggle an external pin to help trigger external 
analysis equipment. 

Viking provides the equivalent of traditional leE (In-Circuit Emulation) suppon 
intemally in hardware. Through the IrAG (IEEE PI 149.1) asynchronous scan 
interface, the state of the processor may be viewed or modified withQut changing 
other processor state. TIle processor may be single stepped through a program, 
with all processor states being observed after each cycle. This interface may be 
used to view or modify system memory as well. 

Emulation operates at full processor speed, without affecting any pin timings, or 
loading. No test pod, nor other specialized hanlware is required (except a IrAG 
control device with appropriate software). 

Viking is a 100% testable device. All internal datapath and control logic can be 
tested using 11" AG scan. Large intemal mays are not directly in the scan chain., 
but may still be tested through the serial IrAG interface. 

An automatic power-up selftest (software) can be initiated with or without any 
external scan hardware. This, along with functional test of the arrays, gives bigh 
confidence that the device is correct. with minimal effort. 

Boundary scan is implemented to perform system level testing . 

• ~p..!! Sun Microlystems Proprieury R.evision 2.00 of November I, 1990 



6 TMS390Z50 - Vitirag User Docwnentation 

1.3. High Performance 

1.3.1. Clock rate/technology 

1.3.2. J1Architecture 

.} .3;2.1 MUltiple InstrUctions 
Per Cycle Execution 

1.3.2.2 Fast LOAD and STORE 
instructions 

All tests can be performed in-circuit; only a ITAG control device is required. 

Viking achieves high performance in many ways. These are broken down into 
two categories: High clock rate due to technology, and low sustained cycles-per­
instruction (CPI) due to p.architecture. 

A full custom BiCMOS implementation allows for a target frequency of 50MHz or 
greater. Advanced process technology makes possible many of the J13fChitectural 
features described below. The system interface is designed for operation at these 
high speeds. An internal Phase Locked Loop is included to reduce system clock 
skew. 

In order to push beyond the improvement from clock rate, the J.WChitecture has 
been optimized to execute multiple instructions simultaneously and critical 
instructions quic1cly. These J13rchitectural features increase the average number 
of instructions executed per cycle by a factor of two for integer programs. A 
much greater improvement is found for floating point bound programs. 

Viking typically executes programs from its cache at about 1.35 instructions per 
cycle (IPC), or about 0.74 clocks per instruction (CPI). This figure derates to about 
1.1 IPC for large programs not fully contained in the cache. Hoating point perfor­
mance is generally much higher. 

TIle optimizations are outlined below: 

Viking can issue up to three instructions simultaneously. Ceitain rules are fol­
lowed to determine how many of the available instructions may be executed in 
any particular cycle. These.are fully described in section 3.4 -Instruction 
Grouping Rules. 

All LOAD and STORE instructions operate in a single clock cycle when the refer­
enced data is present in the on-chip data cache. This includes 64-bit transfers and 
floating point transfers. When the data is not present in the on-chip data· cache, a 
S cycle penalty is imposed to access the external cache. Each cache miss reads a 
block (32-bytesl of data from the external cache. These bus transactions are fully 
pipe1ined. The processor can use this data "on the fly", as the data arrives from 
the bus. 

When in cc mode, no miss penalty is incurred for normal store misses. An inter­
nal store buffer holds the store transaction and allows the pipeline to continue. 

No load-use interlocks are imposed on lD instructions. The.lnstruction immedi­
ately following may use.the data wi~ incurring any delay. 1bere are some 
cases of interlocks between the lD instruction and the following address calcula­
tions. (Described in section 2.3.1.1 - W (Lood operation) ). TIle external bus 
is capable of nearly one transfer per cycle in the steady state (A mix of data and 
instruction fetches). .. 

Because Viking uses fully physical caches with cache coherence, no flushing of 
cached entries must be done, and no vinual address aliasing conditions exist 
Eliminating flushing overi1ead can boost perfonnance significantly. 
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1.3.2.3 Floating Point 
Implementation 

Chapter 1 - Introduction 10 Viking 7 

The Viking Floating Point Unit is tightly coupled to its integer execution pipe­
line, and allows one floating point operation and one memory reference to be 
issued in ellery clock cycle. Viking supports single and double precision opera­
tions. but not extended nor quad precision. The FPU maintains a 4 entry FIFO 
queue from which FPOPs are executed. Some operations require more execution 
cycles than others, for example FDIV (Ooating point divide) and FSQRT (floating 
point square root) take many more cycles than FADD. Viking FPU also handles the 
integer multiply and divide. FPOP, and FPEVs are executed in the order they are 
issued by the processor, allowing no out of order completion Register depen­
dencies can delay execution stream, and exceptions can interrupt the pipeline, 
sometimes requiring instruction aborts. Viking handles all cases ofnormaliza­
tion, and register alignments for double precision arithmetic, directly in 
hardware. No unfinished exceptions (which consume extra cycles) are required. 

More details of the FPU can be found in section 2.3.2 - Floating Point Pipeline. 
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2 
Processor Pipeline Overview 

The Viking J1Processor pipeline is presented in this chapter. This information is 
used throughout the document to describe Viking's operation. The next chapter. 
Code Generation. suggests code generation strategies to attain maximum perfor­
mance from Viking's SuperScalarpipeline. 

2.1. Pipeline Fundamentals Viking's pipeline comprises eight stages. which execute in four clock cycles. 

2.1.1. FOIFI (Fetch) 

2.1.2. DO (Grouping) 

Each stage has a unique function. which varies depending on the group of 
instructions being executed. In general. they follow the standanl Fetch, Decode, 
Execute, Write Back model The Viking pipeline stages are: 

FO, Fl. DO, Dt, D2, EO, EI. WB 

and each stage is defined in detail below. 

All instructions must be fetched before they are executed. However, not all 
instructions are fetched in the cycle immediately preceding their executiOlL They 
may be prefetched. and placed in the instruction queue. The Fetch stages (FO/Fl) 
of the pipeline manage the instruction queUe, including fetching and prefetching 
required instructions,from memory. Not all instructions fetched are executed. 
Some may be discarded if a control transfer instruction (branch) changes the Dow 
of execution. Up to 128 bits (four insttuctions) may be read from the instruction 
cache in every cycle. 1bese instructions are entered into the instruction queue, 
and can be removed at a maximum rate of three instructions per cycle. 

The DO stage selects from 0 to 3 instructions from the instruction queue to form 
an in-order instruction group. This selection depends on the set of instruction 
Ct.UUliII4tes that are available at the bead of the instruction queue prefetch buffer, 
as well as the current state of the processor pipeline. The grouping rules used to 
form 1bis selection are described in section 3.4 1bese instructions must be taken 
in order from the queue, Viking does not execute instructions out of order. 

Once a group of instructions is selected, DO identifies the first memory reference 
instruction in the group, and latches the corresponding register index. DO forms 
extension words based on the immediate values for memory reference and con­
trol transfer instructions' displacements. DO identifies ClJ.SctJ/le conditions 
fmteger insauction data dependencies within and between instruction groups). 
and insens pipeline bubbles when necessary. A bubble or pipeUne stall of dead 
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2.1.3. Dl (Resource 
Allocation) 

2.1.4. D2 (Read Operands) 

2.1.5. EO (Execute first stage) 

2.1.6. El (Execute second 
stage) 

cycle is a cycle where no insttuction is executed. This cycle is necessary when 
there is a pipeline hazard, or if required data is not available. 

01 assigns available resources within the integer unit to individual instructions in 
the group selected during DO. All cases of data forwarding (or bypass) are 
resolved in this stage. All operand register index are selected and assigned to 
individual register file ports. 1bese resources stay constant throughout the execu­
tion of the insttuctions. 

The two address registers selected during DO are read via two dedicated register 
file ports during DI. This data is used in 02 to compute a LO/ST virtual address. 
The data for these may also beforwarded from currently executing insttuction 
groups. 

Branch target addresses are generated in 01, taken from the extension words 
selected in DO and the Program Counter (PC) value of the branch instruction 
within the group. Next PC values are also generated. 

Stage 02's primary function is to read the operand registers selected in the 
preceding 01 stage. In addition, the address operands read during 01 will be 
combined in the virtual address adder. The result is a 32-bit vinual address which 
will be used to reference the MMU and data cache in subsequent stages. During 
D2, any bypass paths required for execution will be set up to transfer data in 
cycles that follow. 

Viking has two execution stages. EO is the primary execution stage. Most arith­
metic operations complete in EO. During EO, the data operands read from the 
register file during D2 are passed through one of two ALUs, or the shifter. Up to 
two integer results can be generated in EO. Only one may be generated by the 
shifter. These results are then presented as input to the EI cascaded ALU, and 
sent into many forwanting paths. 

For memory references, the virtual address generated in 02 is used in EO to begin 
accessing the 11.B and the data cache. Only the low-order 12 bits of the vinual 
address are needed to begin cache lookup. The high order bits are supplied by the 
MMU in the EI phase for tag comparison with the physically cached data. The 
MMU must inform the data cache unit in EO if there is an access exception in the 
current group of insUuc1ioos. The IU is·also informed in El stage about the 
access exception. If it is not yet known whether an exception must be reported to 
the cunent group (due to 'I'LB or cache misses), the pipeline is stalled at this stage 
until aD exception sources have ~ resolved .. 

floating point operations are dispatched to the FPU during EO. 

The sec:ond stage of execution can generate at most one additional integer ALU 
result This result is generated ill the Cl.lSt:IIIUd ALU.The computed results from 
the EO AW or shifter are used as inputs to this AW. All execution results from ;<.', 

the current insUuction group are available by the end of the E 1 stage. This ~-./. 
includes data retumed from the data cache. 
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2.1.7. WB (Write Back 
Results) 

2.2. Basic Pipeline 
Diagram 

CbaplCr 2 - Processor Pipeline Overview 13 

Results generated in E 1 are delayed a cycle before they can be used as address 
operands. Address dependencies for a load from memory result in one cycle of 
pipeline bubble. Condition codes generated in E 1 are delayed a cycle before they 
can be used in resolving conditional branches. 

When stage EI has completed, all results are guaranteed to be available. The pri­
mary action in the WB pipeline stage is to 'Write Back' these results into the 
register files based on write enable signals generated earlier in the pipeline and 
potentially modified due to exceptions. 1be WB stage executes at the same time 
as the EO stage of the next instruction group. Forwarding paths are used to 
transmit data between successive groups. The integer unit and FPU update the 
register files during WB, and normally the data cache updates its contents when a 
ST instruction has appeared in EO-El. 

Viking can operate in either cc mode or MBUS mode. The choice of mode has a 
major impact on the behavior of ST instructions. In cc mode, Viking assumes 
the existence of an external cache. In this mode, the Viking data cache behaves 
as a 'Write 1brough' cache, which means that all ST instructions that modify the 
internal cache also write their data through to the external cache. 

In MBUS mode, the Viking data cache operates as a 'Copy Back' cache, which 
means that ST data is not written out to the external system until the line contain­
ing the data is replaced in the cache, or a snoop on the bus forces a copy back. 
Also, in MBUS mode the cache implements a 'Write Allocate' policy, which 
means that if a ST misses in the cache, the line containing that data is brought in 
from memory, and then the ST is performed locally (i.e. memory does not get' 
updated, consistent with the 'Copy Back' strategy). MBUS mode does not assume 
the presence of an external cache. 

As in cc mode, there are conditions that will force a ST in MBUS mode to be 
treated as a synchronous ST. 

1broughout the document, pipeline diagrams are used to represent the Bow of 
insuuctions an;..; data through the processor. TIle most basic pipeline diagram is 
shown in the figure below. This diagram is generic, and is intended to show the 
relation of groups in the pipeline • 
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Figure 2-1 Basic Pipeline Description 

CLOCK 

Instruction Group 

One 

Instruction Group 
Two 

Instruction Group 
Three 

Instruction Group 
Four 

2.3. Pipeline Examples 

FO Fl DO 01 02 EO El WB 

FO Fl DO 01 02 EO El WB 

FO Fl DO 01 02 EO El WB 

R> Fl DO 01 02 EO El WB 

All pipeline stages are identified. The bold venica1lines indicate major (rising) 
clock edges. The shaded venica1lines are minor (falling) clock edges. In general, 
the contents of the instruction group will be indicated in the left-side heading. 
Significant operations and interactions are included in the boxes for individual 
stages. 

Viking's pipeline is straightforward for simple instruction sequences (e.g., integer 
arithmetic). The complexity rises quickly for memory reference and control 
transfer insttuctiODS. 'Ibis section describes these cases in detail. Standard LD and 
ST sequences are presented first. followed by floating point operations (!POPS). 
Then SAVE, RESTORE. and all fonns of control transfers are described. The final 
section describes how the pipeline deals with exceptions. 

This section describes only the simple cases of these sequences. In particular. 
pipeline stalls caused by a variety of sources are not considered here. In general. 
pipeline bubbles or idle cycles may be injected into the pipeline at any point for a 
variety of reasons. 

... 
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2.3.1. Memory References 

2.3.1.1 LD (Load operation) 

L-

Chapcer 2 - Processor Pipeline Overview 15 

LOs and STOREs are very frequent operations in SPARe code. In a typical program, 
as many as 30% of the instructions are loads or stores. Since Viking executes up 
to 3 instructions per cycle, it may be required to execute a memory reference 
nearly every cycle. This presents significant challenges to the processor design. 

To maximize performance, Viking has removed restrictions that have existed in 
prior RIse designs. In particular, many sources of interlocks on load instructions 
have been removed. This allows Viking to execute a LD instruction, immediately 
followed by a dependent ALU instruction in the next instruction group (an ALUOP 

with a register dependency with the LD). 

All LD and ST instructions that hit in the internal data cache execute in a single 
cycle. This includes all byte, half-word, word, and double-word references. Up to 
two other instructions may be included in the instruction group with the memory 
reference. Stores are generally buffered. In ee mode, they take a single cycle to 
execute whether or not they hit in the cache. 

The diagram below (load after ALUOP example) shows a LD instruction execut­
ing, surrounded by arithmetic operations. For simplicity, the sequence uses sin­
gle instruction groups, forced by the dependencies in the code. The code 
sequence being executed demonstrates the use of many data forwarding paths for 
reference. The sequence is: 

add %10, %11, %12 
!---Break (Can't cascade into shifter) 
s11 %12,2, %12 
!---Break (address dependency) 
ld [%12+0x10),%13 
!---Break (Load data dependency) 
add U3,U4,U5 

Note the use of a dependent shift instruction to force a break between the add and 
shift. H the shift were replaced by an add. it would be considered a cascaded 
instruction and the two would be grouped together. This would have resulted in a 
pipeline bubble between the second add and the load, as shown in the example 
below. TIle total execution time would have been identical. -

add UO,U1,U2 
add U2,2,U2 
!---Break (address dependency) 
bubble 
!---Break (address dependency) 
ld [%12+0x10),%13 
!---Break (Load data dependency) 
add U3,U4,U5 

TIle execution of this code sequence through the pipeline is shown below: 
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Figure 2-2 Basic load pipeline sequence 

CLOCK 

Group One: 
add %10,%11,%12 

Group Two: 
shl %12,2,%12 

Group Three: 
Id [%12+0xl0],%13 

Group Four: 
add %13,%14,%15 

Load after ALUOP 

FO Fl DO 01 02 EO El WB 
JWd Add \ Wrile 
10.11 ~ 10+11 ~, 12 

~ 

FO Fl DO 01 02\ EO El WB 
Extend Read 12 Shift Wrile 
2 igrKft) I2by2 12 

'\to 
FO Fl DO 01 ,02 EO El WB 

~ 
Add va Rad Hill Wate 

ipore) 
~..oxJ( db It; route\ ~JJ ~ cache cilia 

I)xtO \. 
FO Fl DO Dl D2 ~ El . 

Read 13 
ipcn) 13+14 

. ~14 

The add and shift instructions execute, pass data through forwarding paths from 
the add result, into the shifter. then from the shifter result into the virtual address 
adder for the load. TIle "OxlO" offset is extended into a 32-bit value in the Dl 
stage. TIle offset extension word, and the forwarded version of register %12 are 
added, and the result passed to both the data cache and the MMU, which are 
accessed in parallel. When a hit is identified in the noB, the physical page number 
is extracted and passed on to the data cache. In the meant time, the cache has 
completed reading all data and tags for the four possible sources of the memory 
location (4-way set associative cache). TIle tags are compared with the physical 
page nmnber from the MMV. Wben the proper set is identified. the data is routed 
back: and forwarded into the next EO execute stage for the-last add instrudiun, it 
is also written into the register file. 

Had a cache or MMU miss OCCUlTed. pipeline bubbles would have been insenec1. 
The EO and El stages of the load would be repeated until all the misses had been 
satisfied. If any errors occuned. they would be reported to the EO Stage (which is 
being repeatedly executed). 

WB 
Writ. 

IS 
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2.3.1.2 ST (Store operation) 

Chapter 2 - Processor Pipeline Overview 17 

Store operations are similar to loads in many ways. The address computation. 
cache lookup and MMU access are done in exactly the same manner for loads. 
The primary difference is the handling of the data. The sequence below demon­
strates a store operation. The instruction sequence is more complex than the pre­
vious example to illusttate multiple instruction handling. 

add %10, %11, %12 
sub %01,%02,%03 
!---Break (two write ports) 
and %03,%04,%05 
st %05,[%12+%13] 
!---Break (only one memory reference) 
ld [%12+0x10],%13 
!---Break (load data dependency) 
add %13, %14, %15 

The first and last two instructions of the sequence are identical to those in the last 
example (load after ALUOP). TIle shift from that example is replaced by an AND 
and 51 instruction. A SUB instruction has also been added. Note that the store 
requires data from the and. This is executed with no delay, as the data to be 
stored is not required until the stage when it is actually written out 

Figure 2-3 Store Pipeline Operation 

Store after ALUOP 

CLOCK 

Group One: FO Fl 00 01 02 EO El WB 
R.d Mel Wrile add %10,%11.%12 10,11 :1\ 

"\~ 
12,03 

sub %01.%02.%03 01,02 
01 02 

Group Two: FO Fl DO 01 I~ if El YfI RaIl 
and %03.%04.%05 12,13 12+13 ~,04 Hi&, 05, 

%05.['1112+'1113] ~i,- R.d ~db ".. --. st 12) 03,04 il:cadlt wriIe ..... 
Group Three: 

PO Fl DO ~ 02 EO El WB 
!Add .. R.d Hid Write 

Id ['II12+Oxl0].'II13 Ell .... i12..oaiC db A: -~ ~13 DdO -=lie dIIa \. 

Group Four: 
PO Fl DO 01 02 ~ El WB 

ReId 13 Write 
add %13,%14. 'illS .... I3+W IS .. ~14 
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2.3.2. Floating Point Pipeline 

lbis diagram is very similar to the previous example, with the addition of 
another memory reference insuuction. Many of the forwarding paths used in the 
previous diagram are no longer used, while others are illustrated. The store 
address is computed in the D2 stage, then used to check the MMU and cache tags 
in EOIEI. Assuming all protection checks pass, the write is actually performed , 
during WB. The physical write to the data cache is delayed another phase past 
WB, but this is not visible to the program execution. 

Operation of the data cache on a ST miss depends on whether Viking is operating 
in CC or MBUS mode. In CC mode, if the store operation had missed the data 
cache, the timing would be identical. The store data would be written only to the 
store buffer, and not to the data cache. In this case Vildng's data cache does not 
write allocate on misses. In MBUS mode, however, if the store operation had 
missed the data cache, Viking's data cache would write allocate, by bringing the 
data from memory, retrying the ST (which would now hit), then writing the new 
data onto the cache line. lbis new data would be copied back to memory when 
the cache line is to be replaced. 

In some cases, a load needs to read data which has been written recently. If this 
data is in the cache, it is returned immediately. In CC mode, this data may not be 
in the cache, since it may still be in transit to the external cache, or to main 
memory. TIle drain rate of the store buffer depends on the external system. In 
such cases, the store buffer is checked for a copy of the needed data (store buffer 
snooping). If it is found to be present, the processor requests that the store buffer 
be drained (store buffer copy out). The processor then waits until the requested 
data is no longer in the store buffer, then continue and read the data back in from 
memory, as for a normal load. Viking does not forward data from the stOre buffer 
to satisfy read requests. In MBUS mode, a ST guarantees that the data cache has 
the new data. See section 8 -MBUS Interface f~rmore details. 

Viking's on chip floating point is tightly coupled to the integer pipeline. A float­
ing point operation may be started every cycle. The latency of most floating point 
instructions is three cycles. The FPU pipeline has the following stages: 

PD, FRD, FE, fL, FWB 
(Decode. Read, Execution. Last, WriteBack) 

floaling point instructions are dispatched I4te in the processor pipeline. They are 
not issued to the FPU until the EO stage of the integer pipeline. Once issued, the 
floating point instruction proceed through the FPU'S pipeline. The stages in the 
FPU pipeline are also fairly standard: decode, read, execute, and writeback. For­
warding paths are provided to chain the result of one floating point operation to a 
source of a subsequent operation. 

The floating point pipeline becomes visible to the integer pipeline in several 
cases. When an FBFCC (Branch on floating point condition codes) instruction is 
ismed, the processor may need to wait until a preceding FCMP instruction has 
completed. When a floaling pobU store i.nsttuctiOD is executed, the pipeline also 
becomes visible. The integer pipeline waits in the EOIEl stage until the requested ,~' 
data is available from the FPU. In some cases, the floating point queue may ''''­
become full, typically when many IODg latency floating poiDt instructions 
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(divide, square root, or highly dependent operations) are issued. 

Since floating point instructions are issued late in the pipeline (EO), and the 
actual arithmetic is not begun until one cycle later (WB), Viking may issue a load 
and a dependent FPOP simultaneously. This is demonstrated in the following code 
fragment A pipeline diagram of a simpler case is shown below. 

1dd [%10],%f2 
faddd %f2,%fO,%f6 
add %10,Ox8,%10 
!--- Break (Three instruction max) 
1dd [%10],%f4 
add %10,Ox4,%10 
fmu1d %f4,%fO,%f8 
!--- Break (Three instruction max) 
ldd [%10+4],%f10 
cmp %10,Ox100 
be Loop 
!--- Break (Branch, Three instructions) 
faddd %f6,%f8,%fO 

The-example above may not contain a particularly interesting sequence, but it 
shows many of Viking's strengths. All but the last group contain three instruc-. 
tions. The floating point operations are grouped with load instructions on which 
they depend. The data returnS from Viking's data cache at the end of the El stage, 
and is immediately used by the Roating Point Unit's FRD stage, and then by its 
FE stage. . 

The pipeline diagram below shows the following code fragment being executed: 

ldd [%10+%11], %£2 
faddd %f2,%fO,%f4 
!--- Break 

by its For simplicity, other instructions in the pipeline are not shown. 

Revisian2.00 ofNovembe:r 1.1990 



20 TMS390ZS0 - Viking User Documentation 

Figure 2-4 Floating Point Pipeline 

CLOCK 

Group One: 
Idd [%10+%11],%£2 
faddd %£2, %fO, %f4 

Group Two: 
(Don't Care) 

2.3.3. Floating Point 
Instructions 

2.3.4. Floating Point Queue 

2.3.5. Floating Point 
Execution Times 

FO 

Floating Point Pipeline 
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There are two types of floating point instructions: 

FPOPs (floating point operations) and 
FPEVs (floating point events). 

The ~vs (floating point events) are executed by the FPU but they do not enter 
the FPU queue, and these include: 

lDF/STF Ooad and Store to floating point registers) 
lDFSR/STFSR Ooad and store to floating point status register) 
STDFQ 

Integer Multiply and Integer Divide operations 

The FPOPs include allfalus,fbfcc etc., and they specifically enter the FPU queue. 

TIle FPU queue is a FIFO, holds up to 4 FPOPs, stalls the execution stream when 
the it is full, and signals FSR.QNE to indicate whether/nOt it is empty. FPEVs do 
not enter the FPU queue, these operations use the FPEV logical port. Recall that 
JMUL IDIV are included in FPEV. TIle FPOPs use the FPOP port. 

JMUL and IDIV can stan execution only when the FPU queue is empty, unless the 
FPU is in exception mode (See section 4.4.1 -Integer Multiply (IMUL) and 4.4.2 
-Integer Divilk (IDIV) for more details). 

Different FP operations require different number of cycles to complete. TIle fol­
lowing table summarizes the performance of Viking FPU for its FP operations. 
falu includes fadd, fsub, fmov, fneg. fabs. fanp, and all of the conversions 
between integer. single and double precision numbers. Single is denoted "s", it 
means single precision operation canied on 32 bits. Double is denoted "d", it 
means double preciSion operation canied on 64 bits. Viking supports neither 

Sun MicIosyItemI ProprieIIry Revision 2.00 of November 1. 1990 



() 

Chapter 2 - Processor Pipeline Overview 21 

extended "x" precision (80 bits) nor quad "q" precision (128 bits). frnul is f­
multiply, fdiv is f-divide, fsqrt is f-square-root. each of them allowing either sin­
gle or double precision operation. fsmuld is multiply a single precision number 
to a double precision number. imul is integer multiply and idiv is integer divide. 
imulcc is integer multiply that affects the condition codes icc, and idivcc is . 
integer divide that affects the condition codes icc. These operations as stated ear­
lier are perfonned by the FPU. Each of these FPOPs is a SPARe instruction, only 
the implementation is Viking speci fico 

The following table lists FPOPs with a 3 cycle latency. 

Table 2-1 Floating Point Operation Execution Time - 3 cycle latency 

Instruction cycles 

fadds 3 
faddd 3 
fsubs 3 
fsubel 3 
fcmps 3 
fcmpd 3 
fcmpes 3 
fcmped 3 
fstoi 3 
fstod 3 
fdtoi 3 
fdtos 3 
fitos 3 
fitod 3 
fmovs 3 
fabss 3 
fnegs 3 

.. 
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The following table lists other FPOPs and their latencies. The execution time of 
each of these FPOP depends on the source{s) and destination data fonnats. The 
notation used in this table designates: 

n: floating point normal number. 

s: floating point subnormal number. 

ns=n Identifies source 1, source 2, and destination data fonnats 
respectively. 

Table 2-2 Floating Point Operation Execution Time - latency 

2.3.6. Conditional Branch 
Pipeline 

Instruction nn=n nn=s sn=n sn=s ns=n ns=s ss=n ss=s 
fdivd 7 8 10 11 11 - 11 -
fdivs 6 7 9 10 10 - 10 -
fmuld 3 4 6 7 7 8 8 -
fmuls 3 4 6 7 7 8 8 -
fsqrtd 10 - 13 - - - - -
fsqns 8 - 11 - - - - -
fsmuld 3 - 6 - 7 - 8 -
idiv 15 - - - - - - -
idivcc 15 - - - - - - -
imul 4 - - - - - - -
imulcc 4 - - - - - - -

Branches are a fundamental performance limiter in most processors. This is par­
ticularly we in RISe machines. where basic block sizes are usually small. It is a 
serious problem in superscalar machines. which reduce the number of cycles 
taken to execute the already small number of instructions between branches. In 
normal operation, Viking could see a branch every three to five cycles. 

Viking's branch implementation can execute untaken branches somewhat more 
efficiendy than tDken branches. The peak performance through an untaken 
branch is 3 instructions per cycle. Peak performance through a taken branch is 
2.3 instructions per cycle. The difference comes from the delayed branch instruc­
tion which must be executed as a single instruction group in the taken case. .Due 
to usual code scheduling resttictions. this peak performance will not generally be 
attained, and the difference between taken and untaken branches will be less visi­
ble. 

Viking implements branch prediction in the prefetch logic. It always attemptS to 
fetch the target of the branch. However, the pipeline assumes that the branch is 
untaken. This relies on the instraction queue having several sequential instruc­
tions available. The target insttuctions are fetched into the target queue. Once the 
direction of the branch has been resolved, the appropriate instructions are routed 
into the insttuction queue . 
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When a branch occurs, the pipeline continues to execute nonnally for one cycle. 
In this additional cycle, the delay instruction is executed, possibly along with 
other instructions in the untaken stream. This implies that, if the branch is taken, 
some instructions have begun execution that should Mt have. Viking terminates 
the execution of these instructions for a taken branch as soon as the branch 
sequence has been resolved. This is called squash. The instruction must be can­
celed before any machine Stale has been modified. 

Viking executes the typical branch sequence by grouping together the branch 
instruction, and the previous instruction(s) that nonnally set the condition codes. 
This is a fonn of branch folding. Up to two other instructions may be executed 
in the group with the branch. The delay instruction is executed in the next group. 
A typical instruction sequence might be: 

subcc 
bz 
add 
st 
and 

%lO,OxlOO,%gO 
TakenTarg 
%11, %12, %13 
%13, [%gl+OxlOO] 
%00,%01,%02 

TakenTarg: st %gO, [%gl+OxlOO] 

This same basic code sequence is used to demonstrate both taken and untaken 
branches. The same basic control transfer mechanism is usedJor all forms of 
branchC$, jumps, and calls. 

The untaken branch is the simplest case. The example sequence above is grouped 
as follows in the untaken case: 

subcc %10,Ox100,%gO 
bz UntakenTarg 
!---Break (Break after CTI) 
add %11,%12,%13 
st %13, [%gl+0x100] 
!---Break (No more write ports) 
and %00,%01,%02 
(others) 

The instructions at UmakenTarg will not be executed, since the branch is not 
taken. Notice that two instructions (add, store) are executed in the delayed 
instruction group. The instructions beyond the third group are not significant 
The pipeline behavior is shown below: 
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Figure 2-5 Untaken Branch Pipeline 

CLOCK 

Group One: FO 

subcc %lO,Oxl00, %gC 
bz UntakenTarg 

Group Two:(delay) 
add %11,%12,%13 
st %13,[%gl+Oxl00] 

Group Three: 
and %00,%01,%02 
(Others .•.. ) 

Group Four: 
(Don't care) 

2.3.6.2 Taken Branch 

Untaken Conditional Branch 

Fl DO 01 02 EO El WB 
Read ~ Wrile 
10 ~,Ioo ~ 

tool~ ipcIre) 

FO Fl DO Dl 02 EO El WB 
~eact. ReId ~cId Hitl Wrile. 

.1 I 11.12 1.12 Allow 13, 

fA ...... IcId eadllb wriIe CICbc, 
OT1M 21.100 l CleM buffer 

FO Fl rDO 01 02 EO El WB 
Felch ~ Select Read ADeI IWriIe 
Tikell -1= MqeIL 00,01 00.01 102 

code 

rFO Fl DO 01 D2 EO El WB 
I~= 

fe&c:bini 

TIle diagram shows the fetch that is being done because the branch is assumed to 
be taken. The condition codes (from the subcc instruction) are resolved in the 
branch groups EO pipeline stage. This condition code is used immediately to 
determine the branch direction, in the delay groups D2 stage, the target group's 
DO stage (by selecting the correct queue), and the/ollowing group's FO stage (by. 
selecting the correct prefetch program counter). Thus, after one cycle ofimcer­
tainty. the branch is resolved. Fetches once again follow the correct execution 
stream. 

The taken brancb case is somewhat more complicated. The most significant­
change is that instructions which begin execution in the delayed instruction 
group are "squashed", and never complete execution. Squashed instructions are 
indicated with gray shading in the pipeline diagrams. The apparent grouping of 
insuuctions in the taken case is: 
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subcc %10,Ox100,%gO 
bz TakenTarg 
!---Break (Break after CTI) 
add %11,%12,%13 
!---Break (Squash: st %13, [%gl+0x100]) 

TakenTarq: st %gO,[%q1+0xlOO] 

!---

The instruction grouping is the same as for the untaken branch case, up to the 
delay group. In the delay group, the grouping begins in the same as for an 
untaken branch, but the grouping is modified (squashed) when the branch is 
resolved as taken. 
The taken branch pipeline is: 

Figure 2-6 Taken Branch Pipeline 

CLOCK 

Group One: 
subcc %lO,OxlOO,% 
bz TakenTarg 

Group Two:(delay) 
add %1 

Group Three: 
st %gO.[%gl +Ox I 
(Others) 

Group Four: 
(Don't care) 

2.3.6.3 Branch Couple 

Taken Conditional Branch 

PO FI 

WB 

DI D2 EO El WB 

SPARe allows for a limited set ofen (Control Transfer Instruction) couples. 
1bese cases are quite complex to understand and implement They execute in the 
same general manner as 1lOnnal. branches. Viking executes all the legal en cou­
ples conectly and, conforming to SPARe V.S, choose not to suppon the imple­
mentation dependent case ofB*CC and ocn couple (Case 6 in the SPARe V.S 
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2.3.6.4 JMPL 

2.3.7. Procedure Call and 
Return 

2.3.7.1 CALL 

2.3.7.2 CWP Pipeline 

2.3.7.3 SA VB 

Manual). The B·CC instructions areBia: and FBfcc (including BN, FBN, but 
excluding B*A and FBA). ocn instructions are CALL, JMPL, REIT, B*CC taken, and 
B*A (with a=O). 

The JMPL instruction is an unconditional branch which uses a register as the 
source for the branch targeL Other branch instructions compute the target 
address from an immediate operand and the.current program counter value. 
lMPL's suffer a delay since they must read the register file before issuing a branch 
target fetch. The extra cycle is injected into the pipeline after the delay instruc­
tion of the lMPL. that is, before execution of the target instruction. 

SPARC defines a set of instructions for procedure entry and exiL CALL is used to 
branch to a subroutine. It saves the PC value in register '1007 which is used to 
compute the return address. JMPL is used to do a retum, using a register to sup­
ply the target of the branch. By convention, for a return, JMPL uses the register 
written by the last previous CAll... 

SA VB and RESTORE instructions work as a pair to allocate and deallocate a regis­
ter window and a stack frame for a procedure. SA VB decrements the CWP, while 
RESTORE increments iL Both instructions do an implicit ADD operation, which is 
used to allocate/deallocate the stack frame. 

CALL executes in exactly the same manner as a taken branch, including execution 
of the delay instruction, except that the current PC value is written into register 
rlS (%07). The value is written in the EO stage of the group containing the CALL 
instruction. . 

CALL is grouped with previous inStructions in the same manner as branches. It 
does, however, require a register file write pon. so the grouping may be some­
what constrained by available resoun:es. 

SA VB and RESTORE instructions modify the processor's CWP. This causes a regis­
ter window to be allocated, or deallocated. These instructions also perform an 
ADD operation. The soun:es for this add are from the old register window, while 
the destination is in the new window. For simplicity, Vildng executes both these 
instructions as single instruction groups. To make instnlctions before and after 
SAVE and RESTORE operations reference the COnecl windows, multiple CWP'I are 
maintained in the pipeline. Depending on an instruction's position rela1ive to the 
CWP cbange, the appropriate CWP value is chosen. 

SAVE is always a single instnlction group. Except for changing of CWP during the 
decode phases, it is identical to an ADD instruction. SAVE takes a single cycle to 
execute. 

.. 

Sun Microlystems PIaprietay ReviHon 2.00 ofNo¥ember 1, 1990 



2.3.7.4 RESTORE 

2.3.8. Exceptions 

(~\ 
) 

2.3.8.1 Exception Pipeline 
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RESTORE is also a single instruction group. It also behaves just as an add instruc­
tion, except for the CWP update. The RESTORE takes a single cycle to execute. 

Exception handling is an extremely complicated part of Viking. The precise 
exception architecture of SPARe must be maintained. The most difficult excep­
tions to handle are those which cause partial execution of a group of insttuctions, 
e.g .• 

!--- Break (Start of group) 
add %11, %12,%13 
Idd [%oO+OxlOO],%f2 
and %13,Ox20,%13 
!--- Break (3 instructions) 

The two arithmetic instructions fonn a cascade. The load insttuction (which hap­
pens to be to floating point registers) is between the two arithmetic instructions. 
Also. the destination registers of the two arithmetic instructions are identical. The 
problem arises in this case if the load instruction induces an exception (say. due 
to a page protection violation. or a misaligned memory address). In this case, the 
first instruction (ADD) must complete and write back its result The second 
instruction.(WO). however, must not complete. 

If the instruction were scheduled to complete without incurring an exception, the 
result of the add would not have been written to the register file - it would simply 
be used as a temporary value passed on to the and. When the exception OCCUIS. 

this is no longer true and the result must be written to the register file. Viking 
correctly handles complex cases such as this and many others. 

The case above. with some surrounding instructions, is used below to illustrate 
the exception handling pipeline. The diagram assumes that an exception is 
reponed for the load double instruction. The exception forces the ~te ~e of 
the cwrent group to be modified. allowing only the first add instruction to write 
its result. The exception handling logic then takes control of the pipeline. All 
subsequent instructions in the'pipeline are squashed. The store buffer is flushed. 
and the pipeline stalls until the flush is complete. In the next cycles. the PSR and 
CWP are modified to reftect the exception state of the processor. An instruction 
fetch to the proper intenupt handler in the ttap table is requested. The exception 
PC and nPC are written into r17 and r18 (%11.%12). Fmally, the instructions in the 
handler begin execution. 

.. 
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Figure 2-7 

Group Two-Four 
(1bree cycles to enter 
exception handler) 

Exception Handling Pipeline 

PO Fl DO 01 02 EO 
Group Five: / 
'(Enter Handler) 

2.3.8.2 Interrupts Interrupts are handled in the same manner as exCeptions. TIle interrupt request 
pins are sampled on the ri~ing edge of the clock. In the next cycle, the highest 
priority intenupt is selected. This may be from the pins, or from an intemally 
generated interrupt (breakpoints). The request level of the selected inte~pt is 
compared against the enable and processor interrupt level fields in the PSR 
(PSILET and PSJLPIL). If the interrupt request level (IRL) is higher than PSR_PIL, 
an excepdon is generated in the next cycle, to the instruction group at the EO 
pipeline stage. 

In order for the interrupt to be accepted, there must be a valid instruction in the 
EO stage. If there is no valid instruction, the intenupt is not taken until an instruc­
tion anives at EO. 'Ibis ensures 1bat there is a valid PC to repolt as the interrupted 
program counter. 

TIle last valid instJUction in the EO stage is nonnally squashed. If there is only a 
single instruction in EO, it is squashed, and the saved PC value points to that 
instruction. All instructions in the pipeline after this squashed instruction are 
also squashed. Breakpoints are reported to the instruction that caused the break­
point detection, rather than the fast valid instruction. 

The interrupt pipeline is identical to the exception pipeline (see above). It 
behaves just as if an exception were reported to the last valid instruction in the 
EO group. See section 7.4 -Interrupts for more details • 
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Trap) Pipeline 
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The return from trap instruction executes in cooperation with a JMPL that must 
immediately precede it (See the SPARC Architecture Manual). Execution of a 
RE'IT is very similar to a JMPL It is required to restart instruction sequences 
which were trapped on the delay insuuction of a branch. In this case, the JMPL 
returns to the delay insuuction and the RE'IT returns to the target of the branch. If 
there was no previous branch, NPC is set to PC+4. 

A RETI executes as a single insbUction group. It incurs no additional pipeline 
cycles. TIle preceding JMPL provides afree pipeline hold cycle for the RETI to 
change CWP and PSR, and to issue a fetch to the saved NPC. 

The typical code sequence used to return from a trap is as follows: 

[ jrnpl 
rett 

%r17,%gO 
%r18 1 

The insbUctions at the target of this return are don't care's. TIle insbUction at the 
target of the JMPL must be executed as a single insbUction group, since it may not 
be contiguous with the return address in the RE'IT. The pipeline operation for the 
sequence is shown below: 
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Figure 2-8 Return/rom Trap Pipeline 
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3.1. Performance of 
Existing Code 

3.2. Areas that Hurt 
Performance 

3 
Code Generation Principles 

All J.1Pr0ce5SOrs benefit from code sequences generated with intimate knowledge 
of the processor's operation. 

This section describes some guidelines that can be used to construct optimal, or 
nearly optimal code sequences for Viking. They can be applied to compiler code 
generation, as well as manually generated code for highly performance sensitive 
routines. 

Viking is designed to execute code from existing SPARC compilers efficiently. In 
general, Viking executes this code at about 1.35 instructions per cycle (IPC). or 
0.74 cycles per instruction (CPI). This number is derated to about 1.1 IPC for (lI)er­
age large programs when cache effects are considered. Hoating point intensive 
programs typically execute at a higher IPC. 

This performance level can be increased significantly with code generated expli­
citly for Viking. In addition. compiler improvements not targeted explicitly at 
Viking also offer substantiai improvements. This text considers only low-level 
code scheduling issues. 

Viking performance is sensitive to many factors. 1be significant perfOl1llance 
limiters vary greatly between programs. Oasses of limiters include: branch fre­
quency and direction; memory reference patterns; floating point operation 
scheduling; instruction ordering and data (register) dependencies. 

In floating point programs, branch performance is rarely a limiter. This is mostly 
because loops are often unrolled. In most cases, floating point programs are 
mmaory reference limited, rather than arithmetic limited. Since only a single 
memory reference can be executed per instruction group, interleaving memory 
references with nearly anything else improves performance. 

Most programs are limited by either branch perfOl1llance or loadIstore bandwidth. 
In particular, taken branches can only execute a single instruction in the branch 
delay group. Load and store operations are often "bunched" together. This 
prevents other instructions from being executed in parallel with the memory 
references. .. 
Cache performance is also critical, to achieving maximum perfOl1llance. Many 
routines are small enough to have their entire code and data set contained in 
Viking's OIl-chip caches. Only (usually) insignificant cold-stan penalties will 
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3.3. General Guidelines 

degrade the performance of such routines. Most larger programs. however. do 
not fit entirely in the on-chip caches. These programs typically lose 20% to 30% 
of their performance from cache miss penalties. Prefetching logic selVes to limit 
the degradation in some cases. Localizing code and data references within a pro­
gram can lead to substantial performance improvements. 

A general rule for Viking optimization is to interleave as many different classes 
of operations as possible. A good simple measure of the minimum execution 
time of any routine is: 

MemoryReferences 
FloalingPoinlOperalions 

MIN Cycles = MAX IntegerOp!ralions 

2 
BranchOperalions x2 

The rule holds when one. and possibly two of the terms are close to the max­
imum. As more terms get larger, the likelihood of approaching the minimum 
number of cycles decreases. 

In order to approach the minimum above, all of the classes of operations must be 
interleaved as much as possible. In the worst case. the equation can become: 

Cycles = Memory References + FloatingPoimOperations + (/ntege~rral.ions ) + (BranchO~rationsx2) 

Viking hardware tends to locally compensate for minor scheduling variations. As 
an example. the sequence 

ldd [UOJ,%9'1 
!--- Break (only one memory reference) 
ldd [%11], %9'4 
add %9'1,Ox100,%g3 
!--- Break 

executes in the same number of cycles as the following sequence: 

ldd [%10],%g1 
!--- Break (dependent Ld-Use) 
add %g1,Ox100,%g3 
ldd [%11], 'g4 

This is a trivial example, but it demonstrates the Self-Aligning nature of execu­
tion on Vi1cing. The pipeline tends to align itself based on the positions of the 
critical operations in the code (the memory references, FPOP's, and branches). 
Local variations rarely affect performance . .. 
Again, the imponaDt consideration is that the critical operations do not become 
additive, but rather are interleaved to increase parallel operation. Along these 
lines. most codes have 11IIl1rY optimal schedules . 
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3.3.2. Allocate delay 
instructions carefully 

3.3.3. Reduce floating point 
register dependendes 
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In the equation above, each branch increases the execution time of a sequence by 
about two cycles. Thus, it is far more significant to remove a branch than to 
remove a memory reference. 

Code should be unrolled wherever possible. This is a performance boost on all 
machines, and especially on Viking. The addition of as many as four other 
insttuctions is generally better than a single branch. Where possible, arithmetic 
logic, rather than sequences of branches will offer improved performance. 

Viking will benefit from unrolling all types of code, not just floating point. 

Since the delay insbUction of a taken branch is forced to be a single insbUction 
grouP. it is very important to make the best use of that instruction. For example. 
in the unrolled UNPACK case. optimal performance cannot be achieved unless a 
memory reference is placed in the delay instruction. 

The guideline. is to make cenain that the delay insbUction is used to execute one 
of the critical performance limiting operations in the code. 

Reorganizing code to properly fill the delay instruction may require adding 
instructions to the code. This is a tradeoff that must be made carefully. Even 
though adding instructions can increase Viking's performance. it is guaranteed to 
decrease performance on any non-superscalar machine. In addition, it does 
expand the code space. One alternative is to use Software Pipelining which often 
allows the same performance levels without increasing the number of insttuc­
tions. This is accomplished by spreading the execution of each loop iteration 
over several actual trips through the code. The resulting code in·the loop would 
execute the final operations of the previous loop. the core of the clln'enr loop, and 
the prologue of the next loop. 

Annulled Branches should not be used unless there is no alternative. An annulled 
branch saves only the code space used for ihe delay instruction. TIle cycle in 
which the annulled branch would have been executed is still required. 

This can be a very significant performance limiter in some benchmarlcs. No 
floating point register can be modified until all pending operations in the floating 
poim queue which either produce or simply use that register have completed. 
This is often violated in an attempt to reduce temporary FP register usage. It may, 
in fact, increase Viking perfonnance to use more loads and stores to move float­
ing point data back and forth between memory and registers, than to. overuse a 
single register and introduce dependencies. 

This is true of arithmetic operations, as well as loads and stores. TIle Floating 
Point Unit has a fairly long execution pipeline. Performance suffers when there 
are frequent FP data dependencies. 

These guidelines do not apply to integer operations. Integer register dependencies 
are handled much more effectively. 'Ibe following two code fragments show 
good and bad examples oew register dependencies: 
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3.3.4. More loating point 
code examples 

3.3.4.1 FP code example: 
Throughput 

BadExamp/e 

ld [%iO],%f1 
!--- Break (Only one memory reference) 
ld [%iO + 4],%f2 
fmuls %fO,%£1,%£0 
!--- Break (Only one memory reference) 
Id [%iO + 8],%f1 
fadds %£0,%£1,%f2 
!--- Break 
!--- PIPELINE STALL FOR 4 CYCLES! 

Note that the last load operation reuses register %0. This prevents the load 
operation from being executed until after the FMULS has completed. Also the 
FADDS uses %tn as source operand, and can only stan execution when FMULS has 
produced a result for %tn. A much better schedule is: 

Good Example 

Id [%iO],%£1 
!--- Break (Only one memory reference) 
Id [%iO + 4],%f2 
fmuls %fO,%f1,%fO 
!--- Break (Only one memory refere~ce) 
ld [%iO + 8],%f3 
fadds %f3,%f1,%f2 
!--- Break 

By changing the register used in the last load and add operations, the four pipe­
line bubbles are removed completely. Of course, there are other optimizations 
that might be applied to this code, namely, using a load double to replace the first 
two memory references. Such optimizations can sometimes violate high-level 
language executibn rules if not done carefully. In the example above, a load dou­
ble would only be valid when targeted to an even-odd register pair, not odd-even 
pair. 

'Ibe following section provide examples of floating point codes that illustrate the 
many Viking FPU operation details. Each example is preceded by a brief explana­
tion about the significant details. 

'Ibe following example shows how to take full advantage ofFPOP latency (for 
example 3 cycle latency of fadds~, and execute each FPOP without any pipeline 
stall. This amngement achieves the hi~ throughput. 
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3.3.4.2 FP code example: One 
Stall 

3.3.4.3 FP code example: 
femp/fbfcc latency 

fadds %fO,%f1,%f20 
!--- Break --------­
fadds %f2,%f3,%f21 
!--- Break --------­
fadds %f4,%f5,%f22 
!--- Break --------­
fadds %f6,%f7,%f23 
st %£20, [%11] 
!--- Break --------­
fadds %f8,%f9,%f24 
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The following example is similar to the previous code (section 3.3.4.1 - FP code 
example: Throughput), except that the ST is attempted a cycle earlier. Because 
of the 3 cycle required latency of fadds, a bubble will be inserted to stall the 
pipeline before the ST can be completed. Viking's grouping logic places wfadds 
%f4, %f5, %122" together with ST in the same group, (this is done prior to the FPU 

detecting any dependency), hence when ST is stalled, the group is as well Since 
the pipeline will stall in either case, there is no perfonnance difference. 

fadds fO,%£1,%f21 
!--- Break ---------
fadds . %£2,%f3,%£22 

!--- Break ---------
£~dds %£4,%£5,%£23 
st %£21,[%11] 
(bubble) 
!--- Break ---------
fadds %£4,%f5,%£23 
st %£21, [%11] 
!--- Break ---------

(issued) 
(issued) 

( completed) 
(completed) 

The following example demonsttates the latency of an femp-fbfee pair. An femp 
requires 3 cycles before the fee (condition codes) are resolved for an fbfee use. 
An'anging the code as given in this example allows each cycle to complete 
without any pipeline stall. 
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3.3.4.4 FP code example: 
fcmp/fbfce Stall 

3.3.4~ FP code example: !reg 
dependency +Out -> ST 

!--- Break --------­
femps %f6,%f7 
!--- Break ---------
fadds %fO,%f1,%f21 
!--- Break ---------
fadds %f2,%f3,%f22 
!--- Break ---------
fadds %f4,%f5,%£23 
!--- Break ---------
fbne t1 
!--- Break ---------

The FPU detects if there is a pending femp. and stalls the pipeline if it encounters 
an FPOP that may need femp's resolution. In the following example, an fbfee is 
issued immediately after an femp. Vilcing issues the femps, but then stalls the 
pipeline for 3 cycles until the femp has completed, before executing the fbne. 

!--- Break ---------
temps %£6,%£7 (issued) 
(bubble) 
!--- Break ---------
(bubble) 
!--- Break ---------
(bubble) 
!--- Break ---------
femps %£6,%£7 (completed) 

!--- Break ---------
£bne t1 
!--- Break ---7-----

TIle following example shows how a floating point register dependency with a ST 
may stall the pipeline. TIle code issues fadds and ST, Vilcing groups them 
together and Uies to execute. Because of the 3 cycle latency of fadds to compute 
results. the pipeline is stalled for 3 cycles before those insttuctions can complete . 

.. 
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3.3.4.6 FP code example: freg 
dependency +in -> 
LDin 

!--- Break --------­
fadds %fO,%f1,%f21 
st %f21, [%11] 
cmp %i7,2 
(bubble) 
!--- Break ---------
(bubble) 
!--- Break --------­
(bubble) 
!--- Break --------­
fadds %fO,%f1,%f21 
st %f21, [%11] 
cmp %i7,2 
!--- Break ---------
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(issued) 
(issued) 
(issued) 

( completed) 
(completed) 
(completed) 

Note that a floating point exception from fadds will be reported to the ST in the 
above example. fp_exception is a deferred trap and is always reported to the next 
FPOP or FPEV (ldf or stf). 

The following example shows how a floating point register dependency before a 
w may stall the pipe. 1be code issues fadds and W. Viking groups them 
together and tries to execute. 1be W can not complete before the fadds com­
pletes. and the fadds takes 3 cycles to complete. hence the pipeline is stalled for 
that period. This is required to avoid destroying the source registers for current 
FPOPs. 

~--- Break ---------
fadds %fO,%f1,%f21 
Id [%11),%f21 
crop %i7,2 
(bubble) 

!--- Break ---------
(bubble) 
!--- Break ---------
(bubble) 

!--- Break ---------
fadds %fO,%f1,%f21 
Id [%11),%f21 
crop %i7,2 

!--- Break ---------

(issued) 
(issued) 
(issued) 

( completed) 
( completed) 
( completed) 

Note that a floating point exception from fadds will be reponed to the 1D in the 
above example. 

.. 
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3.3.4.7 FP code example: freg 
dependency +Out -> +in 

3.3.4.8 FP code example: freg 
dependency - +in -> 
+Out 

3.3.5. Spread address 
calculation and 
Memory reference 

The following example demonstrates how a floating point register dependency 
between 2 FPOPs activates the data forwarding, and does not cause the pipeline to 
stall. The destination register of FPOPI is a source register for FPOP2, both FPOP 
are able to enter the FPQ immediately, but FPOP2 will not start until FPOpl reaches 
FWB stage. However, FPOP2 does not wait until FPOpl has written the data into 
the register, because FPOP2 receives the data from the forwarding path. 

!--- Break --------­
£adds %£0,%£1,%£21 

!--- Break ---------
£adds %£21,%£2,%£22 
!--- Break ---------

The following example demonstrates that a floating point register dependency 
between 2 FPOPs does not cause the pipeline to stall. Both instructions are able to 
complete immediately. 

!--- Break ---------
£adds %£0,%£1,%£21 
!--- Break ---------
£adds %£2,%£3,%£0 

r--- Break ---------

In order for Viking to implement single cycle memory references, it is necessary 
for the address registers to be stable by the D2 pipeline stage of the memory 
reference. 1bis implies that address computation must be completed in the EO 
stage of the previous instruction group. A typical example is: 

all '10, Ox3, '10 
!--- Break (ALUOP into Memory reference Address) 
ld [%00+%10],%11 

Since the result of the shift is needed for the load address calculation, they must 
be executed in separate groups. If the shift were not producing data for rhDt load. 
they could have been grouped together. This example is not particularly bad. In 
general. the shift will be grouped with previous insttuctions. and the load will be 
grouped with subsequent operations. 

1be next case is less common. but can be significant in some codes. This arises 
when the addJess is calculated iIt a cascaded insttuction group. 1be results of a 
cascade lie not available until the end of the E 1 execution stage. Since the 
memory reference requires data at the end of EO. a wasted pipeline cycle must be 
insetted. Example: 
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3.3.6. Arithmetic 
dependendes 

3.3.6.1 Pons to memory 

3.3.6.2 Pons to the FPU 

3.3.6.3 Integer register write 
pons 

811 %10,Ox3,%10 
add %10,%00,%10 
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!--- Break (Cascade into memory reference) 
!--- PIPELINE STALL for one cycle 
ld [%10], %11 

Note that this example is functionally identical to the previous example. (except 
for the actual content of %10). However. it requires three cycles to execute rather 
than two. In the more general case. a sequence such as this will be used only 
when more complex address arithmetic is required. 

A third. and quite common case occurs during (for example) linked list traversal. 
nus happens when the results of one load are immediately used as pan of the 
address of the next load. 

ld [%10], %11 
!--- Break (load into memory reference) 
!--- PIPELINE STALL for one cycle 
ld [%11], %12 

The pipeline stall is required for the same reason as the previous example- the 
results of a load instruction are not available Wltil the end of the E 1 pipeline 
stage. 

If any of the above cases can be spread apan. by moving other instructions which 
can be executed between these dependencies. performance will be increased. 

Viking must group instructions according to available hardware resources. Some 
of these restrictions are more severe than others. The effect of each of these res­
trictions varies greatly depending on the code being run. 

The most basic hardware resource limitations is a single pon to memory. This is 
what restricts Viking to one load or store per cycle. Similar to this, a single pon 
to the instruction cache restricts branch performance. 

Although Viking bas independent ftoating point adder and multiplier, only one 
ftoating point operation per cycle can be dispatched. A load or store between a 
ftoating point register and memory can be done in the same cycle as a ftoating 
point operation. however. 

TIle most RStrictive of these resoun:es are the write ports into the integer register 
file; 2 are available. All arithmetic instructions use one of these ports. Load 
instructions use one write pon, and load double instructions use both write ports. 
Note that floating point load operations do not use any integer register write 
ports. So, for example, tbeJoUowing code segment (which loads double floating 
point registers) executes in two cycles: 
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3.3.6~4 Integer Arithmetic units 

3.4. Instruction Grouping 
Rules 

add %10, %11, %12 
and %12,%Oxff,%13 
Idd [%oO+OxlOO],%f2 
!--- Break (Three instructions) 
add %14,%15,U6 
and %16,Oxff,%17 
Idd [%oO+Ox108],%f4 
!--- Break (Three instructions) 

While the next example (which is similar, but loads into integer registers), exe­
cutes in four cycles: 

add UO, %11, U2 
and %12,%Oxff,%13 
!--- Break (No more write ports) 
Idd [%oO+Ox100],%i2 
!--- Break (No more write ports) 
add %14, %15, %16 
and %16,Oxff,%17 
!--- Break (No more write ports) 
Idd [%oO+Ox108],%i4 

Viking has two logical integer ALU's. This is implemented intemally with three 
separate ALU', and a shifter, for speed reasons. Each of these can produce one 
result each cycle. One of the ALU', can use the output of either the other ALU or 
the shifter as its input 

The number of ALU', cannot limit the machines perfonnance, since no more than 
two results can be stored by the register file. However, only a single shifter 
exists. This means that a result cannot be cascaded into a shift operation. 

Vilcing fonDS groups of instructions by examining the available, or candidate 
instnlctions from its instnlction queue. A set of rules are applied to decide which 
of the instructions will be selected for inclusion in the next group to be executed. 

The group size can be limited by the number of instructions available in the 
queue. The number of available iDsUuctions depends mostly on the number of 
branches executed recently. and the instruction cache performance. When a pr0-
gram is executed for the first time, most of the instructions will not be present in 
the cache, and performance will be dominated by the time takm to fetch insttuc-
lions from extema1 memory. . 

There are several claSses of rules. The most basic classes are brealc oj'ter, and 
bretlk before. This determines whether the instruction group will be tenninated 
before a particular instruction, or after it These two classes are funher broken 
down into rules based on the available instructions, rules based on the previous ? ". 

instruction group, and rules based on exceptions. \'L/ 
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The following sections will provide a description of all these rules. 

3.4.1. Break After Rules The following rules "Break After" an instruction based on relations among the 
first three instructions in the queue. These rules will prevent any funher instruc· 
tions from being included in the current group. The best example of this is a 
branch instruction. Instruction groups are always terminated when a branch is 
included. 

Table 3·1 Break After Rules 

Break After First Valid Exception 
Break After Any Control Transfer Instruction 
Break After Condition Codes set in Cascade 
Break After MULSCC destination not equal to source of next MULSCC 
Break After first instruction after Annulled Branch 
Break After first instruction midway through a branch couple 

3.4.1.1 Break After First Valid This rule prevents instructions from entering the pipeline after an exception 
Exception (instruction access exception) has been signaled. The exception will travel 

through the pipeline, and only actually occur when it reaches fanher into the 
pipeline. 

3.4.1.2 Break After Any 
Control Transfer 

. Instruction 

3.4.1.3 Break After Condition 
Codes set in Cascade 

3.4.1.4 Break AfterMULSCc 
destination not equal to 
source of next MULSCC 

3.4.1.5 Break After first 
instJUction after 
Annulled Branch 

This rule breaks the current group between any branch, and the delay instruction 
which follows the branch. Any instructions which are to be grouped along with a 
branch must appear before it in the code. 

This rule prevents any.additional instructions from. being accepted after an 
instruction cascade in which the second ALU operation sets condition codes. It is 
used primarily to simplify implementation. This rule also tenninates groups 
when two properly formed MULSCC instructions are grouped. 

This rule detects poorly fOl1lled MULSCC cascades. It prevents multiple MULSCC 
instructions from being exeatted in parallel unless the second uses the result of 
the first. This condition will never happen in nomal multiply sequences, but is 
architecturany legal. 

This instruction prevents multiple instructions from executing in the delay group 
. of an annulled branch. The instruction in the delay group of an annulled branch 

will nomally be executed only if the branch is taken. When this occurs, only the 
first instruction after the branch is expected to be executed. If the previous branch 
is untaken, the insttuction in the delay position is not executed at all. Viking will 
begin executing this delay instruction, assuming the branch will be taken. and 
squash it later if need be. Restricting the grouping to contain only a single 
instruction in this position simplifies the implementation. 
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3.4.1.6 Break After first 
instruction midway 
through a branch couple 

3.4.2. Break Before 

This rule prevents multiple instructions from being executed when a branch cou­
ple is being processed. SPARe allows for a restricted number of branch couple 
conditions. To simplify implementation, Viking will only execute single instruc­
tions during branch couples. 

The following sequence demonstrates this rule: 

ba destl 
!--- Break after CTI 
be dest2 
!--- Break after CTI 
(Never Executed) 

dest1: aqd %10,%11,%12 
!--- Break midway through branch,couple 
add \13, \14, \15 

dest2: add %14,%15,%16 

Most rules are "Break Before" rules. They ..-e typically used ~ break a group 
when one of Viking's limited resources has been completely used. For example 
all instruction groups are terminated (a break is generated) before a second 
memory reference. 

There are many grouping rules which are required to handle pipeline hold condi­
tions. These rules will not be listed here. 

All the "Break Before" rules are listed below: 

Table 3-2 Brealc Be/ore Rules 

... 
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3.4.2.1 Break Before Invalid 

Instruction 

3.4.2.2 Break Before Out of 
Integer Register Pons 

3.4.2.3 Break Before Second 
Memory Reference 

3.4.2.4 Break Before Second 
Shift 

3.4.205 Break Before Second 
Cascade 

3.4.2.6 Break Before Cascade 
into Shift 
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Break Before Invalid Instruction 
Break Before Out of Integer Register Read Pons 
Break Before Second Memory Reference 
Break Before Second Shift 
Break Before Second FPOP 
Break Before Second Cascade 
Break Before Cascade into Shift 
Break Before Cascade into JMPL 
Break Before Cascade into Memory Reference Address 
Break Before Load Data Cascade Use 
Break Before Previous Group Cascade into Memory Reference Address 
Break Before Sequential Instruction 
Break Before Control Register Read after Previous SetCC 
Break Before MULSCC unless first one or two instructions 
Break Before Extended Arithmetic from CC set in Current Group 
Break Before Delay Group en unless first 
Break Before en in JMPL delay unless RETI' 

Viking uses this rule to wait for instructions from the instruction queue and 
instruction cache. Even instruction access exceptions are considered valid 
instructions. It is possible for fewer than three instructions to be valid from the 
queue. This limits the maximum number that can be executed at a given time. . 

This rule prevents a group from using too many register file pons. Four operand 
read pons and two operand write pons are available. Memory address register 
pons are independent, and do not affect this rule. 

Viking has only a single port to memory. This rule prevents a group from 
attempting to use it twice. This rule does not discriminate between floating point 
or integer WIST. 

Though Vildng has several ALUs, only a single shifter is provided. It must be used 
in the first execute stage, so it may not be the second operation in a cascade. 1be 
result is produced early enough that it may be the source of a cascaded operation. 
This allows for common operations like shift&add, and shift&compare. 

Only one operand may be cascaded into the E 1 of the integer pipeline. This rule 
prevents using two EO results to fonn a cascaded operation. 

All shift operations must execute in the EO stage. This rule enforces that restric­
tion. 

.. 
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3.4.2.7 Break Before Cascade 
into JMPL 

3.4.2.8 Break Before Cascade 
into Memory Reference 
Address 

3.4.2.9 Break Before Load Data 
Cascade Use 

3.4.2.10 Break Before Previous 
Group Cascade into 
Memory Reference 
Address 

3.4.2.11 Break Before 
Sequential Instruction 

3.4.2.12 Break. Before Control 
Register Read after 
Previous SetCc 

JMPL reads from the register file to calculate the target of its branch. The value is 
required before the EO stage. This requires that the register not be changed in the 
group with the JMPL. This rule detects when such a condition exists, and forces a 
break before the JMPL. 

In order to perform single cycle memory references. the registers fOrming the 
address for a load or store must be available before the 02 stage of the memory 
reference. This requires that they be changed no later than the EO stage of the 
previous instruction group. This rule, and the Break Before Previous Cascade 
into Memory Reference Address rule enforce this restriction. 

A full cycle is required to access the on-chip data cache. The data from a load is 
available after the El stage of the load. Therefore, it may not be used before the 
EO stage of the next instruction group. This rule prevents an instruction from 
using that data in the group with the load instruction (during EO or EI). 

This rule enforces an extension of the Break Before Cascade into Memory Refer­
ence Address rule. It requires that the address registers stabilize by the end of the 
previous instruction groups EO stage. 

Viking defines a set of instructions that can only be executed as single instruction 
groups. In addition, Viking can be forced to execute all instructions as single 
instruction groups through an ASI visible control bit, 

The set of insttuctions which are always single insttuction groups is: 

SAVE and RESTORE 
LDO and STD operations to integer registers 
All Alternate Spoce stores (STA STDA STBA STHA) . 
Atomic operations: SWAP and LDSTUB 
All control register accesses: Read and Write PSR ASR WIM Y 
RETI' 
FLUSH 
All software traps (rice) 
Integer M~tiply: UMUL UMULCC SMUL SMULCC 
Integer Divide: UDIV UDIVCC SOIV SOIVCC 
Tagged Operations that can trap (TADDCCTV TSUBccrv) 
Load or Store FP status registers (LDFSR STFSR STDFQ) 
FBFCC (Branch OIl 80ating point condition code) 

Integer condition codes are pan of the processor status register (PSR). To prevent 
them from being read while they are being modified, the processor forces an 
extra cycle between RDPSR instructions and a previous arithmetic operation that 
may have changed the condition codes . 

.. 
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3.4.2.13 Break Before MULSCC 
unless first one or two 
instructions 

3.4.2.14 Break Before 
Extended Arithmetic 
from CC set in Current 
Group 

3.4.2.15 Break Before Delay 
Group en unless first 

3.4.2.16 Break Before en in 
JMPL delay unless 
RE'IT 
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Viking executes MULSCC either as a single instruction group, or it executes two 
MULSCCs as a group. MULSCC is never grouped with any other instructions. 

Viking cannot use condition codes calculated in EO as input to extended precision 
arithmetic in the same group. This rule inserts a break between the condition 
code computation, and its use in extended arithmetic (ADDX ADDXCC SUBX 
SUBXCC). 

This rule prevents additional branches, other than true branch couples, from 
being executed in the delay group of a branch. This simplifies implementatiao by 
never having to squash the later branch when the previous branch is takCIl 

This rule allows an optimization of JMPI..JRE'IT pairs, and simplifies the genel2l 
case of JMPL couples. A full cyde is required in the pipeline between a JMPL and 
any othercn, except RETI. 
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4.1.· Viking Processor 

4.2. CC or MBUS mode 

4.3. Reset Operation 

4 
Viking Programmer's Model 

This chapter describes the Viking programming model. It explains the Viking 
processor from a programmer's point of view by discussing the processor's com­
ponents, reset modes and how it affects Viking, IT AG, In-Circuit Emulation, 
Diagnostics and BIST (Built In Self Test). The processor components included in 
the descriptions are the two caches (instruction and data), the memory manage­
ment unit (MMU), the store buffer, and the Aoating Point Unit. Every control 
register involved in the operation of Viking is explained in the respective sec­
tions, along with comprehensive ASI descriptions which detail register bits and 
fields. The same ASI Map also fonnally defines all of the ASlS that Viking sup­
ports. 

Viking is a highly-integrated, super-scalar (multiple instructions per cycle) sP~c 
processor for use in single- and multi- processor systems. It features physical 
instruction and data caches, a Memory Management Unit (MMU), a Store Buffer, 
and a Floating Point Unit (FPU), all on chip. Accesses to these and other com­
ponents within the chip are available through the use of ASI references, generally 
used for control and diagnostic purposes. See the SPARC Architecture Manual for 
more on ASIs. 

Viking can operate in either of the two modes, CC or MBUS. In cc mode, Viking 
assumes the existence of an external cache, and a cache controller (such as the 
MXCC. for example). In MBUS mode, Viking makes no such assumption, and con­
fonns to level-2 MBUS protocol. TIle differences of the two modes in terms of 
ViJcing operation will be compared and explained throughout this doaunent 

ViJcing implements three fOlms of reset Hardware reset, sometimes called 
power-up reset is initiated exterMl to the processor by asserting the RESET _ sig­
nal. TIlere is DO direct mechanism within Viking to assen hardware reset This 
function is typically implemented within the system logic. It is also possible to 
cause a hardware reset in emulation mode. 

Built in self test (BIST) generates a second type of reset, which is nearly identical 
to the hardware reset BIST operations can be requested either by software (with a 
STA), or via the 1rAG interface. When BIST is initiated through software using 
STA, an internal reset is automatically generated. When BIST is initiated by 1rAG. 
however. the user needs to generate the reset This can be done by entering the 
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4.3.1. Hardware Reset 

TAP reset state by either assenion OfTMS for 5 consecutive TCK cycles or assen­
ingTRST_o 

In addition to the hardware reset there is an internally-generated reset referred to 
as a Watclulog Reset. 1bis reset is caused by entry into elTOr mode as described 
in the SPARC Architecture Manual. 

Several actions are taken following a hardware reset A detailed description of 
timing requirements on the.reset signal is presented in section 10.2.2.6, in the 
System Interface chapter. Once the reset has been requested, Viking spends 
several hundred cycles initializing internal logic. In panicular, during this time 
the cache colwnn redundancy repair circuits are configured. All chip outputs are 
held inactive, or tri-stated during this time . 

.. 
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The following table show what actions are taken by hardware reset. 

Table 4-1 Stale after hardware reset 

Register/Bit Affected States After Reset 
Floating Point Queue Invalidated 
Boot Mode (MCNTI...BT) I (indicating boot mode) 
MMU Enable (MCNTL.EN) o (MMU disabled) 
No Fault (MCNTL.NF) o (Faults enabled) 
Data Cache Enable (MCNTL.DE) o (Data cache disabled) 
Instruction Cache Enable (MCNTLJE) o (Instruction Cache disabled) 
Store Buffer Enable (MCNTL.SB) o (Buffer Disabled) 
MBUS/CC Mode (MCNTL.MB) I/O. Depends on CCRDY _ pin 
Parity Enable (MCNTL.PE) o (Even Parity Disabled) 
Snoop Enable (MCNTL.SE) o (Snooping Disabled) 
Partial Store Ordering (MCNTL.PSO) o (TsO/Strong Ordering) 
Data Prefetcher (MCNTL.PF) o (Prefetcher Disabled) 
Alternate Cacheable (MCNTL.AC) o (non-cacheable) 
Table Walk Cacheable (MCNTL.TC) o (Non-cacheable) 
Error Mode (MFSR.EM) o (Not an error mode. or watchdog reset) 
TI.B Lock Bits o (all11.B lock bits cleared) 
Multiple Instruction Mode ACIlON.MIX o (Single Instruction Execution) 
Breakpoints (MDIAG) o (All breakpoints disabled) 
Program Counter o (PC = OxO. NPC = Ox4) 
BIST Status (BIST.STATUS.LONG) o (No BIST since reset) 
Store B~ffer Tags Valid bits cleared 
Store Buffer Control Pointers set to zero 
Store Buffer Contents Uninitialized 
Data Cache Contents Uninitialized 
Instruction Cache Contents Uninitialized 
Register File Contents Uninitialized 
Processor Status Register (PSR) S=l, ET=O. EC=O, Ver=4, Impl=O 

PSR.CWP Uninitialized 
WIM (Window Invalid Mask) Uninitialized 
MFSR Uninitialized (except for MFSR.EM bit) 
MSFSR. (Shadow FSR.) Uninitialized 
Emulation Facilities Disabled 

All values shown as IUlinitilllized are just that, not set to any guaranteed state 
after hanlware reset. 1bey must be initialized before use. 
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4.3.2. Watchdog Reset 

Important Note: 
In order for Viking to properly reset, care must be taken in the system imple­
menWion. In particular, IrAG operation may affect Viking's ability to reset 
(the IrAG TAP controller should be in the reset state when hardware reset is 
asserted). 

The internal phase locked loop (pu.) may take a long period of time to sta­
bilize at power on (approximately 100 miliseconds).This time must be 
accounted for in the assertion of an external reset. Unpredictable operation 
occurs if reset is deasserted before the Pu. has locked. 

After the above state has been set, Viking initializes all internal state, and take a 
reset trap. This forces execution to begin at virtual address OXO. Since boot mode 
is set, physical address OxffOOOO()() is used to fetch instructions from memory. 
System software may distinguish hardware reset from watch dog reset by the 
MFSR.EM (Enor Mode) bit being cleared. Since the ACTION.MIX (multiple instruc­
tion execution) bit is cleared, Viking's superscalarexecution is disabled, and a 
maximum of one instruction may be executed in each cycle. 

None of the entries in the Store buffer, data cache, Instruction cache, orn.B 
(except lock bits) change. Software is responsible for initializing each resource 
before enabling them. 

Important Note: 
System software is expected to examine the state of the BIST.sTATUS register 
after any reset to detennine whether the reset trap occulTed as a result of a 
built in self test operation. 

In addition to the hardware reset there is an intemally-generated reset refelTed to 
as a watchdog reset. This reset is caused by entry into enor mode as deScribed in 
the SPARe Architecture Manual. 

To allow recovery from many enor mode conditions, as little state as possible is 
. affected by.watchdog seseL 1beonly ~bit~cted.b)' awatclvlog.mset is 
the MCNTL.BT (boot mode) bit. The MFSR.EM (Error Mode) bit is set to indicate 
that this is a watchdog reset, as opposed to a hardware Jaet. Since the cache 
redundancy logic bas already been programmed (during hardware reset), it is not 
done again. Breakpoints are clean:d at watchdog reset. 

In cc mode, Viking issues an error mode bus cycle causing the cache controller 
(or extemal system logic) to record the occurence of enor mode. The completion 
of this bus cycle causes watchdog Jaet. 

Once the above actions have ~n completed, a reset trap will be generated. 
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4.3.3. Single Instruction 
Execution 

4.3.4. Boot Mode 

CMpter 4 - ViJcing Programmer's Model SS 

At power-on reset, Viking will execute in single instruction execution mode. 
Multiple instruction per cycle execution is enabled by setting the ArnON.MIX bit. 
(See section 4.14.4.5 - Breakpoint ACJ70N Register ). 

For a detailed description of boot mode, see section 4.11.11.1. 

Boot mode is a special MMU bypass mode, where all instnlCtion accesses (and 
alternate spaces references through ASIs OxOS and Ox09) pass their virtual address 
in physical address bits 27 through O. and the upper eight physical address bits 
(35 through 28) are set to Oxff. 

Boot mode is entered after any reset (either hardware or watchdog). It may be 
disabled by clearing the MCNTL.BT bit explicitly. Note that boot mode overrides 
the MMU enable for instruction accesses. Boot mode does not affect data refer­
ences. 

During boot mode. the MCNTL.AC bit is ignored for instruction references and 
alternate space transactions through instruction space ASIS (Ox08,0x09). making 
these accesses to instruction space non-cacheable when BT= 1. However, the AC 
bit is still used for data references in this mode. 

4.3.5. Built·In Self Test (BIST) Viking has included Built·In Self Test (BIST) logic on chip. There are two types 
ofBIST, short and long versions. BIST is a quick check for device integrity, it is 
not an exhaustive proof that the device is 100% conect. Many types of device 
faults will be detected by an incorrect signature value after a BIST. 1be long BIST 
operation is a more exhaustive check of the logic than the shortBIST. 1bis sec­
tion describes hoW.BIST operates, how to initiate BIST, how to use the results, and 
warnings regarding BIST operation. 

4.3.5.1 IntemalBIST operation 

4.3.5.2 BIST coverage 

4.3.5.3 Signature 

BIST uses internal logic scan paths to write in pseudo-mndom test patterns into 
the chip logic (internal swes). One cycle of execution is then run, to let the 
swes assume their next swes, then state of the logic is captured through the scan 
path into a signature analyzer. The signature analyzer creates a signature value 
based on the results from the logic and stores this value in the BIST .sIGNATURE 
register. 

The BIST sequence checks allnol'Dlally scannable logic, but does not check most 
internal memories. The 11.B, store buffer, prefetch buffers, cache arrays, and 
register files are not checked by BIST. 

The correct signature value is known but i~ device stepping dependent Correct 
signarure values for the device will be published. (Not yet known for this revi­
sion of the documentation). 

Dijferenl signature values are generated for the long and short BIST operations • 
.. 
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4.3.5.4 Initiating BIST 

4.3.5.5 BIST ASI operation 

To initiate BIST a STA to ASI Ox39 is issued. A "long BIST" is selected by writing 
to vinual address Oxl00, while a store to address 0 selects a "shonBIST". An 
ASI 009 access to any address other than Ox 100 or OxO will generate a 
data_acce5S_exceptiolL 

Intemallogic controls the BIST operation once requested. An extemal reset 
abons the BIST operation. When the sequence completes, an internal reset is gen­
erated (see the hardware reset description above). 

BIST may also be initiated through the rrAG interface. For details on rrAG ini­
tiated BIST, see chapter 5 -RAG Serial Scan Interface 

ASI=0x39 - BIST Diagnostics. 

1bere are 2 memory mapped. Viking -specific, MMU resident diagnostic registers 
used to suppon built-in self test (BIST). Any Byte, Halfword and Doubleword or 
Swap access into any of these diagnostic registers are explicitly illegal and will 
generate a data_acce5S_exception. LDAISTA single only is allowed. 

Table 4-2 BIST DiaglllJStic Registers within ASIOxJ9 

Address Load/Store Data Fonnat Description 
OXOOOOOOOO Store Don't care (should be zero) Start Shon BIST 
OXOOOOO100 Store Dontt Care (should be zero) Start Long BIST 
OXOOOOOOOO Load Signature[31 :0] Read 31-bit signature 
OxOOOOOlOO Load Status[31:0] (see value below) Read 2-bit BIST Status 

1be possible values of the status register are: 

Table 4-3 BIST status register values 

4.3.5.6 WamiDgs regarding 
BIST operation 

Value Meaning 
OXOOOOOOOO NoBISTrun 
0x00000001 Short BIST run 
OxOOOOOOO2 LongBlSTnm 

Hardware reset PIN wm clear BIST .STATUS. 1bese bits are not affec&ed by walCh­
dogrcset. 

AfterBIST finisbest Viking generates an intemal reset. This internal reset behaves 
similar 10 die banlware reseL ODe of die consequences of this reset is that 
MCNn. gets initialized - in panicular tile MCNI1...PE bit gets reset so that Viking 
SWts geaeratiDg inverted parity on the pins. This intemally generated reset is not 
seen by a cache c:ontro11er such as the MXCCt so if the parity was enabled in the 
MXCC before starting BIST - it is still enabled in the MXCC afterBIST. This results 
in a mismatch between what Viking and MXCC do and expect on writes. Software 
should cbect die MXCC.PE bit after BIST bas completed and adjust the Viking ts '~ 
MCNTLPE bit before attempting any writes. To be safe - tile following algorithm 
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4.4. Instructions 
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could be used: 

(Before starting BIST) 

Flush the store buffer (even though STA Ox39 does it too) 
Check the MXCC status register and wait until nothing is pending 
StartBIST 

(After BIST finishes) 
Read BIST StanIS 

Read BIST signature 
Read laCC control register 
Set Vildng's MCNTL.PE bit ifMXCC.PE bit is set 
Continue 

Even though the MXCC was mentioned as an example, any other system com­
ponent could have a similar problem since they do not see Viking's intemally 
generated reset. Thus care has to be taken in recovering the system after BIST 
finishes. 

This section describes Viking instruction operation for those instructions which 
require a more detailed description than is already provided in the SPARC Archi­
tecture Manual. The instructions described here include: 

Insuuctions 
IMUL 
IDlY 
WRPSR 
FLUSH 
STBAR 
SIGM 

4.4.1. Integer Multiply (IMUL) Viking implements integer multiply in all its forms conforming to the SPARC 
architecture specification. It is mentioned here only because the insttuction is 
new to the Version 8 SPARC architecture. 

4.4.2. Integer Divide (IDIV) 

Integer multiply is implemented in the floating point unit of the processor. Nor­
mally. these operations will wait until the completion of any pending 1loaling 
point operations before execution (indicated by FP Queue empty). If the FPU is in 
exception rtrIXk. integer multiply operations will proceed without waiting for the 
floating point queue to empty. Integer multiply will not cause any deferred float­
ing J?Oint exceptions to be signalled. 

For most numeric conditions, integer divide works exactly to the SPARC architec­
ture specification. Due to limitations in the hardware, there are certain numeric 
cases that cannot be completed. In these cases, Vildng will signal an 
iUegaCinstruction trap (trap type Ox02). The case where this occurs is when the 
64-bit value comprised of {Y,l'Sl} has numerically significant bits beyond bit 51. 
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4.4.3. Write PSR (WRPSR) 

4.4.4. Flush (IFLUSH) 

In effect, Viking only implements a 52-bit by 32-bit integer divide, compared to 
the 64-bit by 32-bit specification. This holds uue for both positive and negative 
numbers when the operations is a signed divide. 

System software is expected to emulate these integer divide operations when 
required. 

Integer divide is implemented in the floating point unit of the processor. Nor­
mally, these operations will wait until the completion of any pending floating 
point operations before execution. If the FPU is in exception mode, integer divide 
operations will proceed without waiting for the floating point queue to empty. 
Integer divide will not cause any deferred floating point exceptions to be sig­
nalled. 

Viking implements the write PSR insauction according to the SPARe architecture 
manual, with one qualification. Since no coprocessor pon is provided on Viking, 
system software is prevented from trying to enable coprocessor operations. 

If a WRPSR instruction attempts to set the PSR.EC bit, an illegatinstruction trap 
will be generated immediately. Since the EC bit can never be set, all coprocessor 
instructions will generate cp _disabled traps (trap type 004). 

The timing requirements of PSR write operations match the SPARe Architecture 
Manual exactly. A three instruction (not cycle) delay is required between chang­
ing any PSR fields, and using the contents. Note also that when a JMPURETT 
instruction pair is seen, Viking will use the PSR.PS (previous supervisor) bit to 
check protections for the instruction fetch of the JMPL's targeL 

The PSRlMPL (implementation number) field of the PSR is always set to Ox4. The 
PSR.VER (version number) field is set to OxO. 

Viking implements FLUSH slightly differently than the SPARe Architecture 
Manual suggests. No cached information is explicitly flushed by the instruction. 
The cache consistency mechanisms are used to ensure that caches always have 
correct data (both instruction and data caches). The FLUSH operations simply 
causes an exact synchronization of all pending activity. 

When a FLUSH instruction is executed, it will cause Viking's store buffer to be 
drained. This causes all pending bus activity to complete. Any cache coherency 
transactions (for instance invalidation of instIuction cache entries) will occur as 
the store buffer clears. The internal processor pipeline and instIuction buffer will 
also be cleared. WIlen the pipeline resumes execution after the FLUSH, it will 
fetch data from the insUuction cache whiell is guaranteed to be up to date with 
respect to all prior processor activity. 

See also section 4.7.s -Instruction Cache Consistency for further discussion of 
FLUSH instruction implementation. 

.. 
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4.4.5. Store Barrier (STBAR) 

4.4.6. Signal User Emulation 
Request (SIGM) 

Chapter 4 - ViJcing Programmer's Model 59 

Imponant Note: 
The FLUSH instruction affects only a single processor. No other processors 
in a system will do a flush operation unless explicitly requested to do so (by 
their own FLUSH). 

This is not of concern to most applications, but is significant to certain 
operations, such as dynamic linkers. 1bese programs must be written care­
fully to ensure that all processors see a consistent view of program memory 
under all circumstances. This may require modifying memory in a certain 
order, and/or writing intermediate values to guard against temporary incon­
sistencies. Note that cache coherence is maintained on double words. 

The STBAR instruction forces store operations to be performed in order while in 
PSO (partial store ordering) mode. Viking implements this functionality as 
described in the SPARe Architecture Manual. 

The instruction is implemented in the "RDASR" reserved instruction space. The 
opcode is equivalent to RDASR OxOf, %gO, the exact encoding is Ox8143cOOO. 

The STBAR instruction sets the SBTAGS.sP in the last allocated (valid) entry. Ifno 
entry is allocated, the STBAR instruction is remembered in the bus unit arbitration 
logi~. When the bit is set, the bus unit waits for the PEND_ input to go inactive 
before issuing any stores after the one with the bit set Without the STBAR, the 
SBTAGS.sP bit will not get set. and the b_unit continues issuing stores as fast as 
the external cache controller ~ buffer them. This would allow stores to be per­
formed out of order in the sytem. 

All this happens only in PSO mode. In TSO mode, tJ:Ie bus unit waits for PEND_ at 
all times. 

See section4.S.1.3 -Partial Store Ortkring (PSO) for more details. 

Viking implements a special. Viking-specific instruction called SIOM (Signal 
Emulation), that is used in conjunction with the on chip Ir AG based emulation 
facilities provided by Viking. 

The instruction is implemented in the ··RDASR" implementation.dependent 
extended opcode space defined by the SPARe architecture. The opcode is 
equivalent to RDASR Oxlf. %gO. which encodes to OX8147COOO. 

The operation of this instruction is dependent on the state of the IrAG oontrolled 
MCMD register. If the MCMD.1NlTM bit is cleared, the SIGM instruction will be exe­
cuted as a NOP. If the MCMD.1NlTM bit is set. execution of SIGM will cause 
immediate entry into emulation mode (See chapter 6 - Remote Enudation Sup­
port) for details). 

The MCMD.INITM is alwa)?initialized to zero at JTAG Tap controller reset In 
order for the SIOM insttuction to cause entry into emulation mode, the bit must be 
explicitly set by a remote emulation processor using the JT AG. It is not possible to 
set the MCMD.1NlTM bit using the processor alone. 
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4.5. Memory Model 

4.5.1. Three models of 
memory: Strong 
Ordering, TSO, PSO 

4.5.1.1 Strong Ordering 

4.5.1.2 Total Store Ordering 
(nO) 

4.5.1.3 Partial Store Ordering 
(PSO) 

This section will describe the programmers view of memory in a Viking based 
system. TIle exact view of memory is highly dependent on system implementa­
tion, some of the details below may not apply to cenain system environments. 

The SPARC Architecture defines three views of memory; the differences between 
these models are described in detail in the SPARC Architecture Manual. 

Viking allows the use of any of the three models at any time. Each of these 
models places different requirements on the system as well. Cenain systems 
may be capable of implementing some or all of the models. 

Strong ordering allows for maximum software compatibility, but can decrease 
perfonnance and increase system complexity. In this model of memory, all tran­
sactions are seen in the exact order that they were issued by all processors, 
caches, and memories in the system. It allows for a veri simple programmers 
model. 

If the system allows, Viking can implement strong ordering by disabling the 
internal store buffer (MCNTL.SB bit). lbis will cause decreased performance in 
most system environments, particularly when using cc mode, since all store 
operations write through to external caches. 

Total store ordering is similar to strong ordering, except that only the order of 
store operations is guaranteed to be exact across the system. This memory model 
allows most multi-threaded applications to operate consistently with good perfor­
mance. 

TSO mode is the nominal memory model of Viking based systems. ForTSo mode, 
the store buffer must be enabled (MCN1L.SB= 1), and the MCNTL.PSO (partial store 
ordering) bit must be zero. 

Partial store ordering is the highest perfonning of the memory models. It elim­
inates most implicit ordering requirements and expects software to explicitly 
enforce ordering when needed. This model requires the most careful use of 
memory by applications. 

This explicit ordering may be requested by use of the STBAR instruction. The 
STBAR instruction wUl guarantee the order of store operations before and after the 
STBAR instruction only. To achieve the equivalent of the TSO model, an STBAR 
might need to be insened prior to nery store operation. 

PSO is enabled by setting both the MCN11...PSO and MCNTL.SB bits to one. Viking 
implements PSO mode in cooperation with external cache and memory controll­
ers. The PEND_ signal is sampled in order to determine the completion of store 
transactions. 
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4.5.2. Atomic Operations­
SWAPs and LDSTUB 

4.5.2.1 Atomic Operations in 
ccmode 

4.5.2.2 Atomic Operations in 
MBUsmode 

4.5.2.3 Alternate Space 
Atomics 
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SWAP and lDSTUB instructions are used to implement semaphores and other 
atomic operations in memory. In both uniprocessor and multiprocessor (MP) sys­
tems. it is imponant to maintain synchronization between processes which share 
common memory. 

Atomic operations force the store buffer to copy out before slatting. 

If an exception occurs during the store buffer copy-out caused by an atomic 
operation, the operation is not completed. A data_store_enor is taken. which dis­
ables the store buffer at once. TIle atomic operation may be restarted when the 
CPU returns from the store buffer exception handler (see section 4.12.5 - Store 
Buffer (Data Store) Exceptions). 

If the atomic operation itself encounters an exception on either the write or read 
access. a data_access_exception will be reported. Viking guarantees that the des­
tination register will not be updated. The system is responsible for insuring that 
the destination memory location is not modified (as in any store exception). 

Atomic operations have traditionally been implemented as a locked sequence of 
loads and stores (Read-Modify-Write). In order to suppon higher performance 
packet-switched buses. Viking implements a true swap operation. whereby it sup­
plies the new data to be written along with the request for the current memory 
data. This is done to ensure that Viking receives the current value of the "old" 
data. TIle system. or external cache logic must be capable of accepting this tran­
saction. This is made possible by the definition of SPARes atomic operatoIS- the 
data to be written is independent of what is read. 

Since MBUS mode operates with a copy-back. write allocate cache protocol. the 
operation of atomic transactions is simpler than in cc mode. 

For cacheable references in MBUS mode, no special bus operations are done for 
atomic transactions: They are implemented as a simple sequence of reads and 
writes. Viking will read, and acquire ownership of the data being referenced. and 
all operations will occur within the internal cache. (If the data is sh3red, acquir­
ing ownership implies issuing a CI as necessary). 

Non-cacheable references in MBUS mode operate more traditionally. TIley will 
appear on the bus as a locked read-write sequence. The LOCK bit within the MBUS 
address field will be set, and bus amittation will not be released between the read 
and write. 

TIle SWAPAJLDSTUBA are similar to the sw AP/LDSTUB operations, with some res­
trictions. Swap Alternates to ASllocations other than Ox08-OxOb, and Ox20-0x2f 
will cause data_8CCeSS_exceptions. Alternate atomic operations to ASIs Ox08-
OxOb, and Ox2().()x2f are handled like ordinary atomic operations. 
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4.5.3. Load and Store 
Alternates 

4.5.4. Non-Cacheable Loads 
and Stores 

4.5.5. Pale Table Memory 
Opentions 

40505.1 Hardware use of page 
tables 

Loads and stores to alternate address spaces are generally perfonned for low 
level control of Viking, and the external system. A summary list of valid ASIs 
can be found in section 4.16 -AS/ Map 

All ASI operations are perfonned synchronously. Before starting execution of 
any ASI operation, the store buffer is flushed (except for ASI Ox2().()x2F, Oxa-Oxb, 
which are asynchronous and do DOt cause a store buffer copyout). 1bis action 
ensures that the processor state is consistent before the access begins. As an 
example, context register writes cause the store buffer to copyout preventing the 
store buffer from containing operations that "belong" to contexts other than the 
current one. This allows data_store_exceptions to be associated with the faulting 
process more easily. 

If an exception occurs during the store buffer copy-out caused by an LDAISTA. the 
operation is not completed. A data_store_exception is taken, which disable the 
store buffer at once. The ST A operation may be restaned when the CPU reblms 
from the store buffer trap handler. 

Alternate space transactions through ASIs Ox8-Oxb are treated as nonnalload and 
store operations. They are ttans1ated by the MMU according to the definition of 
the ASIs in the SPARC architecture manual. 

Transactions through the pDSS-wough ASI space (0x20-0x2f) are treated as nor­
mal loads and stores, except that they are not ttans1ated by the MMU. For these 
operations, cacheability is determined by the MCN'I'L.AC (alternate cacbeable) bit 

The cacheability of memory refere~ is detennined as desCribed in the insUuc­
tion cache, data cache. and MMU sections of this manual. 

Non-cacbeable loads cause the contents of the Store Buffer to be copied out to 
memoty before proceeding. This is done to ensure proper memory ordering of 
accesses to I/O space. 

If an exception occurs on the store buffer copy-out caused by a non-cacheable 
load. the load operation is not completed. A dataJtore_exception is taken, 
which disables the store buffer at once. TIle load operation may be restaned 
when the CPU rewms from the store buffer exception handler. 

Unlike loads. noncadIeable stores do not normally force the Store Buffer to 
copyout. They are simply placed in the store buffer, like cacheable stores. 

As described above, DOnnal system software access to the in-memory MMU page 
tables must be done carefully. Conflicts may exist between software and 
Iw'dware use of these tables. 

TIle MMU Iw'dware must autonomously access the page tables to perfOIDl transla­
tions. and modify the page tables to keep referenced and modified statistic bits up 
to date. . ~ 

When the Vildng MMU table walk hardware accesses these page tables it will do /f' 

so in a way that guaranteeS consistency between multiple processors. This is '- . 
done primarily through the use of locked or atomic memory transactions 
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4.5.5.3 HardwarelSoftware 
page table consistency 
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whenever modifying page table R&.M bits. As long as certain rules are followed in 
system software. the entire table walk need not be done with a locked transaction, 
only the updates. 

System software must access page table to check statistics. and remap physical 
memory as required. 

When only system software accesses page tables in memory. consistency is 
guaranteed by the normal cache consistency mechanisms. as well as by standard 
critical section mutual exclusion semaphores. Unfortunately, Vilcings table walk 
hardware has no way to recognize these software locking conventions. The fol­
lowing section describes how to deal with the consistency issues. 

Since both hardware and software generated references to the page tables may be 
in progress simultaneously, some algorithm must be used to guarantee that these 
two sources (as well as multiple instances of both of them) will not interfere with 
each other. 

Inconsistency can occur in several ways. The most general is when software 
changes (e.g. inValidates, etc.) a page mapping and the table walk hardware has 
already read the table. In this situation, it is system softwares responsibility to do 
a MMU flush (or DeMap) operation to force the page table to be re-read by the 
MMU. In a uniprocessor environment this is sufficient In a multiprocessor 
environment, the flush operation must be done on every processor in the system. 

ImpottaDt Note: 
Soft~are must guarantee that only a single DeMap operation is in progress aI 
anyone time across the entire system. Inconsistent operation will result if 
two DeMaps are received by a processor at any one time (including internal 
DeMap requests). 

In cc mode, and only in systems that implement broadcast DeMap oPerations, 
the local flush operations is IlIItOmIIIictzlly broadcast to all processors. There is no 
need to intenupt remote processors to issue local flush transactions. In MBUS 
mode, and in cc mode systems which do not broadcast DeMap, all processors 

. must be intenupted and told to do their own local Bush operation. 1bis can take 
amsiderable time to complete, but is generally not a performance bottleneck in 
smaller systems. Broadcast DeMap capability is recommended for higher perfor­
mance.large multiprocessor systems. 

A more difficult problem arises when the MMU hardware must re-write a page 
table entry to set or clear the referenced of modified bits. The hardware must be 
prevented from O'IUWriIiIIg a modification that system software has just com­
pleted. 

A general algorithm whictt prevents inconsistency in both situations is presented 
in figure 4-1 below. The exact implementation of this code is system dependent 
The implementation of lock and unlock operations is memory model dependent, 
see the SPARe Alchitecture Mmual for proper sequences • 
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Figure 4-1 Generalized safe page table update algorithm 

Lock 1* Acquire exclusive page table access *' 
RM_Accum = 0 1* Any R+M updates will accumulate here *' 

Loop: Reg = 0 1* Set PTE to zero temporarily *' 
Swap(TargetPfE.Reg) 1* Write 0, read back current PTE *' 
FlushAllMMUs(TargetPrE) 1* Flush AlL reference to this PTE in system *' 
RM_Accum = RM_Accum OR Reg 1* Catch any late R+M Changes *' 
if (TargetPrE '* 0) goto Loop 1* Continue until it's really zero *' 
TargetPrE = NewPTE 1* Safe to write new value *' 
Unlock 1* Release lock on page table access *' 

4.5.6. Memory, Exceptions 
and No-Fault operation 

Operationally, the algorithm may take several iterations to complete. When used 
with non-broadcast system wide DeMap, a single iteration should be sufficient. 
The FlushAlLMMUs operator is a system dependent mechanism to execute a ftush 
operation on all MMUs in the system. System software should use the RM _ Accum 
value as the final value that was in the PTE entry before modification. This will 
guarantee that no page table status information was lost. 

All exceptions, including taken intenuptS, invoke the SPARC trap handling 
mechanism. This mechanism includes a store buffer copy-out. 

When a SPARC CPU takes a trap, it disables further traps by setting PSR.ET=O. 
This makes the CPU vulnerable; if a synchronous (i.e. non-intemipt) exception 
occurs here, the CPU enters an undesirable' 'Error Mode". Error mode will ini­
tiate a watchdog reset. 

Several steps are taken to avoid this second exception and error mode. Before 
traps are disabled (psR.ET is still 1) and before die exception handler is fetched, 
the store buffer copies out,all pending writes to memory. This prevents any 
user-level faults caused by these writes from occurring at unexpected or unsafe 
pom within the trap handler. If an exception does occur on this copyout. a 
data_store_exception is taken instead of the pending trap. The pending trap is 
ignored, since its restanable. If the copy-out successfully completes, the normal 
trap handling sequence continues, and PSR.ET is cleared. 

Supervisor exceptions should be c:ommlled by software. Once invoked, the trap 
handler can immediately sel1be MCNTL.NF bit to 1. The NF (No Fault) bit dis­
ables teporting of data..acc:ess_exceptioos to the CPU. Since the trap handler is 
kernel code, most exceptions are fatal. Other errors, notably bus errors, are 
always possible, and so are disabJed by the NF bit. 

1be MCNTL.NF bit disables exception teporting for all operations except those to 
ASIOx09 (Supervisor lnstnIction Fetdl), and actual insuuction fetches to ASI 
Ox08 (User instruction fetch). Enors from LDA and STA transactions to ASI Ox08 
wUl be masked by NF. .. 
It is the responsibility of system software to ensure that the NF bit is never set 
upon return to user code. Any load operation which receives an exception 
masked by the NF bit will load indnemaiMte data to the destination register. Any 
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store which receives an exception masked by NF will have no effect on registers 
(guaranteed) or memory (system dependent). 

An undesirable side effect of flushing the store buffer policy is a higher max­
imum interrupt latency. This latency is system dependent. based on the max­
imum time required to empty the store buffer. Every intenupt requires a copy­
out, which in the worst case involves 8 unbuffered writes to memory. This delay 
may be unacceptable for real time applications. However, the copy-out require­
ment can be avoided by rurming with the store buffer disabled; in this case, the 
store buffer is always empty. Fast intenupt response is guaranteed, although 
overall performance is reduced by the resulting synchronous external stores. 

For most cache misses on load or instruction fetch operations, Viking performs a 
block read. This will load four double-words into the cache in a bU!St transaction 
from memory. Viking will always request the word that it needs as the first word 
of the burst. then read the rest of the four double words addressed modulo four. A 
bus error may be encountered on anyone of the double-word transfers. 

Demand/etches are those required by the processor immediately. If a bus enor 
occurs on a demand fetch, an exception is generally reported to the pipeline, 
causing an instruction_access_exception to occur. 

Non-demand fetches are the remaining words in the burst, also called prejetches. 
If a bus error occurs on prefetch data, it will not be reported to the pipeline. In 
this case, the entire cache line referenced by this transaction will be invalidated. 
TIle demand fetch will have been satisfied, but none of the additional prefetch 
data is in the processor. If that data is required by the processor in the future 
(very likely), it will be fetched again. as a demand fetch. If the.error at that loca­
tion persists. it will then be reported to the pipeline as an 
instruction_~_exceptioa 

Information about errors of this son may be accumulated outside the processor 
for repair. or gathering statistics. If desired, external controllers may raise an 
intenupt to inform system software of the existence of these errors. System 
software may initiate attempts to eliminate the error at this point before the data 
is truly required (demapping pages, etc.). 

The Viking Floating Point Unit operates in accordance with the SPARe Architec­
ture Manual. and this section describes in detail some of the operations. 

All floating point operations are completed in their natural program order. No 
out oj order execution is done. All register dependencies are resolved in 
hanlware. causing pipeline delays wherever required. Floating point branch 
operations will hold the processor pipeline until all pending floating point com­
pare operations have completed. No instruction delay is required between float­
ing point compare and floating point branch instructions. All Boating point load 
double and store double operations ignore the least significant register index bil$y 
and will use the naturally aligned register pair. 

This section will concentrate on the Boating point queue interface. special 
numeric cases. and floating point exceptions . 
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4.6.1. FSR Version and 
Implementation Fields 

Viking always sets both FSR.VER and PSR.IMPL fields to zero. 

4.6.2. Special Numeric Cases Viking handles all non-exceptional numeric cases directly in hardware. No 
unfinished exceptions are generated. Completing execution of many of these 
categories requires additional cycles. 

4.6.2.1 NaN ~ Integer When converting a number considered to be a NaN (Not A Number). Viking will 
Conversion always produce the fixed represeruation of 0 in the destination register. This is 

contrary to other implementations which may produce either Ox80000000 (­
NaN), or Ox7fffffff (+NaN). 

4.6.2.2 NaN Output When Viking produces a NaN result. it is stored in one of the following fixed for-
Representation mats: 

Table 4-4 NaN Output Representation Values 

. 4.6.2.3 RoundiOg Operations 
and Underflow 
Detection 

4.6.2.4 FxTOiR Not supponed 

4.6.2.5 Quad Precision 

4.6.3. Floating Point Queue 

Single Precision: Ox7fcO 0000 
Double Precision: 

This differs from the IEEE standard. and other SPARe implementations. These 
values will only be created in NaN reponing masked . 

Viking detects underflow q/ter the rounding operation. The IEEE Specification 
allows either method, Vikin8 '5 implementation may differ from other SPARe 
implementatiOlL 

Old descriptions of the SPARe Architecture described floating point conversion 
with roWlding to the rounding mode bits. These instructions have been removed 
from the architecture, and are not implemented on Viking. 

At Viking. FxTOi is always rounded to ZERO, while other convertions adheres to 
FSR.RD mode bit. 

Vilcing does not support quad precision operations. 

Vilcing's floating point queue is 4 emries deep. All floating point operations are 
written to the queue. Floating point memory references, PSI. operations. and 
queue operations are not written to the queue. 

Storing the contents of the floating point queue should only be done when the 
floating point UDit is in exception 1tIOde. Store Floating Point Queue operations 
when not in exception mode is implDn.enuuion dependenz. In these cases. Vilcing 
will hold the processor pipeline lIIIIil all floating point operations have com­
pleted. and store information the II.ISt completed floating point operation. The 
floating point queue is not initialized at reset. storing queue contents before exe­
cuting floating point operations will store undefined values. 

Revision 2.00 ofNoYember 1. 1990 



[ 
Chapter 4 - Viking Programmer's Model 67 

The user visible values in the floating point queue contain the virtual address of 
the executing instructions, as well as the opcode being executed. A STD operation 
on the floating point queue register will store these values for the operation at the 
front of the queue to memory. TIle memory fonnat is: 

Table 4-5 Floating Point Queue Format 

4.6.4. Floating Point 
Exception Details 

4.6.5. No FAST (noo-standard) 
Mode 

4.6.6. FsMULd 

4.6.7. Integer Multiply 

Address+OxO: 32-bit virtual address program counter 
Address+Ox4: 32-bit opcode 

Each time the floating point queue is read while in exception mode, the nat 
pending floating point operation in the queue will be stored. The FSR.QNE bit 
should be checked before each store to identify the last valid queue entry. 

Viking implements deferred floating point exceptions. Any floating point excep­
tion will remain pending until another floating point operation is requested, at 
which point the pending exception will be reported. 

If an exception occurs in txlJCtly the same cycle in which a new floating point 
instruction is being issued, the exception will remain pending until the next float­
ing point operations is iSSUed. If the new floating point insauction created a 
dependency with other instructions in the floating point queue, the exception will 
be reported immediately. This situation will also add one additional cycle to the 
execution time· of the previous operation. 

The presence of processor pipeline hold conditions (particularly from data cache 
misses) ·can cause the acceptance of a floating point exception to be delayed. 

Viking will report exceptions immediately to instructions which are dependant on 
the result of the instruction which created the exception. Otherwise. the excep­
tion will be reported to a later floating point operation. 

A Sequence_Error win be reported, and recorded in the FSR when a new floating 
point request is issued while the FPU is in exception mode. The exception wil be 
reported to the instruction causing the sequence error. 

Viking ignores the non-standard mode bit in the FSR. The FSR.NS bit can be read 
or written. but has no effect on floating point execution. 

The FsMULd (Floating point multiply single. produce double result) operation is 
fully supported by Viking. 

Integer multiply operation is more completely defined in section 4.4.1 -Inuger 
Multiply (IMUL) 

Since integer multiply usts floating point logic. execution of integer multiply 
operations affects the timing of normal floating point operations. Integer multi­
ply operations will only start if the floating point queue is empty. or if the FPU is 
in exception mode. Nonnal floating point operations will not resume until the 
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4.6.8. Integer Divide 

4.7. Instruction Cache 

4.7.1. ,Cacheability 

integer multiply has completed. Functionally. integer multiply operations do not 
affect floating point execution in any way. 

Integer multiply operations cannot cause any exceptions. 

Integer divide operation is more completely defined in section 4.4.2 - Integer 
Divide (IDIV). 

Since integer divide uses floating point logic. execution of integer divide opera­
tions affects the timing of normal floating point operations. Integer divide opera­
tions will only start if the floating point queue is empty. or if the FPU is in excep­
tion mode. Normal floating point operations willoot resume until the integer 
divide has completed. Functionally. integer divide operations do not affect float­
ing point execution in any way. 

Integer divide operations can cause divide_by _zero and illegal_instruction 
exceptions, but do not cause any floating point exceptions. 

The Viking internal instruction cache is a 20 K-byte physical address cache. It is 
organized as a 5-way set-associative cache of 64 sets. The line size is 64 bytes, 
divided in two half-lines of 32 bytes. 

The Instruction Cache is physically addressed. Virtual addresses are translated by 
the MMU before accessing the Instruction Cache. The requirements for a cache hit 
are: bits [35:12] of the physical address must match the physical tag and the" 
Valid bit of the referenced half-line must be set 

The cache is enabled by the IE bit of the MMU control register (see section 
4.11.11.1). The cache is disabled at power-on reset (see section 4.3.1) and 
remains disabled until the IE bit is set 

At power-on reset the contents of the instruction cache are undefined. It is the 
responsibility of the software to initialize the Insttuction Cache by resetting the 
Valid bits (See section 4.7.6.1 -Instruction Cache Flash Clear ). 

Most references are CIJCMoble. This implies that they will be stored in the on­
chip caches after they are read in from external memory. The instruction cache 
cacbeability is determined as follows: 
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Table 4-6 Instruction Cache Cacheability 

4.7.2. Instruction Cache 
Replacement Policy 

Translation Mode IE=O,AC=X IE:: 1, AC=O 

Boot Mode 
BT=l.EN=X Not Cached Not Cached 
MMU Disabled 
BT=O.EN=O Not Cached Not Cached 

MMuEnabled C=l:Cached 
BT=O.EN=l Not Cached 

C=O:Not Cached 

BT is the Boot Mode bit of the MMU control register. 
EN is the MMU Enable bit of the MMU control register. 

IE:: 1 , AC=l 

Not Cached 

Cached 

C=l:Cached 

C=O:Not Cached 

IE is the Instruction Cache enable bit of the MMU control register. 
AC is the Alternate Cacheable bit of the MMU control register. 
C is the Cache able bit kept in each Page Table Entry. 

A limited history LRU Oeast recently used) algorithm with minimal complexity 
and fair accuracy is used to detennine which lines in the cache will be replaced 
when necessary. The instruction cache maintains a history for each line in the 
cache, and a lock bit for all but lineO. These bits reside ~ the set tag. Whenever 
a memory reference hits in the cache, the history bit is written to one. At the time 
this bit is being written, all the other history bits are checked. If all the other his­
tory bits in the set,-logically ORed with their respective lock bits are already 
asserted, then they are all cleared. The result is that all five bits are never set at 
the same time, and that the last used entty will always be set When this transi­
tion occurs, the accumulation of history begins again. In this way, a limited 
record of the most recently used members of a set can be kept 

When an instruction cache miss occurs, the required data is brought jn from 
external memory and forwarded to the instruction queue and pipeline. Simultane­
ously. the new instJUctlons are placed in the cache. This requires that some old 
information be displaced from the cache. Since the data cache is S-way set ass0-

ciative, there are five lines which may be chosen for replacement 

The set tag is examined to evaluate the history and lock bits. The replacement 
logic first examines the lock bits. 

A line that is locked into the cache is never selected for replacement. Since line 
o cannot be locked. if all other entries are locked it will always be selected for 
replacement, regardless of the state of the-history bits. 

If there is more than one unlocked line, the replacement logic uses the history 
bits to determine which line should be replaced. If there is a line with a history 
bit that is set to 0, it will be selected as the victim. The ordering of Viking cache 
lines starts with the big-enll, hence for the instruction cache it fills starting line 4. 
3, 2, I, then O . 
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Figure 4-2 provides two examples of the replacemeru scheme. 

Figure 4-2 Example of Instruction Cache Repillcemem Policy 

4.7.3. Snoop Hits and Lock 
bits 

4.7.4. Instruction Prefetching 

MRUMask.: 1 1 0 0 1 
LCKMask: 0 0 0 1 
Composite Mask: 1 1 0 1 1 
Line: 43210 

MRUMask: 1 0 0 1 1 
LCKMask.: 0 0 0 0 
Composite Mask: 1 0 O· I I 
Line: 43210 

MRU = Most Recently Used - provides a limited history used bits. LCK = Lock 
- provides locked lines infomation. 

In the first example, based on the composite mask, line 2 is chosen for replace­
ment In the second case, line 3 is chosen. since it is the rightmost available line. 
Note again that line 0 can never be locked. This is to ensure that cacheable data 
may always be stored in the cache (when the cache is enabled). 

This section describes how snoop hits and lock bits may create an unrecom­
mended scenario. It also explains what happens to a locked line in the cache that 
gets snoop hit . 

A snoop hit to a locked line in Vilcing bus mode will cause the line to be 
invalidated, without clearing the lock bits. A CRl, CI, or CW1 in MBUS mode 
will also cause the line to be invalidated, without clearing the lock l?its. This 
will prevent the addressed cache line from being reused. If that line happens 
to be locked. the data will not be removed from the cache. 

If a locked line getS invalidated by a snoop hit, that line will never be replaced 
(because it is locked). aDd it will never be a cache hit (because it has become 
invalid). essentially reducing the number of active cache lines by one. 

If a line is to be locked. the programmer must make sure that it will not get 
snooped out. 

Instruction prefetcbing supplies instIuctions to the InsUuction Queue (lQ). The IQ 
provides iDstructiaas for the piJfeline to execute. 1be IQ comprises an 8 word 
FIFO sequentillJ instruction queue. and a 4-word target queue. The pipeline can 
consume up to 3 insttuctions per cycle from the IQ. Instruction prefetching con­
tinuously mes to fill the IQ with the instJUctions in the execution stream. either 

Revision 2.00 ofNcwember 1, 1990 



[ 

4.7.5. Instruction Cache 
Consistency 

4.7.6. Instruction Cache 
Diagnostics" Controls 
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from the instruction cache (on a hit) or from memory (on a miss). There is no 
separate instruction prefetch buffer. When a en is encountered, prefetching 
immediately retrieves the target instructions and places them in the target queue. 

A tkmand fetch occurs when the processor needs instructions that are not 
currently available in the IQ. This can occur during exceptions, ttaps, CTIs, their 
combinations that may alter the execution stream, or straight line accross previ­
ously unreferenced code. Only a tkmmIdfetch can initiate an MMU table walk, or 
cause an exception. Instruction prefetching can not initiate an MMU table walk, 
nor can it cause an exception. If a required translation is not present in the TLB, 
the MMU will wait for a demand fetch before starting a table walk. 

Instruction prefetching is always enabled when the instruction cache is on. There 
is no explicit control bit Instruction prefetching works the same way in both cc 
and MBUS modes. Errors may.occur during prefetching, see section 4.5.7 for 
details on prefetch exceptions. 

Instruction cache consistency is maintained in hardware. This means that 
modifications to instructions are reftected by invalidations in the instruction 
cache. 1be invalidations are executed in a finite, deterministic (but system and 
state dependent) amount of time. as long as MCNTL.SE (snoop enable) bit is 
asserted. 

To make sure that a modification to ~ instruction has been effectively performed 
and is observable by the issuing processor, a FLUSH insttuction must be executed 
(See SPARC Arehitecture Manual). 1be FLUSH instruction forces the execution of 
all the pending writes and will also ftush the instruction prefetcb buffer and pipe­
line.1be FLUSH instruction executes synchronously, implying that the Viking 
processor is stalled until all previous memory operations are completed. The 
instruction which was modified prior to the FLUSH instruction is guaranteed to 
execute propedy after the FLUSH has been completed. 

Cache consistency transactions use physical addresses. so the Ptags are col)SUlted 
for address comparison. 1be instruction cache does not allow writes, so it never 
becomes an owner of data. Since the instruction cache never becomes an owner. 
it never needs to transmit its contents back to the system bus. All instruction 
cache snoop hits are handled by invalidating the appropriate cache entties. This 
includes snoop hits generated by t:ran,sactions generated by load and store opera­
tions on the some processor. 

In MBUS mode. snoop hits caused by CR operations respond by asserting the MSH_ 
signal. and do not invalidate. 

This section describes low level diagnostic and control interfaces to the instruc­
tioncache. 

.. 
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4.7.6.1 Instruction Cache Flash 
Clear 

4.7.6.2 Instruction Cache Tags 

ASI=Ox36 - Instruction Cache Flash Clear. 

The entire instruction cache can be invalidated, or all the Lock bits can be 
cleared, by issuing a store alternate with the ASI value Ox36. The store must be a 
word operation, all other data sizes provoke a data_access_exception. The data 
issued by the store operation is ignored. The most significant bit of the address 
determines the type of operation. 

The Address format is: 

Reserved 
31 30 o 

MRU = Most Recently Used bit, indicates history. IfType=O, all Valid and MRUs 
bits are cleared in the Ptags and Stags respectively.IfType=l all Lock bits in the 
Instruction Cache Stags are cleared. All reserved bits are ignored, but should be 
set to zero. Flash clear operations should always be used before enabling the 
instruction cache. 

ASI=OxOc - Instruction Cache Tags 

Instruction cache tags are accessible to read and write using ASI value OXOC. This 
direct access capability is provided mainly for diagnostic purposes. 

A physical tag (Ptag) is associated with each cache line and the set rag, Stag, is . 
associated with each set The Ptags and the Stags are accessed as double-words. 
All other data sizes provoke a data_access_exception. The state of the cache tags 
is not affected by watchdog or hardware reset 

The tags are addressed as pairs, since each instruction cache line has both a Ptag 
and Set tag. The Address format is: 

T Rsvd Line Rsvd Set Rsvd 000 
3130 29 2826 2S 12 11 6 S3 2 0 

Rsvd ReselVed. These bits are ignored. 

Set Selects which oftbe instruction cache's 64 sets is referenced .. 

Line Selects one of the 5 lines in a Set (04). Line 5-7 generate 
data_access_exception. 

T Type of tag: Stag (1'=1) and Ptag (T=2), while T=O orT=3 gen­
erate data_access_ exception. Tags may only be accessed as a dou­
ble word operation - all other data sizes will result in 
data_access_exception. 

The Ptag format is: 

Reviaioll2.00 of November I, 1990 
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4.7.6.3 Instruction Cache Data 
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Rsvd Vbits Rsvd Paddr 

63 58 5756 55 24 23 0 

The various bit fields have the following meanings: 

Paddr: Physical Address bits [35:12). 

Rsvd: Reserved. Read as zero and ignored on a write. 

Vbits: Valid bits for the two half-lines. Bit 56 is the valid bit for the low­
order (A[4]=O) 32-byte half-line and bit 57 is the valid bit for the 
high-order 32 byte half-line. These bits indicate if the correspond­
ing half-line is valid. When these bits are cleared, the coments of 
the corresponding sub-block have no meaning. If at least one of 
the two bits is set, the selected Ptag is valid. When they are both 
cleared. the Ptag has no meaning. At power-on reset (see section 
4.3.1) both valid bits are undefined. 

The Stag format is: 

Rsvd MRU Rsvd I LCK I 
63 13 12 8 7 5 4 0 

The various bit fields have the following meanings: 

Lock: Lock bits. There is.one Lock bit per line which can be used to "pin" a 
block. iQ,side the cache. The position of the bit determines to which line 
it is associated With. BitlO) is fixed to zero. and ignores write. Bit[1-4] 
lock Line[ 1-4] respectively. When a Lock bit is set to one, the 
corresponding line will not be displaced by the replacement algorithm. 

MRU: Most Recently Used. This bit field indicates which line of the set has 
been used the most recently. The position of the bit in the 'field deter­
mines to which line it is associated with. Bitl8-12] correspond to 
Une[0-4] respectively. This bit field is updated by the hardware 
'replacement algorithm and is used to select a victim when necessary. 

Rsvd: Reserved. Read as zero and ignored on a write. 

ASI=OxOd - Instruction Cache Data. 

Instruction cache data is accessible in read and write mode with the ASI value 
OxOd. This direct access capability is provided mainly for diagnostic purposes. 
The lines are only accessed as double-words. Other data sizes provoke a 
data_acces5_exception. Instruction cache data is not affected by watchdog or 
hardware reset. Flash clear does not affect insUuction cache data. The Address 
format is: .. 

Sun Miaosystema PzopIiewy Revision 2.00 of November 1. 1990 
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4.8. Data Cache 

4.8.1. cc and MBUS Modes 
(Write-Through and 
Copy-Back) 

I Rsvd Line Rsvd Set DblWrd 000 
31 29 28 26 25 12 11 6 5 3 2 0 

Rsvd Reserved. These bits are ignored. 

Line DesignateS which of the instruction cache's 5 lines (0-4) is refer­
enced. Ifline 5-7 is requested. a data_access3xception is gen­
erated. 

Set Selects one of 64 sets of the cache. 

DblWrd Selects the double word within the cache line. 

The Viking internal data cache is a 16 K-byte, physical address cache. It is organ­
ized as a 4-way set-associative cache of 128 sets. The line size is 32 bytes. 1bere 
is no sub-blocking. 

The data cache is physically addressed. Virtual addresses are translated by the 
MMU before accessing the data cache. The requirements for a cache hit are: bits 
[35:12] of the physical address must match the physical tag bits [23:0] and the 
valid bit must be set. 

The cache "is enabled by the MCNTL.DE bit (See section 4.11.11.1). The cache is 
disabled at power-on reset, and remains disabled until the DE bit is set. 

At reset the contents of the data cache are 1Dldefined. It is the responsibility of the 
. software to initialize the. data cache by resetting the valid bits (using a flash 

clear). After a Watchdog Reset the contents of the data cache are unmodified. 

The MB bit inMMU Control register (MCNTL.MB) is a read-only indicator.of 
whether Viking is operating in CC or MBUS mode. (See section 4.11.11.1). This 
bit is determined by the state of the CCRDY_ pin at reset. When Viking is in CC 
mode, the data cache operates in a write-through fashion. In MBUS mode, the data 
cache operates as a copy-back cache with write allocation. 

In CC mode, all stores are immediately written to the store buffer, and the store 
buffer will send them out to memory (written through) as soon as resources are 
available, and the data cache does not write allocate. (A write miss does not 
cause a read to occur before the write is completed.) 

In MBUS mode, cache lines that have been modified by the processor are written 
back to memory only when ~ary (due to replacement or snoop reads). In 
this mode, the data cache operates with write-allocation, when a store miss 
occurs, the data cache willl110cate a line, bring in the missing data from 
memory, and write that data intb the cadle line. 

llevilion2.00ofNovember 1.1990 
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4.8.2. Cacheability 
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Data cacheability is determined according to table 4-7 below. Data rewmed from 
MMU table walk references will never be cached internally, although they may 
appear in the internal cache after having been referenced by page table manipula­
tion software. In this case, the coherence protocol will invalidate the internal 
copy. In MBUS mode, however, reads and writes initiated by the table walk 
hardware do not snoop the data cache, hence software must never allow page 
tables to be cacheable, to ensure consistency. See section 4.11.11.1 for descrip­
tion on page table cacheability, table walk access, etc. 

Impottant Note: 
In MBUS mode, page tables must be accessed through non-cacheable 
memory space to ensure consistency. In CC mode, page tables should 
be accessed using cacMoble space, to improve performance. 

In MBUS mode, the MCNTL.TC bit should be set to zero. In cc mode, 
the MCNTL.TC bit should be set to one. 

Table 4-7 Data Cache Cacheability 

4.8.3. Data Cache 
Replacement PoUcy 

Translation Mode DE=O,AC=X DE=I,AC=O 
MMU Disabled 
BT=X, EN=O Not Cached Not Cached 
MMuEnabled C=I:Cached 
BT=X,EN=l Not Cached 

C=O:Not Cached 
MMU 
Transparent Not Cached Not Cached 

BT is the Boot Mode 'bit of the MMU control register. 
EN is the MMU Enable bit of the MMU control register. 
DE is the data cache enable bit of the MMU control register. 
AC is the Alternate Cacheable bit of the MMU control register. 

DE=l, AC=l 

Cached 
C=l:Cached 

C=O:Not Cached 

Cached 

C is the Cacheable bit kept in each Page Table Entry. X is don't care 

Generally, references are non cacheable when the data cache is disabled. When 
the cache is enabled, the C bit from the MMU controls cacheability. For' 'spe­
cial" accesses (like MMU passthrough/bypass transactions), which do not have a 
corresponding C bit, the AC (alternate cacheable) bit is used to determine cachea­
bility. For MMU table walk references, the TC (table walk cacheable) bit will indi­
cate external cacheability, since table walk data is never cached intemally. 

A limited history LRU algorithm is used to determine which lines in the data 
cache will be replaced when necessary. The data cache maintains a history and 
lock bit for each line in the cache. 'These bilS reside in the set tag. Whenever a 
memory reference hilS in the cache, the history bit is written to one. At the time 
this bit is being written, all the other history bilS are checked. If all the otMr 
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history bits, logically ORed with their respective lock bits are already asserted, 
then they are all cleared. 1be result is that all four bits are never set at the same 
time, and that the last used entry will always be set. When this transition occurs, 
the accumulation of history begins again. In this way, a limited record of the 
most recently used members of a set can be kepL 

When a 1D instruction demands data that is not in the data cache, that data is 
brought in from external memory and forwarded to the instruction pipe. Simul­
taneously, the new data is placed in the cache. 1bis requires that any old data be 
displaced from the cache. Since the data cache is 4-way set associative, there 
will be four choices for which line to replace. 

1be set tag is examined to evaluate the history and lock bits. 1be replacement 
logic first examines the lock bits. Since line 0 cannot be locked. if all other 
entries are locked it will always be selected for replacement, regardless of the 
state of the history bits. 

If there is more than one unlocked line, the replacement logic uses the history 
bits to detennine which line should be replaced. If there is a line with a history 
bit that is set to 0, it will be selected as the victim. 1be ordering of Viking cache 
lines starts with the big-end. hence for the data cache it fills Slatting line 3, 2. 1, 
then O. 

4.8.4. Snoop Hits and Lock See section 4.7.3 - Snoop Hits and lLJck bits 
biti 

4.8.5. nata Cache Consistency In a multiple processor system a mechanism must exist to keep local caches COIl­

sistent with each other and with main memory. 1be Viking processor uses a pro­
tocol that is implemented largely in hardware to achieve this. Pan of this proto­
col involves snooping the Viking address bus. All addresses that are snooped are 
compared with the cache tags in the instnIction cache and the data cache. A 
snoop hit occurs if the addi-ess pn:sented on the bus matches the physical address 
tag in the appropriate cache entries (and MCNTL.SE is enabled). 

The action taken on a snoop hit depends on whether the data cache is operating in 
MBUS or CC mode. 1be purpose of snooping is to make sure that the contents of 
the data cache are consistent with external caches and main memory. In CC mode. 
preserving this consistency is fairly simple. All that bas to be done is to invali­
date an entry in the cache if some other processor writes to this location. In MBUS 
mode, the actions taken on a snoop hit are more complicated, including IeSpOnd­
ing to the bus transaction with the CUJrent cache contents. Both the data cache 
aDd 1be store buffer snoop for incoming ttansactions that request data invalida­
tion. 1be data cache responses on external transactions are listed in the follow­
ingtable: 

.. 
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Table 4-8 Data Cache Snoop Mechanism (MBUS mode) 

External Transaction Being Snooped Response in Cache Resulting Action 

R,W 

CR,CRI,CI,CWI 

CR 
CR 

CR 
CR 

CRI,CI,CWI 
CRI,CI,CWI 

CRI 
CWI,CI 

CRI 
CI,CWI 

4.8.6. Data Cache Diagnostics 
and Control 

4.8.6.1 Data Cache flash Oear 

Don't Care Noactian 
Miss No action 
Hi~notowned,not~ Set shared bit 
Hi~ not owned, shared No action 

Hi~ owned, not shared Copy out data, set shared bit 
Hi~ owned, shared Copy out data 

Hi~notowned,notshared Invalidate entry 

Hit. not owned. shared Invalidate entry 

Hi~ owned, not shared Copy out data, invalidate entry 
Hi~ owned, not shared invalidate entty 

Hi~owned.~ Copy out data, invalidate entty 

Hi~ owned, shared invalidate entty 

CR=Coherent Read; W=Write (non-coherent); 
CRI=Coherent Read and Invalidate; R= Read(non coherent) 
CWI=Coherenl Write and Invalidate; CI=Coherent Invalidate 
(Refer to the SPARCMBUS Specification for definitions of these terms). 

Table 4-8 shows the responses of the data cache to various MBUS transactions 
depending on the state of the line in the cache that is accessed. This status is held 
in the cache tag in the skaT~d and dirty bits (Note: the ditty bit being set indicates 
ownership. dirty bit is another name for owMd bit). The skaTed bit is set in the 
cache tag if the data is also present in another processor's cache. The dirty bit is 
set if the data has been modified by the processor, and the changes have not yet 
been written out to memory. The dirty bit will only be set if the cache is inMBUS 
mode. 

This section describes low-level diagnostic and control operations for the data 
cache. 

ASI=0x37 - Data Cache Flash Clear. 

The entire data cache can be invalidated (valid bits cleared), or all the Lock bits 
can be c1eaJed, by issuing a store alternate with the ASI value 007. The store 
must be a wold operation. all other data sizes cause a data_access_cxception. The 
data issued by the store operation is ignored. The most significant bit of the 
address determines the type of operation. 

The AddIess format is: 

I Type I 
31 30 o 
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4.8.6.2 Data Cache Tags 

IfType=O, all valid and MRU bits are cleared in the Ptags and Stags. HType=l all 
Lock bits in the data cache Stags are cleared. All reserved bits are ignored, but 
should be zero. 

ASI=OxOe - Data Cache Tags. 

The data cache tags are accessible in read and write modes via the ASI value 
OxOe. This direct access capability is provided for diagnostic purposes. 

The Ptags and Stags are accessed as double-words. Other data sizes generate a 
data_access_exception. The Stale of the cache tags is not affected by watchdog or 
hardware reset. Flash clear operations should always be used before enabling the 
data cache. 

A physical tag (Ptag) is associated with each line, and a set tag (Stag) is associ­
ated with each set The Address fonnat is: 

--I T Rsvd Line 
2726 

Rsvd 
2S 12 

Set 
11 S 

Rsvd 1 000 I 
3130 2928 43 2 0 

Rsvd 
63 S7 

T: Type of tag: Stag=l, Ptag=2. Type 0 and 3 generate 
data_access_exception. Tags may only be accessed as a double 
word operation - all other data sizes will result in 
data_access_exception. 

Rsvd: _ Reserved. These bits are ignored. 

Line: Selects which of the data cache's four lines (0-3) is referenced. 

Set: Indexes into the tag array of the cache to select one of the 128 sets. 

The Ptag format is: 

Valid I Rsvd I Dirty Rsvd Shared Rsvd Paddr 
S6 SS 49 48 47 41 40 3924230 

The various bit fields have the following meanings: 

Rsvd: 

Valid: 

Dirty: 

Reserved. Read as zero and ignored on a write. 

Valid bit. This bit indicates that the line and its associated tag are 
valid. When this bit is cleared, the tag and the data contained in 
the line have no meaning. At reset valid bits are undefined. 

Dirty. This bit indicates that the line bas been modified by one or 
more writes. If the cache is in write-back mode and this bit is set, 
the line is copied"back into main memory (or a second-level cache) 
when it is displaced. 
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4.8.6.3 Data Cache Data 
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Shared: Shared. This bit indicates tlW the line is "shared" by the cache. 
Thus, writes to this line must be propagated to memory. 

Paddr: Physical Address bits [35:12]. 

The Stag format is: 

Rsvd MRU Rsvd LCK 

63 12 11 8 7 4 3 0 

The various bit fields have the following meanings: 

Lock: Lock bits. 1bere is one Lock bit per line which can be used to 
"pin" a block inside the cache. The position of the bit determines 
the block it is associated with. Bit[O] is fixed to zero, and ignores 
write. Bit[I-3] lock Linell-3] respectively. When a Lock bit is set 
to one the corresponding line will not be displaced by the replace­
ment algorithm. 

MRU: Most Recently Used. This bit field indicates which line of the set 
has been used the most recently. The position of the bit in the 
field determines the block it is associated with. Bitl8-lt] 
correspond to Line[0-3] respectively. This bit field is updated by 
the replacement algorithm and is used to select a victim when 
necessary. In the usual mode, there is only one bit set to one. 

Rsvd: Reserved. Read as zero and ignored on a write. 

ASI=OxOf - Data Cache Data. 

Data in the data cache are accessible in read and write modes via the ASI value 
OxOf. This direct access capability is provided to assist diagnostics. flash clear 
does not affect cached data. 1be lines are accessed as double-words only. Other 
data sizes provoke a data access exception. 

1be Address format is: 

Rsvd Line Rsvd Set DblWrd ()()() 
31 28 27 26 25 12 11 S 4 3 2 0 

Rsvd Reserved. These bits are ignored. 

Line Designates which of the daia cache's four lines (0-3) is referenced. 

Set Indexes into the data may of the cache to select a set. 

DbIWrd Selects the double word within the cache line . .. 
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4.9. Data Prefetching 

4.10. Control Space Access 

Viking supports data prefetching primarily to increase the perfonnance of nwner­
ical floating point intensive applications. Usually, these operate on large sequen­
tial data mays, which easily overflow Viking's 16 KByte on-chip data cache. 
Prefetching from these arrays greatly reduces on-chip cache misses in these itera­
tive programs. This effect, when combined with store buffer block collection can 
increase perfonn8IlCe of certain applications significantly. 

Prefetching is enabled in software, by setting the MCNTL.PF bit The prefetcher 
can be used only in CC mode. While in MBUS mode, the MCNTL.PF bit is ignored. 

Once enabled, the Viking prefetcher monitors data cache load misses. Consecu­
tive load misses to two consecutive cache blocks will generate an additional read 
access to prefetch the next block. TIle prefetch will not be issued until the store 
buffer is empty. Prefetched data is scored in the 32-byte prefetch buffer. If subse­
quent loads hit the prefetch buffer, data is forwarded from the buffer with no 
delay, and another prefetch is issued. The next prefetch is only issued when all 
doublewords in the current buffer have been referenced (the order is not 
significant). All prefetching is based on physical addressing . 

. In general, the prefetcher is effective when data is being referenced by a series of 
LD or LDD instructions (nominally 4 LDDs), followed by a series of ST operations. 
TIle series of store operations allows the prefetch to complete. TIle ST operations 
accumulate in the buffer and become write-buDt transactions on the bus, which 
provides additional perfonnance improvement. 

Although all prefetched data is cacheable, it is not cached in Viking's data cache. 
This can avoid cache thrashing and also simplifies OperatiOIL As a result, the pre­
fetch buffer maintains coherence of the fetched block. To accomplish this, the 
prefetch buffer snoops Viking's write misses as well as off-chip system 'Yrites. If 
either hits the prefetcbed line, the line is invalidated. As a result, the prefetcher 
cannot contain any modified infonnation. In addition, prefetch addresses are 
matched with the store buffer before being issued, as for all read accesses. The 
data cache is also checked, to avoid prefetching data that's already present on 
Viking. 

Prefetches cannot cross page boundaries. Although large data arrays will prob­
ably appear as large contiguous memory blocks, this cannot be guaranteed in 
physical memory. Inadvertent block prefetches from non-cacheable I/O space 
must be prevented. However, the prefetcher will usually encounter only one 
cache miss before resuming prefetching in this case, since it will have correctly 
guessed the miss address when the pages are contiguous. 

Tbe prefetdl buffer is not directly accessible through diagnostic AS! space. 

ASIOx02 allows access to the information in an external device, nominally an 
external cache controller. The information may include cache controller (CC) 
.egisters, the external cache and its directories. Tbese accesses are non­
cacbeable, regan1less of MCN11...Ac indication. Examples of address generation 
and data accessed can be found in the Viking Cache Controller Specification 
document. 
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4.11. Memory 
Management Unit 
(MMU) 

4.11.1. Address translation 
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Data references to this control space access may be any size. External system 
hardware is responsible for proper data alignmenL Any faults will be reponed as 
data_access_exception. 

1be Viking processor implements a 64~ntry fully-associative MMU compatible 
with the SPARe Reference MMU (SRMMU or MMU) Specification. 1be set of 64 
entries is called the Page Descriptor Cache (PIX:) or Translation Lookaside 
Buffer (TI..B). 

1be MMU translates 32-bit virtual addresses into 36-bit physical addresses. The 
mapping is done in units of 4 K-byte page, 256 K-byte segment, 16 Mbyte region 
or 4 G-byte contexL 

1bis section briefly describes the software view of memory mapping using the 
Viking MMU. For background, refer to the SPARe Reference MMU Specification in 
the SPARe Architecture Manual. 

Virtual and physical addresses are composed of an offset within the page and 
respectively a Virtual Page Number (VPN) or a Physical Page Number (PPN). 

The MMU translates 32-bit virtual addresses and 16-bit context numbers into 36-
bit physical addresses by accessing up to four levels of page tables in memory. 
Normally, this translation is cached in the on-chip 64~ntryTLB. When the trans­
lation entry is missing from the TLB, the MMU table w~ hardware automatically 
retrieves the translation from the page tables in memory. Figure 4-3 desaibes the 
full structure of these page tables . 

.. 
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Figure 4-3 Address Translation Utilizing Four Levels oj Page Tables 

I CcmIG1 Talic I 
Nnt.cr It.-, 

Ic...al It.-t+ 

Virtual Address \ t. 
utu a2e um V· al P N ber 

Index I I Index 2 I Index 3 I Offset I 
31 24 23 1817 12 11 0 

Context Table 

Root Pointer 
Level 1 Table 

i.....+ PTP 
Level 2 Table 

...... PTP 
Level 3 Table 

i.....+ PTE -

Physical Address 

+ , 
Physical Page Number Offset 

35 1211 o 

Each virtual address space is identified by a context number which is kept in the 
Context register. Virtual addresses kept in theTLB are "tagged" with a 16-bit 
Context Number. 1be effective size of the context register is variable between 10 
and 16-bits. This allows the size of the page tables to be reduced. See section 
4.11.11.2- Context TlIble Pointer Register (MCTP) and Context Register (MC) 
for funher details. 

The page tables can contain Page Table Pointers (PJ1t) or Page Table Entries 
(PTE). A PrE is distinguished from a PJ1t by the two low order bits of the table 
entry (see the ET field description below). A PJ1t contains the physical address of 
the next page table level while a PrE contains the physical address of the page 
with its access rights. 
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The Page Table Pointer format is: 

PTP o 1 

31 2 1 0 

The value of I in the least significant two bits indicates that the entry type (ET) is 
a page table pointer. 

Important Note: 
The page tables must be aligned on boundaries equal to their sizes. 
Low order bits of the YJ'P field must be zero. PTPs must point to tables 
aligned to their natural size. 

The Page Table Entry format is: 

PPN C M R ACC ET 

31 87654210 

The various bit fields have the following meanings: 

PPN~ Physical Page Number. High order 24 bits of the 36-bit physical 
address. If the PrE maps a 256 K-byte segment, 16 M-byte region, or4 
G-byte context. the lower 6, 12 or 20 bits respectively of the PPN are 
ignored. 

C: Cacheable .. Ifthis bit is set to one, the page is cacheable in the Viking 
internal (and external) caches. If it is zero, the page is not cacheable. 
Vilcing asserts the CCHBL_ pin for transaCtions involving vinual 
addresses with the C bit set 

M: Modified. When a page is accessed for writing, and the modified bit is 
not set. the MMU sets the modified bit in both the 1l..B, and the in­
memory page table entry. 

R: Referenced. This bit is set to one by the hardware when the page is 
accessed (on a read or a write) and the PrE is missing from the Page 
Descriptor Cache. Both copies are set 

Imponant Note: 
See section4.11.3.1-MMURIt.M Updates and Section 4.11.3-
Referenced and Modified bits for a description of the interaction 
between hardware and software access to and modification of the refer­
ence and modified bits . 

.. 
ACC: Access Permissions. This bit field is encoded as follow: 
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4.11.2. Linear Mapping 

Permissions 
ACC User Supervisor 

0 Read Only Read Only 
1 ReadIWrite ReadlWrite 
2 ReadlExecute ReadlExecute 
3 ReadlWrite/Execute Read/Write/Execute 
4 Execute Only Execute Only 
5 Read Only ReadlWrite 
6 No Access ReadlExccute 
7 No Access ReadlWrite/Execute 

The MMU checks if an access is authorized according to the mode in which the 
instruction is executed (i.e. user or supervisor) and the type of access (instruction 
or data reference). If there is a violation of the permissions a data or instruction 
access exception is incurred. For more details on ACC vs AT (Access Permis­
sion and Access Type) refer to 4-12 - Access Permission liS Access Type. 

ET: Entry Type. This field is used to distinguish a PrE from a PTP and to 
indicate if a table entry is valid. 1be encoding is: 

ET Entry Type 
0 Invalid 
1 Page Table Pointer 
2 Page Table Entry. 
3 Reserved 

1be MMU suppons mapping sizes larger than the page size. This is done by 
configuring an entry in the Context Table. Level 1 Table or Level 2 Table as a 
PrE (ET=2). 
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If a PTE is found in the Context Table, the virtual to physical mapping is done as 
indicated below for a 4 Gigabyte context 

Figure 44 Address TranslaJion With Maximum Page Size 

Virtual Address 

I Offset I 
31 0 

I CcmtcU Table I Context Table 
~R"""I 

ICaaiaI R"'~ PTE -
, 

~ 4 

I PPN I Offset in 4 G-byte Context 
3S 3231 

Physical Address o 

.. 
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If a PTE is found in a Level I Table. the virtual to physical mapping is done for a 
16 Megabyte region. 

Figure 4-5 Address Translation With 16 MB Page 
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If a PTE is found in a Level 2 Table, the vinual to physical mapping is done for a 
256 Kilobyte segment 

Figure 4-6 Address Translation With 256 KB Page 
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Whenever the MMU finds a PTE in an entry, it stops the table walk and stores the 
ttanslation in the TLB. The Vilcillg MMU Page Descriptor Cache is implemented 
by a CAM (content addressable memory) anay which can simultaneously match 
the address tag fields corresponding to the four mapping sizes defined by the 
SPARe Reference MMU. 

The referenced bit (R) of a PTE is set to one whenever its page is accessed by the 
MMU during miss handling or when an entire probe is initiated. If the referenced 
bit is already set. it is not set again. 

The Modified bit is checked when the PTE is accessed as a result of the execution 
of a store instruction. If the Modified bit is dear in the MMU entry. it is set to one 
and the copy of the PTE in main memory is also set to one. 

, 
The Referenced and Modified bit must be updated in main memory (e.g. shared 
memory image) in a manner which guaranteeS their consistency in a multiproces­
sor environment For a discussion of possible algorithms see section 4.5.S -
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4.11.3.1 MMU R&M Updates 

4.11.4. TLB Replacement 
Policy 

Page Table Memory Operations. 

Occasionally. the MMU must modify a Page Table Entry (PTE) in memory. as 
memory pages are referenced or modified by Viking. These writes are required 
by the reference MMU architecture to be synchronous; thus. they block the execu­
tion pipeline. Also. they also force a Store Buffer copy-out. to preserve the 
sequence of writes. This copy-out is initiated when the memory reference is 
present at the EO stage of the execution pipeline. 

If an exception occurs on the Store Buffer copy-out caused by an R&.M update. 
the R&.M update operation is not completed. A data store exception is taken. 
which disables the Store Buffer at once. The Load. Store. or fetch which caused 
the R&M update. will be restarted when the CPU returns from the Store Buffer trap 
handler; this in tum will eventually restart the R&.M update. 

The table walk hardware within Viking will use a standard write operation when 
setting both referenced and modified bits in memory. If only the referenced bit 
must be set. atomic memory transactions will be used to ensure that another pro­
cessor is not simultaneously attempting to set both bits. If the processor did not 
use this protection. it would be possible to overwrite an PTE with both R and M 
bits set. with another updated PTE with only the R bit set. This is clearly illegal 
and is prevented by using SWAP transactions to do R-bit only updates. Note also 
that the only combinations that Viking will ever write back to the PTE are 
(R=l,M=O). and (R=1,M=1). 

Using SWAP forR-bit updates is essentially the only page table consistency algo­
rithm implemented in hardware. All other cases of page table consiStency must 
be implemented in software as described in section 4.5.5 - Page Table Memory 
Operations. 

The Memory Management Unit has 64 TLB entries. The replacement logic is used 
to select a TLB entry to replace when a new PTE is brought in to the MMU for a 
TLB miss. If one or more of the 64 entries is invalid. then the replacemelit logic 
selects this entry. starting its selection from entry '0' and progressing to entry 
'63' in case of multiple invalid entries. When all the entries are valid the replace­
ment logic selects the entry to be replaced using the infolDlation available in the 
used bits. The algoritlun used is a limited history LRU policy. 

Each TLB entry has a used bit Initially when a demap-all operation is done to 
invalidate all TLB entries all used bits get cleared. The used bit is then set for any 
valid 11.8 entry which has a 11.8 hit When all entries have their used bits set. 
then all used bits, except the last one to be set and those which are locked, are 
cleared. This is the case where all past history is lost. To select a entry to be 
replaced (when all TLB enuies are valid) the first entry starting from entry '0' for 
which the used bit is not set will be chosen. This represents the least recently 
used entry (based on the limited history available, since a n.B hit causes the used 
bit to be set). .. 

When a entry is invalidated or flushed from the n.B its corresponding used bit is 
clemd. In addition to the used bits, the replacement policy also checks the 
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4.11.5. Other Cached Entries 
(Root and Level2 PTPl 
cache) 
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corresponding lock bit (one perTLB entry). If a lock bit for an entry is set. then 
regardless of the used bits that entry will never be replaced. An invalid entry with 
its lock bit set can still be replaced. and the newly written entry becomes locked, 
since the lock bit remains set. If all entries have their lock bits set no replacement 
takes place and the newly brought in PTE is not stored in the TLB. Since a transla­
tion finishes only after a table-walk operation has completed. this causes an 
infinite table-walk loop. Thus one should never lock all the entries in the TLB. 

Important Notes: 
Setting all lock bits in the TLB can lead to deadlock and is not recom­
mended. 

Allowing the lock bit to be set for invalid entries is also not recom­
mended. It can lead to inconsistent operation. Since these entries 
remain locked after a new entry is written into them by a table walk, 
that entry will remain in the TLB. even after a DeMap operation which 
should invalidate it. 

It is recommended that lock bits be set only in conjunction with expli­
cit writes to that TLB entry by supervisor software. Note also that the 
lock bits are cleared by hardware reset. 

To reduce the time required for each table-walk to ac'cess the PTE's, the Viking 
MMU caches two special pointers. PI"PO (PTP level 0) and PrP2 (PTP level 2). 

J.7l'PO is the root-painter (level-O pointer) for the process in execution. On every 
context switch this cached entry is invalidated. and the first table-walk for the 
new process will be used to cache in the new root pointer. Cacheing the root 
pointer saves the MMU from perfonning a level of table walk for each TLB miss 
for that particular context. If a context were to execute for a long time this could 
mean a considerable saving of cycles. The root-pointer entry is qualified by a 
valid bit and implicitly cOlTe5ponds to the context in the Context register. The 
valid bit for this entry is cleared on context register write. context table pointer 
write, demap-all and demap for a context which matches the context register 
value. . 

To optimize MMU table-walk, the Viking MMU also caches one level-2 PTP. A TLB 
miss with.this level-2 PTP would require just the new level3 PTE to be fetched 
rather than the entire three level table-walk fetch operation. A second level PTP 
requires a virtual tag and a valid bit for this cached entry, The context is impli­
citly assumed to be the value of the context register. This second level cached 
PTP entry is used only for table-walks, R & M bit updates and probe-entire opera­
tions. Other operations still go through the three level table-walk mechanism. 
The valid bit for1his entry is cleared on context register write, context table 
pointer write, on a table-walk operation not using the cached PTP (in this case a 
new entry will be writteil), demap-all. demap for a context which matches the 
context register value. and level-l and level-2 demaps for which this PTP has a 
match. The PTP entry is cached on a new table-walk operation and is not cached 
if the level-2 entry is a PTE. 
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4.11.6. Hit Criteria 

4.11.7. MMU Probe and 
DemaplFlush 

4.11.7.1 MMUProbe 

The criteria for a hit in the MMU are defined as follows: 

MappinR Size Matching Criteria 
4KB V=1 and VAddr(31:12Lequal and (Ace=6-7 or Contexcequal) 
2S6KB V=l and VAddr[31:18Lequal and (ACC=6-7 or ContexCequal) 
16MB V=1 and VAddr[31:24Lequal and (Ace=6-7 or Contexcequal) 
4GB V=l and ACC=6-7 or Contexcequal 

V Addr(31 :xxLequal indicates that the corresponding bit fields of the vinual 
address issued by the processor and the virtual address contained in an MMU 
Vaddr tag entry match. 

ConteXCequal means th,at the contents of the Context register and the Context . 
field in the MMU entry match. Note that context is not compared for any page 
classified as a supervisor page, by the ACC field being either 6 or 7. In this 
manner, supervisor pages are present in all contexts simultaneously. 

In all cases, the entry must be valid (V=I). 

The ASI value Ox03 is used to invalidate or probe entries in the MMU. An invali­
dation of an MMU entry is also commonly called a flush or a demap. These three 
tenns are used indistinctly in this document. 

A probe is done with a load alternate while a demap/flush is done with a store 
alternate instruction. The data of the load or store alternate is ignored. The 
address fonnat for both cases is: 

VFPA Rsvd Type Rsvd 
31 12 11 10 8 7 0 

The various bit fields have the following meanings: 

VFPA: Virtual flush or Probe Address. According to the type of flush or 
probe not aU 20 bits are significant. 

Type: This field specifies the extent of a demap (mapping size) or the level of 
the entry probed. 

Rsvd: Reserved. These bits are ignored. They should be zeros. 

The clifferent types ofMMU probes which C3I) be perfonned and the correspond­
ing returned data are: 
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Type Probe Object Returned Data 
o (Page 4 KB) Level 3 Entty Level 3 PTE or 0 
1 (Segment 256 KB) Level 2 Entty Level 2 PTr/PTP or 0 
2 (Region 16 MB) Level 1 Entty Level 1 PTr/PTP or 0 
3 (Context 4 OD) Level 0 Entty Level 0 PTr/PTP or 0 
4 (Entire) Level n Entty Level n PTE or 0 
5-7 (Reserved) 

For all the probe operations the MMU (TLB) is accessed first and if a translation 
which complies with the matching criteria is found, the cached PTE is returned. 
The PTE is returned in the memory formal with R= 1 and ET=2 since only PTEs 
are cached in the Viking MMU. 1be matching criteria for a successful probe in the 
MMU are: 

Type Matching Criterion 
o (page 4KB) V=I & VAddr[31:12] equal & Contexcequal & LVL=3 
1 (Segment 256 KB) V=1 & VAddr[31:18Lequal& Contexcequal & LVL=2 
2 (Region 16 MB) V=1 & VAddr{31:24Lequal& Contexcequal & LVL=1 
3 (Context 4 OD) V=l & ContexCequal & LVL=O 
4 (Entire) V=l & Context_equal & . 

«V Addr[31:12Lequal & LVL=3) 
I (V Addr[~1:18Lequal & LVL=2) 
I (V Addr[31:24Lequal & LVL=I) 
I (LVL=O» 

5-7 (Reserved) 

VAddr{31 :xx] _equal means that the corresponding bit fields of the virtual 
address issued by the processor and the virtual address contained in an MMU 
enttymatch. 

Contexcequal means that the contents of the Context register and the Context 
field in the MMU entty match. 

H the FI'E is not found in the MMU. a table walk is initiated. In this case, the data 
returned may not be a FI'E. 'The returned data can be a m or the value 0 if an 
error occurs. The error cases are slightly different from the ones which may occur 
during a regular table walk when the MMU is processing a miss. 'They are detailed 
in the following paragraphs. H an error occurs during a probe table walk, no 
exception is taken, but the AT field of the MMU status register is set to I, the Fr 

.. field to 1 (Invalid Address) or 4 (Translation error) and the L field is set to the 
table level where the error was detected. 

For a page probe, the hardware does a table walk and returns the PTE found in the 
level 3 table even if this level 3 entty is invalid (ET=O). H the table walk does not 
complete correctly because the level 3 entry accessed is not a PTE (ET= I or 3). an 
intermediate level entty is not a PI'P (ET = I) or a hardware error occurs the value 
o is returned, and the Fr is set to 4. . 
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4.11.7.2 Demap/Flush 

• 

For a segment or region probe. a PTE (ET=2) or a PTP (ET= 1) is returned from 
respectively the level 2 or level I entry even if it is invalid (ET=O). If the table 
walk does not complete because the entry accessed is reserved (ET=3). an inter­
mediate level is not a PTP (ET = 1) or an hardware error occurs the value 0 is 
returned. and the Fl' is set to 4. 

For a context probe the level 0 entry accessed is returned if it is a PTE (ET=2) a 
PTP (ET=I) or is invalid (ET=O). The value 0 is returned, and the FI' is set to 4 if 
the entry is reserved (ET=3) unless a hardware error occurs. 

For an entire probe, the hardware does a regular table walk and returns the valid 
PTE found in whichever level table. If no PTE is found because an invalid (ET=O) 
or reserved entry (ET=3) is accessed in an intermediate level, the level 3 entry 
accessed is a PTP (ET= 1) or an hardware error occurs, a 0 is returned. If an invalid 
entry is accessed. the FT field is set to 1 in the MMU status register, in the other 
cases the FT field is set to 4. 

When an entire probe completes successfully. the PTE accessed is loaded in the 
TLB and the R bit is updated if necessary. For all the other probe operations, the 
TLB is left unchanged and the R bit is not updated. 

Important 
Viking generates data_access_exception on probe types OxS-Ox7, and 
treats probe types Ox8~identical as types Oxo.:0x7 respectively. 

The diffe~t types of demaps and the Objects flushed from the MMU are: 

Type Flush Object 
0(Page4KB) Level 3 I'l'E 

1 (Segment 256 KB) Level 2 and 3 I'l'Es 

2 (Region 16 MB) Level 1, 2, and 3 I'l'Es 

3 (Context 4 OD) Level 0, 1, 2, and 3 I'l'Es 

4 (Entire) AllI'l'Es 
s-7 (Reserved) 

The bit criteria for an MMU flush are: 

.. 
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Type Matching Criteria 
o (page 4 KB) LVL:::3 & VAddr[31:12Lequal & 

(AcC=6-7 or Contexcequal) 
1 (Segment 256 KB) LVL:::312 & VAddr[31:18Lequal & 

(Acc=6-7 or Contexcequal) 
2 (Region 16 MB) LVL=31211 & VAddr[31:24Lequal & 

(ACC=6-7 or Contexcequal) 
3 (Context 4 GB) Acc=5-0 & Contexcequal 
4 (Entire) None 

In a multiprocessor system, distinct processors can hold copies of the same PTE in 
their MMUs. Therefore, when a ·portion of a virtual space is demapped, the flush 
operation must be applied to all MMUs in the system. 

Depending on the system implementation, demap operations may be broadcast 
automatically to all processors, or may require explicit software intervention on 
all processors to demap the required pages. Viking allows for automatic demap­
ping only when used in cc mode, whether or not this is implemented is system 
dependent For example, the Viking cache controller chip (MXCC) implements 
system demaps in XBUS mode, but does not in MBUS mode. In direct MBUS 
mode, all processors must be interrupted and requested to flush their own TI.Bs 
whenever the page table is modified. 

Important Note: 
Software must guarantee that only a single DeMap operation is in pro·­
gregs at anyone time across the entire system. Inconsistent operation 
will result if two DeMaps are received by a processor at anyone time 
(including internal DeMap requests). 

When an MMU flush has been completed by all processors (either through 
hardw~ or software), the following should be true: 

All memory references concerning the virtual space(s) mapped by the 
flushed PTE(s), that have been issued before the demap must have been 
completed. 

No MMU has a valid copy of the PTE(s). 

All memory references to the PTE(s) itself (themselves) that were 
issued before the demap have been completed. 

Once the system has reached this state, page tables may safely be modified and 
applications allowed to continue • 

.. 
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4.11.8. MMU Transparent 
Mode 

4.11.9. Address Translation 
Modes 

4.11.10. No-Fault Operation 

The ASI values Ox20-0x2f are used to bypass the MMU for data accesses. The 
MMU does not translate the physical address through the Page Descriptor Cache. 
The virtual address is translated as follow: 

ASI[3:0] ~ Paddr[3S:32], Vaddr{31:0] ~ Paddr[31:0]. 

Cacheability of these accesses is determined by MCNTL.AC bit. Since these tran­
sactions are completely based on physical memory addresses they can have no 
effect on virtual memory components, such as the MMU R&.M bits. 

The following table summarizes the different translation modes used by the Vik­
ing processor. 

Translation Instruction Fetch Data Access 
Mode (ASI=Ox08 or Ox(9) (ASI=OxOa or OxOb) 

Boot Mode PA[3S:28]=Oxff, EN=O -> Disabled Mode 
BT=1,EN=X PA[27:0]=VA[27:0] . EN= 1 -> Enabled Mode 
MMU Disabled PA[3S:32]=OxO, PA[3S:32]=OxO, 
BT=O, EN=O PA[31:0]=VA[31:0] PA[31 :O]=vA[31 :0] 
MMUEnabled PA[3S: 12] from I'I'E PA[3S:12] from I'I'E 
BT=O, EN=1 PA[11:0]=VA[11:0] PA[11:0]=VA[11:0] 
MMU . Not Applicable LDAandSTAwith 
Transparent ASI=0x20-0x2f 

PA[3S :32]=.ASIJ:3:0], 
PA[31:0]=VA[31:0] 

BT is the Boot Mode bit of the MMU control register. 
EN is the MMU Enable bit of the MMU control register. 
PA[bit range] are the bits of the physical address. 
V A[bit range] are the bits of the virtual address. 

The MCNTL.NF bit, when enabled. wms on no-fmdt operation In this mode, most 
exceptions generally reponed to the pipeline are disabled. This mode is intended 
for use by system software during the processing of exceptions. and during sys­
tem diagnostic functions. The NF bit should never be set during user code execu­
tion. 

Any transaction which bas an error blocked by NF will complete. In the case of 
load transactions, the destination register will be updated with indeterminate 
information In the case of stores, no registers will be updated. and the system is 
responsible for not modifying memory. 

When operating with NF set, the success or failure of every memory transaction 
should be verified by explicitly reading the MFSR fault status register. 

In general, all normal memot; exceptions are disabled by NF. There are several 
types of exceptions which are not disabled by NF. The exceptions types which 
are not disabled are all consideredfatal errol'S which are generally not recover- '"'­
able and should induce error mode. The following exceptions are not disabled by 
NF: 
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Internal Error 
Errors such as multiple tag matches from the caches are considered 
fatal internal errors. See section 4.11.11.3.5 -E"or Mode and Inter­
nalE"ors. 

Control Space Error 

ASIOx09 

ASIOx08 

Errors reading or writing Viking ASI registers are considered fatal. See 
section 4.11.11.3.4 - Control Space Errors 

Supervisor instruction fetch errors cannot be disabled by NF, since the 
processor effectively has received an error in the instructions it needs 
to execute. 1bere is no other source for instructions, an exception must 
be generated. 

True instruction fetches (explicitly not alternate space read and writes) 
to ASI Ox08 (User Instruction space) will cause exceptions to be 
reponed. As above, without the exception no instructions could be 
executed. 

Important Note: 
System software is responsible for properly setting and clearing the NF 
bit. Improper use of no fault mode can lead to undefined processor 
operation 

In particular, the NF bit must never be set when returning to user "code 
execution. 

ASI=Ox04 - MMU Registers. 

Accesses to this ASI read and write SPARe Reference MMU control registers. 
1bese registers are all 32-bits wide. and are shown in the following table. 
Attempts to access them with byte. Halfword, or Doubleword operations will 
result in data_atcess_exception Vinual address bits [12:8] are used to select 
individual registers, all other bits are ignored and should be O. Any access to 
addresses other than defined in the table below causes a data_access_exception . 
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Table 4-9 

4.11.11.1 MMU Control 
Register (MCNTL) 

I Impl 
3128 

PE 

12 

MMU Registers 

VA[12:8] Description 
OXOO Control Register (MCNTL) 
OxOl Context Table Pointer Register (McrP) 
Ox02 Context Register (CONTEXT) 
OX03 Fault Status Register (MFSR) 
Ox04 Fault Address Register (MFAR) 
Oxl3 read/write Fault Status Register 
Oxl4 read/write Fault Address Register 
OxlS Shadow Fault Status Register (MSFSR) 

The control register contains the general MMU control and status flags. In addi­
tion, it also contains the control flags for the instruction and data caches. The 
MMU conttol register is defined as follows: 

Ver Rsvd I PF I Rsvd TC AC SE BT 
2724_ 23 19 18 17 16 15 14 13 

I·MB I SB IE DE PSO Rsvd I NF I ~ I 
11 10 9 8 7 6 2 1 0 

Impl Implementation number of the Viking chip, it is han:twired and is read­
only. Viking fixes MCNTL.Impl = OxO. 

Ver Version IWDlber of the Viking chip, typically a mask number. This field 
is hanlwired and is read-only. Viking fixes MCNTL.Ver= OXO. Mask 
revs are reflected only in PSR. 

Rsvd Reserved. These bits are ignored and read-only. 

PF Data Prefetcher Enable. This bit when asserted indicates that the Data 
Prefetcher is enabled. This is only meaningful in CC mode. This bit is 
ignored in MBUS mode (Data Prefetcher is disabled in MBUS) mode). 

Rsvd Reserved. This bit is ignored and read-only. 

TC Table walk Cacheable bit When this bit is asserted, references from 
MMU table walks are cached in the Viking external cache. When this bit 
is deasserted. all table walk accesses are not cached in the Viking exter­
nal cache. Table walk references are never cached internally. For 
MBUS mode. TC must be deasserted. 

-<r­
I 

AC Alternate cacbeaHle bit This bit indicates whether an access is cache­
able or not in the absence of the C bit in the Fl'E due to the MMU being~~ __ .... _ 
disabled or in a mode where the Fl'E are not needed for translation. Th\( I 

only eXception to this case is the instruction fetches in boot mode -/ 
which are always non-cacheable. ~ this bit is clear. all memory 
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accesses, except table walking accesses, for which the physical address 
is not obtained through a PTE are not cached in the Viking internal 
caches and the External cache. If this bit is set to one, those accesses 
are cached. 

SE Snoop Enable. This bit enables cache snooping on the Viking bus 
when set to one. This bit must be set to enable the cache consistency 
mechanisms. Assertion of this bit does not affect Store Buffer snoop­
ing nor Data Prefetcher snooping, which are always enabled. 

BT 

In MBUS mode, both the instruction and data caches will snoop regard­
less of whether they are enabled. This is necessary for maintaining 
consistency should any of the caches be disabled after they contain real 
data. 1berefore, initialization code should contain a flash clear for these 
caches before enabling snoops at power-on reset, so that no garbage 
data may reside in the snooping caches. Snooping is controlled by the 
MCNTL.SE (snoop enable) bit 

Boot Mode. When not asserted indicates normal SPARC reference MMU 

operation When asserted, indicates boot mode, and the physical 
address generated (for instruction fetches) is formed by adding the 
address 0xff0000000 to the lower 28 bits of the virtual address; BT is 
asserted high (BT=l is boot mode). Instruction accesses in ~ mode 
bypass the Viking internal cache. Data accesses are unaffected by the 
boot mode. 

PE Parity Enable. If set, this bit enables parity checking (Even Parity) for 
each byte of data brought into the chip. 

MB MBUS Mode. This bit if set indicates that the data cache is in Copy 
Back Mode, else the data cache is in write-through mode. This bit is 
read-only, and it reflects the CCRDY_ pin. 

SB Store Buffer Enable. This bit if set enables the store buffer operations. 

IE Instruction Cache Enable. This bit if set enables the instruction cache. 

DE Data Cache Enable. This bit if set enables the data cache. 

PSO Partial Store Ordering. When asserted, the memory model is in PSO 
(Partial Store Ordering) mode. When deasserted, it is in TSO (Total 
Store Ordering) mode. 

Rsvd Reserved. These bits are ignored. 

NF No Fault Bit When this bit is asserted, faults that occur are ignored 
(not reported to the processor) for ASIs Ox08, OxOa, OxOb, 0x20-0x2f, 
while the remaining ASIs including ASI Ox09. Viking internals and con­
trol space (ASI Ox02) will take the fault (These latter ASIs are said to 
'ignore' the NF bit). Note that regardless of whether/not the fault is 
taken, the FSR is always updated. 

EN MMU enable. This bit enables or disables the operations of the MMU. 
TIle BT bit must be deasserted for the EN bit to indicate a MMU enable 
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4.11.11.2 Context Table 
Pointer Register 
(MCTP) and Context 
Register (Me) 

Figure 4-7 

31 

I 
31 

I 
35 

or disable. thus the BT bit assened over-rides the EN bit for instruction 
fetches only. MMU Enable. When this bit is set to one the MMU is 
enabled. When the EN=O and BT indicates normal operation the 4 most 
significant bits of the physical address are forced to zero and the 32 
least significant bits are the 32 bits of the viltUal address. When EN=O 
and BT indicates Boot Mode. instruction fetch physical addresses are 
fonned according to the rules given above for the BT bit, data fetch 
physical addresses are formed as described before. 

On power-on reset, all the control bits mentioned above (except BT) are cleared. 

The Context Table Pointer (CI'P) is a pointer to the Context Table in physical 
memory. The Context Table contains the root page table pointers for all the con­
texts. The Context Register provides the offset into the Context Table to retrieve 
the root page table pointer for that context. In Viking the Context Table Pointer is 
a 24 bit register and the Context Register is a 16 bit register. The Physical 
address used to retrieve the root page table pointer is fonned as shown below: 

Root Pointer Physical Address Generation 

Context Table Poinfcr 
14 13 I 8 7 I o 

I Conte~ Number I 
16, 15 10,9 0 

".. J 
~ ~ , 

CI'P[31:14] I CTP[13:8]orCTX[15: 10] crx[9:0] I 00 I 
18 17 12 11 210 

'Ibis address formation gives the kernel the freedom to trade-off number of con­
text bits against alignment restrictions on the context table. Note. if a context of 
16 bits is desired the context table must be aligned U» a 2S6K byte boundary. 

-f' 

The table shown below gives the alignment requirements for the context table for (~- f 

different widths for the context register . 

• sun 
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4.11.11.3 MMU Fault Status 
Register (MFSR) 

4.11.11.3 Instruction access 
errors 

Chapter 4...;. Viking Programmer's Model 99 

Context bits Alignment 
SIO 4K 
11 8K 
12 16K 
13 32K 
14 64K 
IS 128K 
16 256K 

The Context Table Pointer register has the following structure: 

I Context Table Pointer I Rsvd 
31 8 7 0 

The reserved field is ignored on a write and read as zero. 

The Context register contains the displacement in the context table to access the 
root pointer. It defines the current virtual address space. 

The Context Register has the following structure: 

Rsvd Context Number 
31 16 IS 0 

The reserved field is ignored on a write and read as zero. 

The Fault Status register provides information for Viking faults which associated 
with the memory system, and other internal error sources. The MFSR, along with 
the reponed trap type are used to distinguish between the various types of errors 
and faults that can occur. 

There are several general typeS of exceptions: instruction access faults, data 
access faults, store buffer exceptions, and internal errors. 

Insttuction access faults are signalled through the instruction_access_exception 
trap. There are several possible sources for the exception. It may be created by 
normal page faults reported by the MMU. MMU generated errors are distinguished 
by the encoding of the MFSItFT field. indicating the MMU fault type. The fault 
may be extemally generated, for bus timeouts, parity errors, etc. Extema1ly gen­
erated faults are indicated by various bits in the MFSR that are tied to equivalent 
error responses on the extemal busses. A final source of errors is from internally 
detected inconsistencies. For example. a multiple tag match in the instruction 
cache. In this case, an qrormode trap (watchdog reset) is generated, the MFSR.EM 
bit will be seL 
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4.11.11.3 Data access errors 

4.11.11.3 Store buffer errors 

4.11.11.3 Control Space Errors 

4.It.ll.3 Error Mode and 
Internal Errors 

Data access faults are signalled through the data_access_exception trap. As with 
instructions, there are several source for this exception. As above, page faults, 
external bus errors, and internal errors may all cause exceptions. Additional 
errors can be caused by erroneous accesses to internal ASI control spaces. 'These 
are indicated by the MFSltCS status bit. , 

Store buffer errors are signalled as data_store_error traps. These errors are 
deferred exceptions. TIley are reported after the apparent completion of the 
instruction which caused them. When this type of error occurs, the MFSR.sB bit 
will be asserted. The source of the error is generally a parity, timeout, or similar 
error on the bus. These stores have already been successfully translated by the 
MMU, or a data_access_exception would have been reported. The operation can 
be recovered by reading the contents of the store buffer and explicitly completing 
the transaction using transparent ~ physical address memory references or 
other means. See section 4.12 - Store Buffer for a detailed description of store 
buffer errors and operation. 

Any ASI operations which are known to be illegal by Viking will be reported as 
control space errors. 1bese errors will cause data_access_exceptions, and set the 
MFSR.CS bit. 

Any of three conditions can cause these errors: 

References to an invalid ASI space. 
References to a legal ASI space. but with an invalid data size. 
An invalid viituaJ. address field within a valid ASI space. 

TIle MFSR.CS bit is not asserted for the following conditions: Bus error on ASI 
OX08. Ox09. OxOa, OxOb, Ox2O-Ox2f (the standard and passthroughlbypass ASIS), 
or errors on MMU probes. TIle contents of the Fault Address register is valid for 
control space access errors. 

If the processor enters error mode for any reason (such as an exception while 
PSR.ET is deasserted). the MFS~ bit will be set. This bit should be examined 
by the reset handler to distinguish software induced error conditions from 
hardware reset. 

ViJciIIg will also enter error mode if a detected internal error occurs. An example 
of this is detection of multiple tag matches within the instruction and data caches. 
In these cases, the MFSR.Fl' field will be set to 6, indicating an internal error. 

Important 
When internal error occurs and watchdog reset is taken, only MFSR.EM 
and MPSR..FI' are meaningful. TIle state of the other MFSR bits are not 
guaranteed. ~ 
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4.11.11.3 MFSR timing and 
operation 

Ch.pc. 4 - Viking Programmer' 5 Model 101 

The contents of the Fault Status register can be misleading if examined at an 
arbitrary time. For example. an instruction fetch which is not a" demand" fetch 
(not needed immediately for execution) may cause the Fault Status register to 
indicate a fault which is never signalled as an actual exception. The MFSR is 
guaranteed to be valid only after instruction. data. and store buffer 
(data_stare_error) exceptions. 

The Fault Status register is read~nly and is cleared on a read. Writes are ignored. 
The standard virtual address is OXOOOOO300 using ASI Ox04. Viking provides a 
specific address (ASI=Ox04. VA=OxOOOO13(0) to allow read/write access to the 
MFSR. For more on the standard features ofMFSR, consult the SPARe Architec­
ture Manual. 

The MFSR.SB (Store Buffer) error bit is sticky. In other words, once it is set, it will 
not be overwritten by the occurence of any other exceptions. This is to ensure 
that store buffer error events can never be lost. The SB bit will be cleared on any 
read of the MFSR, and can also be cleared by writing explicitly to the read/write 
version of the MFSR. 

Important Note: 
Translation errors are considered to be high priority errors. The 
occurence of a translation error can not be overwritten by any other 
errors. Even if the exception associated with a translation error is not 

. taken (due to other exceptions, prefetches, branches. etc.), the MFSR.FT 
bit will continue .to indicate the occurence of a translation error. 

This implies that under cenain circumstances, a trap may incorrectly 
stated to be a translation error, when in fact it may have been caused hy 
other events. System software should be able to recover from this situa­
tion by using probe operations to test the Validity of translations. and if 
correct retrying the instruction which reponed the exception. If the true 
source of the exception continues to exist, it will be reponed again. 

Translation errors may be overwritten by other translation errors. in 
which case the MFSR.OW (overwrite) bit will be set. 

General rules for ov~rwriting the MFSR (and MFAR) are presented in table 4-10. 
TIle MFSR.OW bit will always be set if an overwrite condition occurs. 
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Table 4-10 . MFSR Overwrite Operations 

Pending Error New Error OWStabls Action Signalled 
Translation Error Translation Error Set . Translation Error 
Translation Error Data Access Exception Unchanged Data access Exception 
Translation Error Insttuction Access Exception Unchanged Insttuction Access Exception 
Data Access Exception Translation Error Oear Translation Error 
Data Access Exception Data Access Exception Set Data 'access Exception 
Data Access Exception Insttuction Access Exception Unchanged Instruction access Exception 
Instruction Access Exception Translation Error Oear Translation Error 
Instruction Access Exception Data Access Exception Oear Data Access Exception 
Instruction Access Exception Insttuction Access Exception Set Instruction Access Exception 

In all cases where sitnultaneous errors occur. Viking will choose the highest 
priority error and update the status accordingly. The positional priority described ~'. 
above must also be taken into accOunt The priority order is listed in the follow-

'- . 
ing table. where priority 1 is the highest pr:iority: 

Table 4-11 MFSR Error Priority 

Error Priority 

4.11.11.3 MFSR Register 
Description 

Translation Error 
Data Access Exceptions 
Instruction Access Exceptions 

1 
2 
3 

I Rsvd I EM CS SB p un uc I TO I BE L AT Fr FAV OW 
31 18 17 ~ ~ 14 13 12 11 10 9 8 7 S 4 2 1 0 

Rsvd Reserved. These bits are read-only zeroes. 

EM Error Mode Reset Taken. This bit when asserted indicates that an 
Error Mode Reset has been taken. 

CS Control Space Access Error. This bit is asserted on the following con­
ditions: [1] invalid ASI space. [2] invalid ASI size. [3] invalid VA. field in . 
valid ASI space including external control space (Ox02) ASIS. or [4] bus:r 
errors on ASI Ox02. This bit will not be asserted. however. for the fol­
lOwing conditions: [1] bus error on ASI Ox08. Ox09. OxOa. OxOb. 000-
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Ox2f and [2] bus error on MMU Probe. Note that MFAR holds a valid 
address on conttol space access (CS) errors. 

SB Store Buffer Error. This bit when asserted indicates that a Store Buffer 
error (data_store_error) has occurred. 

P Parity Error. This bit when asserted indicates that a Parity error has 
occurred. Parity errors also set MFSR.UC bit. 

un Undefined Error. This bit is set for external bus errors when the exter­
nal system signals a retry operation and asserts data ready. 
UD/UC/fO/BE errors are mutually exclusive. 

UC Uncorrectable Error. This bit is set for external bus errors for which an 
uncorrectable error occurred. Parity errors and ECC errors are also 
reported as uncorrectable errors. UD/UC/fO/BE errors are mutually 
exclusive. 

TO Time-Out. When this bit is set, it indicates that a time-out error 
occurred for a external bus transaction. UD/UcrrO/BE errors are mutt!­
ally exclusive. 

BE 

L 

Bus Error. When this bit is set, it indicates that a bus error occurred on 
a faulting access. This includes invalid bus transactions and errors for 
which system registers need to be probed. UD/UC/fO/BE errors are 
mutually exclusive. 

'The Level field is set to the page table lev~l of the entry which caused 
the fault. H an external bus error is encountered while fetching a page 
table entry (either a PTE or PTP) the Level field records the page table 
level for the entry. 'The field is defined as follows: 

L Level 
0 Root pointer 
1 Level 1 entry 
2 Level 2 entry 
3 Level 3 entry 

AT The Access Type field define the type of access which caused the fault. 
It is defined as follows: 

AT Access Type 
0 Load from User Data Space 
1 Load from Supervisor Data Space 
2 LoadlExecute from User Instruction Space 
3 LoadlExecute from Supervisor Instruction Space 
4 Store to User Data Space 
5 Store to Supervisor Data Space 
6 Store.1O User Instruction Space 
7 Store to Supervisor Instruction Space 
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Fr The Fault Type field defines the type of the current fault It is defined 
as follows: 

Fr Fault Type 
0 None 
1 Invalid address error 
2 Protection error 
3 Privilege violation 
4 Translation error 
5 Access bus error 
6 Internal error 
7 Reserved 

Invalid address errors, protection errors and privilege violations are a 
function of the Access Type and the ACC field of the corresponding 
PTE. The errors are set as follows: 

Table 4-12 Access Permission vs Access Type 

FrCode 
AT 

PI'E[V]=O PI'E[V]=l, PI'E[ACC]= 
0 1 2 3 4 5 6 7 

0 1 2 2 - - - 2 3 3 
1 1 2 .2 - - - 2 - -
2 1 - - - - 2 - 3 3 
3 1 - - - - 2 - - -
4 'I .2 - 2 - 2 2 3 3 
5 1 2 - 2 - 2 - 2 -

The invalid address error code is set when an invalid PTE or PTP is 
found while fetching an entty from the page table for a regular table­
walk Ot a probe operation. A translation error code is set when an 
external bus error, reserved PTE or a level-3 PTP is found while fetching 
an entry from a page table for a regular table-walle or a probe operation. 
The'L field records·the page table level at which the error occurred for 
the above two error codes. The UD. TO. BE. and uc fields recom the type 
of bus error, if any. The protection error code is set if an access is 
attempted that is inconsistent with the protection attributes of the 
conesponding page table entry. The privilege error code is set when a 
user program attemptS to access a supervisor only page. A bus error 
code is set when an external bus error occurs during memory access. 
The intemal error code is set when either cache detects an internal 
inconsistency, like multiple matches for a panicular request When this 
happens error mode is entered, requiring a system reset using watchdog 
reset See section 4.11.11.3.5 - Error Mode lI1Id InterMl Errors .. 

FA V Fault Address Valid bit is asserted if the contents of the Fault Address 
Register are valid. The Fault Address Register is not valid for instruc- :. __ 
tion access faults. 
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4.11.11.4 Fault Address 
Register (MFAR) 
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OW The Overwrite bit is asserted if the Fault Staws Register has been writ­
ten more tIWl once by faults of the same class since the last time it was 
read. Programmer's Note: A trap handler should consult this OW bit to 
find out if the information in FSR reflects the current fault or not ow 
asserted indicates that the FSR has been updated since the last fault that 
was/is CUJTently being taken. Multiple faults can occur before the trap 
is taken by the processor and the fault status is read by the processor. 
The Fault Status register records the cause of the latest and sets the ow 
bit to indicate that a previous status has been lost. 

The Fault Address register records the vinual address of the fault reported in the 
Fault Status register. 1bis register is overwritten according to the policy defined 
for the MFSR. The MFAR is read-only according the the reference MMU 
specification. For diagnostic purposed, Viking has added additional read/write 
access to the MFAR using vinual address OxOOOOI400 in ASI Ox04. The normal 
read-only MFAR is at vinual address OxOOOOO4OO in the same space. 

Important Note: 
Viking will never place instruction fault addresses in the FAR. The 

. information is not needed, since it is saved as the faulting PC/NPC when 
.the trap occurs. 

This register must be accessed as a word. Other data references provoke a' 
data_access_exception. The structure of the Fault Address register is: 

I Fault Virtual Address 

31 0 

.. 
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4.11.11.5 MMU Shadow FSR 
Register (MSFSR) 

4.11-.12. MMU TLB (page 
Desaiptor Cache) 
direct access 

Impottant Note: 
A rare scenario can occur when Viking is operating in MBUS mode with 
the store buffer off (not normal operating conditions). If a memory 
reference takes place. that causes a copy-back. and the copy-back 
suffers a fault (memory fault). Viking responds by sending 
data_access_exception to the processor pipeline. When this occurs. the 
MFAR holds the virtual address that caused the copy-out Note that this 
is not the address that caused the fault to occur. In this situation. Viking 
does not setMFAV because it is misleading. 

If such an error occurs (MBUS. data_3CCeSs_exception, FA v deassened. 
store buffer disabled). system software can recover by manually forc­
ing any modified data in the four possible cache lines (based on the vir­
tual address) out to memory using transparent MMU referencc;s. Once 
this data haS been Hushed. the appropriate valid bits should be cleared. 
and the original operation may be retried. 

This situation is not expected to occur during normal operation. 

This is identical to the FSR but is used to record memory system errors while in 
Emulation mode. This is done to avoid destroying the regular MFSR bec~ of 
emulation instructions. This register is not used for normal operation. Also see 
section 4.15). 

The MMU eritries are accessible directly with the ASI value Ox06. This direct 
access capability is provided for diagnostic pwposes and also to lock TLB entries. 

MMU entries are accessed as a 32-bit won!. Other data sizes provoke a data access 
exception. 

The Address fOlmat is: 

ASI=Ox06: Reserved I TLB Entry I Rsvd 

31 18 17 12 11 10 8 7 0 

The various bit fields have the following meanings: 

Rsvd: Reserved. All reserved bits are ignored (But should be zero). 

Entry: Selects which of the 64 entries is referenced. 

Sel: Select Determines what part of the referenced entry is accessed. The 
Sel field allows selection of both TLB fields. as well as the values .. 
cached in the root pointer and PI'P2 caches. Depending on the Sel 
encoding. various registers are selected. C 

Sel values 0 through 3 are used to access n.B entries. value 4 is used to access the 
level-O pointer and values 5 and 6 are used to access the level-2 pointer entry. 
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For Sel values 4. 5 and 6 the TLB entry field is not used. Data will be accepted or 
rewmed. in the following formats: 

Sel=O: Vaddr Rsvd 
31 12 11 0 

Sel=l: Rsvd Context 

31 16 15 0 

Sel=2: I PrE 

31 0 

Sel=3: Rsvd I Lock Bit 
31 1 0 

Sel=4: Root Pointer 

31 0 

Sel=S: I Level 2 PI'P 

31 0 

Sel=6: 1.P1'P2 Vaddr .1 Rsvd 
31 18 17 0 

Vaddr: Virtual Page Number. When the entry maps a 4 K-byte page all bits are 
defined. When the entty maps a 256 K-byte segment only the 14 most 
significant bits [31:18] are significant. When an entty maps a 16 M­
byte region only the 8 most significant bits [31:24] are significant 
When an entry maps 4 G-byte region. the entire V Addr field is not 
significant 

Rsvd: Reserved 

Pl'P2_ Vaddr: 
Level 2 PI'P virtual address. 

TIle Context Number tag is accessed (Sel=l) with the following data format: 

Reserved Context Number 1 
31 16 15 0 

TIle cached PTE is accessed (Sel=2) with the following data format: (Note that 
this format is slightly different than the in-memory PTE format) .. 
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PPN C M V ACC LVL 

31 8 7 6 5 4 2 1 0 

The meaning of the bit fields is identical to the definition of a PTE except for the 
V and L VL fields. 

V: Valid. The Referenced bit location in the PTE is used to hold the Valid 
bit for the entry. 

LVL: Level. When a PTE is cached the ET field is used to specify the map­
ping size. The encoding is the following: 

LVL Mapping Size 
0 4 GigabyteS 
1 16 MegabyteS 
2 256 Kilobytes 
3 4 Kilobytes 

The Lock bit is accessed (SeI=3) with the following data format: 

Reserved Lock 
31 . 1 0 

The Lock bit is set to 0 by the table walking haIdware upon power-on reset. If 
set to one, the entry will not be displaced by the replacement algoritJ:uil. It is the 
responsibility of the software not to lock all entries. When all entties are locked, 
new PTEs can not be brought into the TI..B and hence the ttanslation can not occur. 

Important Note: 
If all TI..B entries are locked, no replacement can take place. This will 
result in the processor entering an infinite tllble walle sequence. The 
processor will continue to read from the page tables forever and never 
return. No enor will be reported, and the only way to exit is with reset . 

The cached Root Pointer (SeI=4) with the following data format 

Root Pointer V 
31 2 10 

The cached level 2 PTP is accessed (Sel=5) with the following data format: 
.. 

Level 2 PTP 
31 o 

The virtual address of the level 2 PI'P is accessed (Sel=6) with the following data 
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4.12. Store Buffer 

4.12.1. General Operation 
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fonnat: 

Vaddr Rsvd 
31 18 17 0 

Impottant Note: 
It is possible to have multiple matches in the MMU if two or more 
entries mapping the same vinual space area are simultaneously present 
in the TLB. This cannot happen during the regular operating modes 
where entries are loaded by the table walking hardware. However, with 
the direct access capability it is possible to erroneously load distinct 
entries mapping the same portion of a vinual space. When a vinual 
address from this area is translated by the MMU, the result is undefined. 
This condition is not reponed to the software. Though operation is 
undefined, the hardware is internally protected and will not be damaged 
should this condition occur. . 

This condition may also occur under non-diagnostic situations if MMU 
FLUSH transactions are not issued where required. As. an example. if a'. 
normalleve13 PTE is present in the TLB, the page table is modified to 
include a level2 or higher PTE mapping the same space, andareference 
to a a different location within the leve12 mapping. Under these condi­
tions. the TLB will end up with two entries mapping the original page. 
A FLUSH transaction is required after changing the page table IilaWing, 
before any user ~ctions are generated. FLUSH operations are 
required by the reference MMU Specification for these cases. 

It is the software's responsibility to maintain the consistency between the MMU 

and the page tables when entries are explicitly modified. 

TIle Vilcing store buffer is a fully-associative cache of 8 double-woro entries. This 
buffer functions to eliminate most of the performance penalties associated with 
write-through cache operation, and copy-back (cache flush) operations. This 
depth is sufficient to hold 16 SPARe registers, the number required to flush a 
register window. 

The store buffer is ajlushing type buffer. H the (doubleworo) address of a read 
transaction matches the (doubleworo) address of any write transaction currently 
in the buffer, the read will wait until that write has completed before continuing. 
No data is returned from the store buffer to the instruction pipeline. This type of 
match will force the buffer to flush to memory as quickly as possible. 

In addition" the buffer ~oes not do any IJyte collection. It does, however, tum 
sequences of memory references within a cache block into burst write operations 
on the bus (CC mode only). Burst writes will continue for an arbitrary number of 
cycles. as long as they are within a cache line . 
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The store buffer components (tags, data, and coruml) are accessible via ASI 

spaces Ox30-0x32 for diagnostic purposes. 

4.12.2. Operation in CC Mode The buffer is primarily used in cc mode, where all store operations are com­
pleted immediately into the store buffer. In cc mode, a ST operation will never 
wait for completion. unless the buffer is full, disabled, or a TLB miss operation 
occurs (see section 4.12.4 for a more complete description). The state of the data 
cache (hit, miss, or disabled) does not affect store buffer operation in CC mode. 

4.12.3. Operation in MBUS In MaUS mode only non-cacheable stores and copy back data goes into the store 
Mode buffer. This is primarily due to the copy-back. write allocate caching policy used 

ontheMBUS. 

. 4.12.4. Non-buffered 
(Synchronous) 
Operations 

4.12.5. Store Buffer (Data 
Store) Exceptions 

In cc mode, there are several cases when stores cannot or should not be buffered. 
These cases include atomic operations, Store Alternates (STA), MMU R&.M 
Updates, and operations when the store buffer is disabled. All of these actions 
block the execution pipeline until they have completed. Since external stores 
must be performed in order, each of these conditions forces all entries in the store 
buffer to be written out to memory before the synchronous operation begins. 

When the buff~r is full, new store operations will cause the pipeline to stall until 
a single entry in the buffer is available. The buffer is not forced to flush in this 
a~tioa . 

Data store exceptions take priority over all other exceptions, except reset When 
an exception occurS on a buffered write, the resulting trap handler must be able to 
inspect and attempt to restart the write which failed. In order for a data store error 
to be reponed, the PSR.ET bit must be assened, and the MFSR.NF bit should be 
deassened. 

When an error occurs, the store buffer is automatically disabled. A Store Buffer 
copyout is not initiate~: and no other writes will be issued from the Store Buffer. 
All buffer entries, including the faulting one, are retained in the buffer. All sub­
sequent writes (nominally in the trap bandlCr) are synchronous, bypassing the 
buffer. This MIl continue until the store buffer is re-enabled. 

Once in the trap handler, the faulting write can be retried. This is accomplished 
loading the faulty address and data din:ctly from the store buffer into registers 
(using the diagnostic ASI access to the buffer's address and data information 
directly). A store alternate through the MMU pass through ASIS can then be used 
to perform an untranslated store to this physical address. In this case, the 
MCNTL.Ac (Alternate Cacheable) bit will be used to determine cacheability. The 
AC bit should be set to the same value as the C bit field of the store buffer tag 
register (since this is was the state of the C bit in the original transaction). 

·The data store error handler Code should set the MCN'I1..NF (no fault) bit before 
attempting to retry the operation. After the STA to retry the operation, the MFSR ,4 

enor bits should be checked explicitly to determine if the operation was success.\~ 
ful or not If the MCN'I1..NF bit is not set, an error on the retry of these transactions 
can cause entry into error mode. 
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Operation- strong 
ordering 

4.12.7. Store ButTer Tags 
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If this retry fails system software must decide how' to continue recovery effons. 
Generally, the error is always guaranteed to be from a store operation in the 
current context (since context changes always force a store buffer copy-out, 
pending stores from another context cannot be present) Once the faulting pro­
cess is identified, the process can be interrupted or killed, rather than stop the 
entire system. 

Important Note: 
In MBUS mode, a data store error resulting from a copy-back operation 
is not guaranteed to be from the current context. In this case, isolating 
faulty accesses to the process which caused them is more difficult. This 
situation may still be recoverable, but is very complex. 

Note that standard oldering of memory transactions can be maintained even in 
the presence of store buffer errors and recovery operations. As long as the 
recovery routines retry store buffer operations in the order they were requested. 
no ordering is changed. Any memory operations within the trap handler can be 
considered to have executed "before" these buffered writes are performed: 

When a store buffer exception (data_store_error) occurs, Viking retains informa­
tion for all pending stores, including the store which encountered the exception, 
in the store buffer. 'These can be accessed in several asi control spaces: store 
buffer control (ASI Ox32), store buffer tag (ASI Ox30), store buffer data (ASI Ox31) 

. and MMU.SB '(ASI Ox04). These store buffer entries assist recovery from a s~re 
buffer exception. 

. . 
The SBCNTL.Dpcr is left intact after an exception to allow software recovery. In 
on1er to re-enable the store buffer after a data_store_error was taken, the 
SBCNTL.Dprr must be initialized to allow proper execution. 

The Store Buffer is disabled when Viking is first powered up. As a result, all 
stores are synchronous, and block. the execution pipeline until they complete. 
During normal operation. disabling the store buffer allows applications to be run 
with strong sequentiQl ordering of memory references. 

ASI=Ox30 - Store Buffer Tags. 

This ASI is used to perform reads and writes to the store buffer's physical tags, 
mainly for diagnostic purposes. The Address format is: 

I Rsvd 
31 6 S 3 2 0 

The bit fields are: .. 
Rsvd: Reserved. These bits are ignored. 

Entry: Entry Number. The eight entries of the store buffer are accessed using 
the entry field. . 

~.sun 
-~ 
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4.12.8. Store ButTer Data 

Rsvd 

Accessing the store buffer tags with a quantity other than a double-word will 
result in a data_access_cxception. 

Tags are returned (or written to the appropriate entry). 

The Tag format is: 

I SP·I Burst v S c Size Address 

63 43 42 41 40 39 38 37 36 35 0 

Rsvd These bits are read as zeros and ignored for writes. 

SP Store Barrier Pointer bit This bit gets asserted by the STBAR instruc­
tion. See section 4.4.5 for more details. 

Burst Burst Mode access. This bit if set indicates that the next entry in the 
store buffer corresponds to the next consecutive address and can thus 
be issued in burst mode. 

V Valid bit If set it indicates that the entry is valid. 

S 

c 

Supervisor Bit If set it indicates that the entry corresponds to a super­
visor process. 

Cacheable bit If set it indicates that the entry is a cacheable access. 

Size Size of transaction according to the table below: 

Size Data Quantity 

00 Byte· 
01 Half-Word 
10 Word 
11 Double-Word 

Address Address for the store buffer entry. This address must be correct 
depending on the size of the ttansaction. For instance a double-word 
store buffer entry must have the lower 3 bits of its address to be zero, if 
not an elTOr is generated. 

ASI=0x31 - Store Buffer Data. 

This ASI is used to perform reads and writes to 64-bit data stored in store buffer 
entries. Data entries are addressed in the same way as store buffer tags. The 
Address fonnat is: 

Reserved I Entry. I 000 
31 6 5 3 2 0 

1be store buffer data must be accessed as double-words .. Other data quantities 
provoke a data_access_exception. 
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4.12.9. Store ButTer Control 

4.13. Traps 
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ASI=Ox32 - Store Buffer Control. 

TIle store buffer control register containing the fill and drain pointers is accessi­
ble with the ASI value Ox32. This access is a single word access. All other size 
accesses will generate a data_access_exception. 1be address field is not used for 
this access. 

The number of pending stores is determined by subtracting the Drain pointer 
from the Fill Pointer (modulo 8). When the two pointers are equal and there are 
valid entries, the store buffer is full and cannot accept any more entries. The 
buffer is empty when the two pointers are equal but there are no valid entries. 
The Data format is: 

I Rsvd I SE EM 
31 9 8 7 6 5 3 2 0 

Rsvd 

SE: 

EM: 

These bits are read as zeros and ignored for writes. 

Store buffer enabled. This bit is Read-only, and indicates whether the 
store buffer is enabled (1) or disabled (0). This is a shadow Copy of the 
MCNTL.SB bit. and is provided for convenience. 

Store buffer empty. This bit is read-only, is set at reset. and indicates 
whether the store buffer is empty (1) ornon-empty (0). 

ER: Store buffer error pending. This bit is Read-only, and indicates 
whether an untaken store buffer error is pending. 1bis bit is set when a 
store buffer exception occurs while traps are disabled (PSR.ET=O). 'J'hj f 

bit is cleared by taking the store buffer exception trap, which occurs 
automatically when traps are re-enabled. 1be bit is also cleared on 
Reset. 

Dptr. Drain Pointer. This value indicates the first entry of the store buffer 
which would perform a bus transaction. See section 4.12.5 on cases 
when this bit must be cleared after a data_store_error. 

Fptr. Fall Pointer. 'Ibis value indicates the first entry of the store buffer 
where a new store request can be written. If it is equal to the drain 
pointer then the store buffer is full. . 

This section gives an overall view of the types of traps which may occur during 
normal or exceptional operation of Viking. In particular, this section describes the 
set of standard SPARe traps. and the exact definition of Viking's implementation 
of them. In many cases, the trap is implemented exactly to the definition in the 
SPARe Architecture Manual. Standard architectural operations, like decrementing 
CWP, and copying the PSR.S bit to PSR.PS will not be discussed in detail. 

~ Some general propenies are presented first, followed by the details of various 
l,,- traps. Note that Viking is fully confonnant to the SPARe architecture. and imple­

ments QlJCt traps. In some cases (floating point and store buffer), Viking uses the 
de/e"ed trap model of the SPARe architecture . 

• !P..!! Sun Mic:rosystems Proprietwy Revision 2.00 of November 1. 199 



114 TMS390ZS0 - Viking User Documentation 

4.13.1. Exceptions and 
Program Counters 

All exception requests propagate through the instruction pipeline and are 
resolved only in the last pipe stage (WB). Viking can executes more than one 
instruction in a given cycle, and each of those instructions can suffer one or more 
exceptions. TIle following rule resolves exception priorities among faulting 
instructions in the same group: 

Important Note: 
A low priority exception at an earlier instruction in a given instruction 
group will have a higher priority than a high priority exception at a 
later instruction in the same group. 

Note that interrupts are effectively positioned at the wt valid instruction in a 
particular instruction group. In addition, a valid instruction must be present in 
order for the interrupt to be registered. If the execution pipeline is not progress­
ing (waiting on cache misses, for example) an interrupt will not be taken. Due to 
this, maximum interrupt latency for Viking is highly system dependent. 

Three program counters are involved when an exception occurs. 

XPC, the exception program counter 
XNPC, the exception next program counter 
. XHPC, the begiming of the exception handler code 

Viking recovers the XPC and XNPC values from one of the many stOred program 
counters, depending on where the exception occurs. TIle values are then stored 
in registers 11 and 12 in the new register window upon entry into the trap handler. 
TIle new program counter (exception handler-target) is computed according to 
the standard SPARe model, shown below: 

Table 4-13 Exception Handler PC /oT7l'llllion 

4.13.2. Error Mode 

Exception Handler PC: TBR[31:12] Trap Type[7:0] I 0000 I 
31 12 11 4 3 0 

£"or Mode can be entered when any exception occurs while the ET bit is cleared. 
In general. these are considered fatal errors, though system software may be able 
to recover in cenain cases. 

En'or mode generates a watchdog reset trap, which acts like any other trap, with a 
few differences. For most error mode traps, the Tr (trap type) field is not set. This 
is to retain the prior value ofTr, to help recovery. 1bere is one case where this 
rule is not applied: If the erJ'Q.I'mode trap occurred during the execution of an 
RE'IT instruction, the Tr field will be set based on the exact cause of the excep-
~ ~ 

In all cases, the PSR.PS bit will not be affected by a watchdog reset. 
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4.13.3. Fault Status Updates 

4.13.4. Trap Details 

) 
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In all cases. the MCNTI..BT (Boot Mode) bit will be set by a watchdog reset. 

There are many details associated with updates to the fault status register. These 
are discussed in detail in section 4.11.11.3.6 - MFSR timing and operation 

The following lists Viking Trap Table, which for the most part looks similar to 
the SPARC Manual Trap Table (refer to the SPARC Architecture Manual) but pro· 
vides a formal definition of which traps Viking does or does not take. how Viking 
handles its traps, and any reasoning behind those operations. 
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4.13.4.1 Reset Trap 

Table 4-14 Table o/Traps supported by Viking 

Exception or Interrupt Request Priority Trap Type 

reset 1 OXOO 
data_store_error 2 Ox2b 
~ction_ac~_exception 5 OxOI 
privileged_~ction 6 Ox03 
illegaCinstruction 7 Ox02 
fp_disabled 8 Ox04 
cp_disabled 8 Ox24 
window_overflow 9 Ox05 
window_underflow 9 Ox06 
mem_address_noCaligned 10 Ox07 
fp_exception 11 Ox08 
data_access_exception 13 Ox09 
taLoverflow 14 OxOa 
division by zero 15 0x2a 
trap_instruction 16 Ox80-0xff 

interrupCleveC15 17 Oxlf 
interrupt_IeveC14 18 Ox1e 
interrupClevel_13 19 Oxld 
intenupClevel_12 20 OxIc 
interrupt_level_11 21 Oxlb 
interrupt_level.:,10 22 Ox1a 
interrupt_level_9 23 Ox19 
interrupt_level_8 24 Ox18 
interrupClevel_7 2S Ox 17 
intenupClevel_6 26 Ox16 
intenupClevel_5 27 OX1S 
interrupt_Ievel_ 4 28 Ox14 
interrupClevel_3 29 Oxl3 
intenupt_level_2 30 Ox12 
intenupClevel_l 31 Ox 11 

Note: The second column describes the exception priority in the event of more 
than one exception is detected at a given insttuction. The third column is the 
value that TBR.'IT will be set to and also serves as an offset to a quad-word block 
fetched to get at the exception handler when the exception event occurs (see table 
4-13 ). 

Trap type (IT not set). priority 1. .. 
Viking recognizes two types of reset: Viking Reset and Watchdog Reset For a . 
detailed description of reset operation, see section 4.3 - Reset Operation. 
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4.13.4.2 Data Store Error Trap 

4.13.4.3 Instruc~on Access 
Exception Trap 

4.13.4.4 Privileged Instruction 
Trap 
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Trap type Ox2b, priority 2. 

Data_store _error is caused when a store buffer copyout encounters an external 
bus error (e.g. parity or ECC problem). For a detailed description see section 
4.12.5 - Store Buffer (Data Store) Exceptions. 

Trap type OxOl, priority 5. 

lnstruction_access_uception may be caused by many events. The normal source 
of this error is MMU protection errors for pages which have been swapped out of 
virtual memory space. In addition, bus errors and code breakpoints can cause this 
exception. See the MMU for a detailed description of error reporting for these 
traps. Note that the fault address register (FAR) is never updated for these errors. 

Trap type Ox03, priority 6. 

Privileged _instruction trap is caused when PSR.S is cleared and a privileged 
instruction is issued. There are many classes of privileged instructions, see the 
SPARC Architecture Manual for a complete list 

There are many details related to generating traps for the RE'IT instruction. Vik­
ing implements the rules described in the SPARC Architecture Manual. 

4.13.4.5 megal Instruction Trap Trap type Ox02, priority 7. 

4.13.4.6 Floating Point 
Disabled Trap 

4.13.4.7 Coprocessor Disabled 
Trap 

Illegal_instructiOn (sometimes also called unimplemented_instruction) trap is 
caused when an instruction with an unassigned opcode or illegal opcode is exe­
cuted. For exainple, Viking issues an illegal instruction trap when a RETr instruc­
tion is executed with the PSR.ET bit set, and in several data dependent cases of the 
WRPSR instruction (see section 4.4.3 - Write PSR (WRPSR) Integer divide instruc­
tion also generate data dependent illegal instruction traps (see section 4.4.2-
Integer Divide (IDIV) ). 

Trap type Ox04, priority 8. 

Fp _disabled trap is caused when PSR.EF is cleared and any floating point instruc­
tion is issued. This trap is never issued for integer multiply or integer divide. 

Trap type Ox24, priority 8. 

Viking does not provide a coprocessor intetface. PSR.EC (enable coprocessor) bit 
is zero, and non-writable. Any attempt to set the PSR.EC bit will generate an 
illegaCinstruction trap. Any attempt to execute a coprocessor instruction will 
generate a cp_disabled trap. Viking never generates a cp_exception trap. 

• sun 
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4.13.4.8 Window Overflow 
Trap 

4.13.4.9 Window Underflow 
Trap 

4.13.4.10 Memory Address Not 
Aligned Trap 

4.13.4.11 ~oating Point 
Exception Trap 

4.13.4.12 Data Access 
Exception Trap 

4.13.4.13 Tagged Operation 
Overflow Trap 

Trap type OXOS, priority 9. 

Window _overflow trap is caused by a SAVE instruction being executed when the 
next available register window (CWP-l) is marked invalid in the WIM register. 
Note that this ttap is generated only in response to a SAVE instruction, no other 
operations, including other traps. can cause this exception. 

Trap type Ox06, priority 9. 

Window underflow trap is caused by either a RESTORE or RETI instruction which 
would cause the incremented value of CWP to point to an invalid register window. 
In the case of RETI, this trap will immediately lead to an error mode condition, 
and watchdog reset 

Trap type Ox07. priority 10. 

M em_address _ not_aligned trap is caused by a load, store or control ttansfer 
operation which violate the correct SPARe alignment The alignment of an 

. instruction is a word. Halfword references require the low bit to be zero. Word 
references require the low 2 bits to be zero. Double word references require the 
low 3 bits to be zero. 

Trap type OXOS, priority 11. 

Fp _exception traps are caused by cenain floating point arithmetic conditions 
being detected. 'Ibese exceptions are deje"ed traps, and will only be reported 
upon execution of another floating point operation (or floating point ~ent) at 
some later time. 1be time taken to cause the exception is variable, depending on 
the pipeline state. numeric conditions, and the exact sequence of instructions. 
Improper floating point error recovery can also cause these exceptions, panicu­
larly sequence errors. 

The exact instruction which caused the exception can be detennined by reading 
the state of the floating point queue. described in section 4.6.3 - Floating Point 
Queue 

Trap type Ox09, priority 13. 

DatIl_ occess _exception ttaps are generally caused by MMU protection errors for 
load and store operations. 1bey may also be caused by bus enors, and data break­
points. See the MMU section for a detailed description of error reporting for these 
exceptions. . 

Trap type OxOa, priority 14. 

tag_overflow ttaps are causea by execution of tagged add or subtroct and trap on 
overflow (T ADoccrv and TSUBCCI'V) instructions. 1be ttap will be signalled (1f",. 

when the least significant 2 bits of either source operand is non-zero, or when the \,_ . 
operation produces a result which causes the overflow flag to be set 
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4.13.4.14 IntegerDivideby 
Zero Trap 

4.13.4.15 Trap Instructions 
(TICC) 

4.13.4.16 Interrupts 
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Trap type Ox2a. priority 15. 

Division_Uy _zero trap is caused when an integer divide instruction is issued with 
the value of the second operand (denominator) being zero. 

Note also that an illegal instruction trap will be generated by Viking if the 
numerator of a divide operation has significant digits beyond 52 bits. If both 
divide by zero, and the illegal instruction conditions exist, the illegal instruction 
trap will be signalled. 

Trap type Ox80-0xff (instruction dependent), priority 16. 

Trap_instruction traps are software initiated traps. caused by the execution of 
nee instructions. Viking implements these instructions according to the SPARC 
Architecture Manual. 

Trap type Oxll-Oxlf (IRL pin dependent), priorities 17-31. 

Interrupt_leveCn traps are by generation of hardware interrupt requests. The 
normal source of these requests is from external pin asseItions on the IRL[3-O] 
pins. In addition to these external requests, Viking can generate interlllJl interrupt 
requests from several sources. Generation and definition of these interrupt 
requests is system dependenL 

Interrupt requests are compared to the current processor interrupt level (PSR.Pll.). 
Requests at levels higher than the current PIL. or equal to 15 (non-l1IQS/cable) will 
be taken, assuming there are no higher priority exceptions pending. The PSR.ET 
(enable traps) bit must be set for any interrupt to be accepted (including non­
maskable interruptS). 

TIle external interrupt requests are sampled in successive cycles to debounce 
transient requests. The request must be asserted for a minimum of three cycles 
before it is presented to the pipeline. A valid instruction must exist at that stage 
of the pipeline before the interrupt will be taken. Interrupt requests are level sen­
sitiye at the pins of Vilcing. System hardware can control these pins in a imple­
mentation dependent manner to implement different system interrupt architec­
tures. 

Once an interrupt is presented to the pipeline. it will cause the store buffer to be 
flushed. will update register state according to the SPARC Architecture Manual, 
and will initiate a control transfer to the begiming of the trap handler. The dura­
tion of this activity is processor state. and is system dependent. Maximum inter­
rupt latency is determined by internal and external factors. such as the maximum 
length of certain floating point operations, system memory latency times. and the 
maximum store buffer depth. 

Internal sources for interrupt requests are from breakpoints. The breakpoint logic 
can be programmed ~.cause interrupts at a software controlled level upon certain 
events. 1bese may be code. data, or counter generated breakpoints. Several 
registers, including MDIAG.BKC (breakpoint conttol), ACI'ION (action on break­
point event), and the counter registers determine when these interrupts are gen­
erated. TIle level generated for these interruptS is defined in the ACI'ION.BCIPL 
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4.13.4.17 Unsupponed Trap 
Types 

Table 4-15 

4.14. Software Debugging 
Facilities 

4.14.1. Priorities of Debug 
Interrupt and 
Exception 

(breakpoint and counter interrupt level). 

Viking does not implement the following optional SPARe trap types: 

Unimplemented Trap Types 

Instruction_access _error 
R Jegister _access_error 
Cp _exception 
l>~_access_error 
Unimplemented_FLUSH 
Unimplemented_MUL 
Unimplemented_DN' 
Implementation-l>ependent-Excepdon 

Viking provides debugging capabilities to facilitate debugging software and 
hardware prototypes. Four types of breakpoint mechanisms are provided: 

Code address 
Data address 
Instruction count underflow 
Cycle count underflow 

These mechanisms can be selectively enabled to generate precise exceptions 
(data_acce5s_exception or instruction_acce5S_exception). They may be pro­
grammed to generate a selectable interrupt In addition. they may be set to 
activate an external pin to easily trigger external analysis equipment They are 
also a fundamental part of Vildng's emulation features, described in chapter 6 -
Remote Emulation Suppon 

In addition to address breakpoint facilities. programmable timers are provided for 
debug. code profiling and perfolDlance analysis. They can provide a high preci­
sion, low overilead timer for small application benclunarking. Their major appli­
cation is to assist development or diagnostic teams in early hardware and 
software debug. 

All address breakpoint interruptS and counter underflow interruptS use a common 
user programmable interrupt priority level (ACTION.BCIPL). Status bits are pro­
vided to differentiate between these interrupt sources. The following describes 
the priority order that these interruptS and exceptions adhere to. 

Ifmultiple breakpoint fault events (code, data) are signalled simultane­
ously, both cock and dJJta breakpoint status registers will set theirfault 

'~ -

stams bits. 1'-' 
(.l/ If multiple breakpoint interrupt events are signalled simultaneously. 

each activity will set its interrupt StlltUS bits. _ 
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4.14.2. Address Breakpoints -
Code (Instruction) or 
Data 

4.14.3. Counter Breakpoints­
Code (Instruction) or 
Cyde 
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Exception sources from multiple instructions are prioritized based on 
instruction order. An exception reponed to an instruction will have 
higher priority thm a simultaneous exception to the next instruction. 

Asynchronous data_access_exceptions are honored before 
instruction_access_exceptions. 

Instruction_acces5_exceptions are honored before synchronous 
data_acce5s_ exceptions, and all data_access_exceptions are honored 
before intenupts. 

A single code (instruction) or data breakpoint register is available. This break­
point can match on either 32-bit virtual or 36-bit physical addresses for code or 
data. When a breakpoint is set on an insttuction. the instruction will not be exe­
cuted. This holds true for fault. interrupt, and emulation. 

Important Note: 
A maximum of one code space breakpoint or one data space breaJc­
point can be active at a given time, not both simultaneously. 

Each bit in the bitwise address comparison can separately be masked off to force 
equality on that bitwise comparison. The address equality bitmasks can be used 
to find references within a particular segment. page, cache line or word lndepen-

. dent of the size of the access. Data space breakpoints can be qualified with access 
type (reads-only, writes-only, read-or-write). Atomic references (e.g. 
SWAP/LDSTUB) are considered both read and writes. 

The action upon event conb'Ol register (ACTION) specifies whether the address 
breakpoint should generate an exception, interrupt. or activate the external strobe 
(ESB) pin. The action on event register is defined in 4.14.4 - Access to Debug 
Features 

Important Note: 
A maximum of one instruction count breakpoint and one cycle count 
breakpoint can be active at a given time. 

A single 32-bit wide control register programs the two 16-bit counters for 
insttuction and cycle C01D1ts at the same time. It is not possible to modify one 
counter without the other. 

The 16-bit cycle counter will count up to about 1.3 milliseconds at SOMHZ. 
Longer duration counters must be simulated in software by accumulating 
underflows of the 16-bit counter into a larger counter in memory . .. 
The instruction counter can count either faster or slower thm the cycle counter, 
depending on execution characteristics of the processor. It could theoretically 
count three times faster, if Viking was ~ntinuously .executing three instruction 
groups. In general, it will count slightly faster than the cycle counter . 
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The combination of these two counter interrupts can be used to calculate the 
dynamic performance (in million instructions per cycle, or MIPS) of the executing 
program. 

Cycle counter undertlow events are always reported to the last valid instruction 
in the current instruction group. Instruction counter events occur as interrupts or 
emulation requests to the instruction after the instruction which causes the 
counter event. Instruction counter expiration events will be reported after the 
first instruction which causes the undertlow. 

Once set. the counter expiration event is persistent until served. TIle instruction 
which caused the counter event will ultimately be restarted. 

When a cycle counter expires, action for that event may be deferred until valid 
instructions are available, and the pipeline is able to progress. If the action is 
deferred, the request (interrupt or emulation) will persist until the pipeline is able 
to continue. Once the initial event is signalled, the cycle counter continues 
counting down through the most positive number. In this way the total number 
of elapsed cycles from a given point may be calculated. 

The instruction counter decrements the existing instruction count by the number 
of instructions which complete execution in a given cycle. The number can vary 
anywhere from 0 to 3 instructions per cycle. i The cycle counter always decre­
ments by 1. 

The following table describes how to set up breakpoints using the proper control, 
registers, and where to find infonnation that the actual actlon(s) has/have been 
triggered after the b~int. 

.. 
.r< 

(": 
\L,,-
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Table 4:..16 Breakpoints - Control and Status 

BrtaJcpoillt 

Response 

s = Set BClPL to select IRL: x = don't care; E = Event dependent; u = unchanged 

In table 4-16 above, the notations S, x, and u are self~xplanatory. The notation 
E (which is given to an affected status bit indicates that the bit is Event depen­
dent,' which means that the bit status after a breakpoint depends if a particular 
event has occurred. For example, the BKSDBKIS bit in row dIlta address break­
point ESB, which is designated the notation E, will be set if ACI'lON.IEN_OBK and 
ACI'lON.BCIPL were set when the breakpoint occurred. ('The latter 2 bits are 
designated don't cares). 

For all the emulation request cases that are initiated by breakpoints, the 
MCMDlNITM bit must be set. 

When setting a breakpoint, the programmer must allow for the latency until the 
breakpoint can be guaranteed active. To achieve this, the last ST A Ox38 insuuc­
lion that sets the breakpoint registers must be followed by an IFLUSH or a BA 
instruction. 

Also, after the breakpoint has been taken, the programmer must explicitly disable 
(by disabling the appropriate control bits) that particular breakpoint, so that when 
normal execution is resumed, the same breakpoint will not be taken again. 
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4.14.4. Access to Debug 
Features· 

4.14.4.1 MMU Breakpoint 
control registers 

The MDIAG altema1e address space contains code and data space breakpoint 
register facilities (CBK/DBK). The EOIAG (Emulation DiagnostiC$) address spaces 
contains the AcnON , insttuction and cycle counter facilities (CTR). ASI address­
ing for emulation registers has been distributed into multiple ASI spaces to sim­
plify the emulation interface. These registers are all shared with emulation 
resources. 

Imponant Note: 
In systems using scan-based emulation, there may be contention for use 
of the breakpoint and counter facilities between the remote emulator 
and the kernel. There is no contention avoidance mechanism provided 
to lockout debug software from distwbing the emulator context 

Care must be taken when both emulation and software debug features are being 
used at the same time. 

ASI=Ox38 - MMU Diagnostics and Breakpoints. 

AS! Function Access Access 
Ox38 MMU Breakpoint Diagnostics LD/~ double 

There are 4 memory mapped, Viking-specific, MMU breakpoint diainostic regis­
ters (see table 4-17). These registers are double-word access only, any other size 
will cause a data_access_exception. All breakpoint enable and status bits are 
cleared at reset. All values and masks are unchanged through reset. 

A single address breakpoint is controlled by these 4 registers. The address break­
point may be set in code space or data space- but not both simultaneously. 
An address breakpoint event can generate: 

An insttuction or data access breakpoint exception, or 
An insttuction or data address breakpoint inte"UJ1t, or 
An insttuction or data address breakpoint emulation request, or 
Enable the ESB pin. or 
none of the above 

The response selected is determined by MDIAGJ)KC ASI register, the AcnON 
register, and JrAG MCMD scan register. This JrAG MCMO scan register is initial­
ized on powerup to inhibit W initiated emulation requests. A remote emulation 
service processor can use Viking'sJrAG interface to: 

Fon:e Viking into emulation mode, 
Setup an insuuction or data address breakpoints, 
Setup the breakpoint event to generate emulation mode requests, 
Enable the pipeline to honor processor emulation entry requests, 
Exit emulation mode 
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Instruction and data address breakpoint shares the same breakpoint register set. 
The address map for these MMU diagnostic registers is: 

Table 4-17 MMU diagnostic (breakpoint) registers 

4.14.4.1 Breakpoint Value Reg 

4.14.4.1 Breakpoint Mask Reg 

Addr<9:8> Reg Name Description 
0 MDIAG_BKV Breakpoint Value (Addr) 
1 MDIAG_BKM Breakpoint Mask 
2 MDIAG_BKC Breakpoint Control 
3 MDIAG_BKS Breakpoint Status 

These registers are defined as follows: 

MDIAG_BKV: L-._R_sv_d..,;.(2_8,.;..) -:--'~B~K_V....:.(3_6~)~ 
63 36 35 0 

This register defines the code (or data) breakpoint address value. 

Rsvd(28) 
. Reserved bits, read-only, should be zeroes. 

BKV(36) Contains the 36 b~t value with which either physical or vinual address 
of the code (or data) being accessed will be compared (as detennined 
by MDIAG_BKC.CSPACE). When a match occurs, an event is generated 
depending on the state of the MDlAG_BKC and AcnON ASI registers. 
These actions are also affected by the IT AG MCMDlNITM bits (not pro­
grammer visible). 

Rsvd(28) BKM(36) 
63 36 35 0 

This register defines a mask-off value. Useful for address matching across a 
range. 

Rsvd(28) 
Reserved bits, read-only, should be zeroes. 

BIeM(36) BIeM defines a per-bit comparison mask: for BKV. For any bit which is 
set in BKM, the equivalent bit in BKV is ignored in the address com­
parison. This can be used to match on ranges of addresses. 
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4.14.4.1 Breakpoint Control' 
Register 

This register controls whether the breakpoint is to be set for code or data space 
address, whether to compare a physical or virtual address, and it also controls the 
different types of breakpoint enable signals. All bits are cleared on both hardware 
and watchdog reset. 

MD~G_BKC: ~Rsv __ d~(~57~)~_CS __ P_A_CE~ __ PAM ___ D~_CB __ FEN __ ~ 
63 7 6 5 4 

CBKEN DBFEN DBREN DBWEN 
3 2 1 0 

CSPACE IfCSPACE=I, the address in BKV is compared to code space address. 
OBREN, OBWEN arid OBFEN are ignored. If CSPACE=O. the address in 
BKV is compared to data space address. CBKEN and CBFEN are ignored. 

PAMD IfPAMD=I.physical address is compared (bits 0-35 ofBKV). If 
PAMD=O, virtual address is compared (bits 0-31 ofBKV, ignore bits 
32-35). 

CBFEN Enables code breakpoint fault generation. When this bit is set, a ~e 
breakpoint match will cause an instruction_access_exception. When 
this bit is cleared, an interrupt as defined in AC110N will be reponed. 

CBKEN Enables code breakpoints. If disabled, no code breakpoint can occur. 

DBFEN' Enables data breakpoint fault generation. When this bit is set, a data 
breakpoint match will cause a data_acce5s_exception. When this bit is 
cleared, (and either DBREN or DBWEN is set). an interrupt as defined in 
ACTION register will be reponed. 

DBREN Enables data breakpoints for read transactions (ill). This bit must be 
set, along with CSPACE being cleared for data read breakpoints to 
occur. 

DBWEN Enables data breakpoints for write transactions (ST) . 

... 
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4.14.4.1 Breakpoint Status Reg 

4.14.4.2 Counter Breakpoint 
Value (CTRV) 
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BKS: Rsvd(60) CBKIS CBKFS DBKIS DBKFS 
63 4 3 2 1 o 

TIlis register reports on the status of either code or data breakpoints. 

CBKIS Indicates thaI an interrupt was generated as a result of a code break­
point. 

CBKFS Indicates that a code access exception was generated as a result of a 
code breakpoint. 

DBKIS Indicates thaI an interrupt was generated as a result of a data break­
point. 

DBKFS Indicates thaI a data_access_exception was generated as a result of a 
data breakpoint 

Any type of reset sequence or any load ASI from this register will clear all the bits 
in this BKS register .. 

ASI=Ox49 - Counter Breakpoint Values. 

CI'RV: I ICNT. ICCNT 
31 16· 15 0 

CTRV is a register thaI holds the counter breakpoint values, and is composed of 
two 16-bit fields: ICNT and CCN'l'. . 

ICNT This field specifies the number of instructions left before the next 
counter event. (See Note below). 

CCNT This field specifies the number of cycles left before the next counter 
event. (See Note below). 

Neither counter is decremented when Vildng is in emulation mode. ICNT and 
CCNT are read and written as a pair, and are unchanged at reset 

.§!i,.!! Sm Mic:rosystcms Propriec.ry Revision 2.00 of November I, 1990 



128 TMS390ZS0 - Viking User Documentation 

4.14.4.3 Counter Breakpoint 
Control (CI'RC) 

4.14:4.4 Counter Breakpoint 
Status (CI'RS) 

Important Note: 
'The total number of instructions remaining to execute before the next 
counter event is given by the value held in CI'RV JCNT (readable by LDA 
Ox49) plus the number of instructions in the group prior to the group 
containing the LDA Ox49 instruction. If the group prior to the group 
containing the LDA Ox49 instruction has zero instructions. then the 
value held by CI'RV JCNT reflects the UIlCt number of instructions 
remaining to execute before the next counter event An example is to 
use jmpl and ba branching to the LDA Ox49. which will force a bubble 
(hence zero instruction group) between the ba and the LDA. Another 
example might be using a sequential instruction before the LDA Ox49 01 

other methods that guarantee a group with a known number of instruc­
tions. allowing the programmer to get an exact instruction count until 
the counter event Similarly. the number of cycles remaining before 
the next counter event is always one more than the value held in 
CI'RV.CCNT (readable by LDA Ox49). 

ASI=Ox4a - Counter Breakpoint Controls. 

CfRC: I Rsvd(30) I ICNTEN 
31 2 1 

CCNTEN 
o 

ICNTEN Enables the instruction counter. 1bis bit is cleared on either a power­
on reset or watchdog reset. 

CCNTEN Enable the cycle counter. This bit is cleared on either a power-on reset 
or watchd9g reset 

ASI=Ox4b - Counter Breakpoint Status. 

erRS: Rsvd(30) ZlCIS ZCCIS 

31 2 1 0 

ZlClS Records the status of whether an instruction counter interrupt was gen­
erated. This bit is not set when an emulation requat is induced by this 
event, and is cleared on either a power-on reset or watchdog reset 

ZCClS Records the status of whether a cycle counter interrupt was generated. 
1bis bit is not set wilen an emulation request is induced by this event, 
and is cleared on either a power-on reset or watchdog reset 

Viking can read and write the ASI memory mapped emulation counter status 
register. It will implicitly be· written (set) by action register enabled counter 
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4.14.4.5 BreakpointAcnON 
Register 
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events. 

ASI=Ox4c - ACTION (on event) Register. 

Reserved MIX BCIPL 
31 13 12 11 8 

7 6 5 4 

[ lEN CBK lEN DBK lEN ZCC 

3 2 1 o 

MIX Enables multiple instruction per cy<:le execution mode. When cleared, 
Viking will issue no more than one instruction every cycle. TIlis bit is 
cleared at reset 

BCIPL DetelDlines the IRL to be used for all breakpoint or counter intenupts. 
When generated, these intenupts behave just as external intenupts­
they must meet SPARC criteria for pn. and IRL to be seen in the execu­
tion stream. TIlis field is cleared at reset. 

STEN_CBK 
Enables the ESB pin action on a code address breakpoint 

STEN.-ZIC 
Enables the ESB pin action on a zero instruction count expiration. 

STEN_DBK . 
Enables the ESB pm action on a data address breakpoint. 

STEN,.ZCC 
Enables the ESB pin action on a zero cycle count expiration. These bits 
are cleared at reset 

IEN_CBK Generates an intelTUpt in response to code breakpoint. 

IEN_ZIC Generates an intelTUpt in response to zero instruction count 

IEN_DBK Generates an interrupt in response to data breakpoint 

IEN..zcc Generates an interrupt in response to zero cycle count event 

If the selected event is to generate an emulation request, the associated lEN bit 
must be cleared. When an intenupt on these events is desired, the associated lEN 
bit must be set. These bits are all cleared at reset. 

• sun 
-~ 
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4.14.5. External Monitors 

4.14.6. PIPE[9:0] definition 

Viking is a highly integrated processor. It is possible for Viking to execute code 
continuously from its internal cache with no external indications!orever. This 
can make system debug very difficult 

Several features are provided to reduce these problems. Scan based emulation 
provides access to the internal state of the machine. Additional pins have been 
defined to provide cycle by cycle observation of key internal states (the PIPE[O·9] 
pins). These pins are defined in detail in the System Interface chapter, and are 
mentioned here completeness. 

These pins provide information on activity within a clock cycle, including: The 
number of instructions which complete execution. When branches (including a 
ttlUn indication), and memory operations occur. When floating point instructions 
are issued. When the pipeline is being held by either floating point operations or 
memory operations. Interrupts and exceptions are also' indicated. 

In addition, the breakpoint registers may be programmed to activate the ESB pin 
when a breakpoint is detected. This allows an external device to be triggered 
(oscilloscope, logic analyzer, etc.). 

If no interrupt or exception actions are enable for the breakpoint requests, these 
breakpoints will not alter the flow of execution in any way. They simply provide 
some clues as to the internal state of the machine. 

Ten signals are provided to monitor the internal state of the processor. The 
definition of these signals is provided below: 

.. 

Sun Micrasystems Proprier.y Revision 200 of November 1. 1990 



[; 

\ 

Chapter 4 - Viking Programmer's Model 131 

Table 4-18 PIPE[9:0] definitions 

Signal Definition 
PIPE[9] Active when any valid memory reference occurred in 

the EO stage of the previous clock cycle. 
PIPE[S] Active when any valid floating point operation occurred 

in the EO stage of the previous clock cycle. 
PIPE[7] Active when any valid control transfer instruction was 

executed in the EO stage of the previous clock cycle. 
PIPE[6] Indicates that no instructions were available when 

the group currently at the WB stage was decode (DO). 

PIPE[S] Active when the pipeline is being held by the Data 
Cache. (Generally processing a cache miss) 

PIPE[4] Active when the pipeline is being held by the Floating 
Point Unit (Either queue is full, or dependencies) 

PIPE[3] Indicates that the branch in EO stage of the previous 
cycle was taken (1) or not (0). 

PIPE[2:1] Indicates the number of insuuctions in the EO stage 

PIPE[O] 

4.15. JT AG and Emulation 

4.15.1. Emulation Temporary 
Registers (MTMP[I.2]) 

of the current cycle: OO=None, 01=1,10=2, 11=3. 
Indicates that there is an exception or interrupt 
being signalled in the current cycle 

A brief description on these features is presented in this section for completeness. 
See chapter S (IrAG Serial Scan Interface) and chapter 6 (Remote Emulation) for 
more details. 

ASI=Ox4O-Ox41- Emulation Temporaries (MTMP[l-2]) 

MTMp{1.2] are useful for temporarily keeping non-emulation context while Viking 
enters emulation. These registers are not intended for nonnal (non-emulation) 
use. MTMPI is accessed by ASI Ox40, and MTMP2 is accessed by ASI Ox41. The 
address is ignored, the size is word, any other size will generate a 
data_acce5S_exceptiolL These registers are R/W, and are unchanged at reset. 

MTMPl: 
MTMP2: 

MTMPI 
MTMP2 
31 0 
.. 
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4.15.2. Emulation JT AG Data 
Input Register (MDIN) 

4.15.3. Emulation JT AG Data 
Output Register 
(MDOUT) 

4.15.4. Emulation Program 
Counters 

ASI=Ox44 - Emulation Data In (MOIN). 

A LDA from this ASI space will access the specified MDIN register. Address is 
ignored. Size is word, any other will generate a data_access_exception. MOIN is 
read-only, a STA has no effect and will be ignored. The register is unchanged at 
reset 

MDIN: MDIN 
31 0 

MDIN is a uni~irectional port from the emulalOr to Viking. It is used to transfer 
data from the emulalOr (viaITAG) into processor visible ASI space. IrAG is the 
only available mechanism to modify this register. 

ASI=Ox46 - Emulation Data Out (MOOur). 

MOOur is allocated ASI encoding Ox46. The address is ignored. The size is 
word, any other will generate a data_access_exception. MOOur is a unidirectional 
port from Viking back to the emulator. Viking can read and write this memory 
mapped resource. 1be register is unciwlged at reset 

MDOUT: MDOUT 
31 0 

ASI=Ox47,Ox48 - Emulation Exit PC and NPC. 

MPC and MNPC reside in different ASI encodings. Any address within their respec­
tive ASI will access that register. Byte, Halfword and Double word accesses to 
any MPCJMNPC register is explicitly illegal and will generate a 
data_access_exception. 

MPC: 
MNPC: 

MPC and MNPC are written by Vildng upon successful entry to Viking emulation 
mode. 1bey define the PC pair needed upon exit from Viking emulation mode to 
resume execution of the nonnal instruction stream. Any data written into these 
register outside of emulation mode is not guaranteed in the presence of emulation 
activity. 1bey are uncbmged at reset 

.. 
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This section provides an overview of the Viking ASI assignments, which are con­
sistent with the SPARC Reference MMU (SRMMU), and the • • Suggested ASI assign­
ments" from the SPARC v8 architecture manual. 

Since Viking does not generally transmit ASI accesses external to the chip, system 
visible ASI accesses are limited to: transparent MMU mode, normal data reference. 
and control space accesses (ASIS Ox20-0x2f, Ox08-OxOa. and Ox02 respectively). 

All 8 bits of the ASI are decoded. an error occurs on all access to reserved values. 
Each supponed ASI specifies the types (U>IST) and size of accesses which are 
allowed. violations cause errors. 

The following table lists all of the ASI values supponed by Viking. Each has been 
explained in detail throughout this chapter. A reference to the manual section 
which describes the ASI is also provide. 

.. 
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Table 4-19 ASIs supported I1y Viking 

ASI Function Access Size Section 
OxOO-OxOI ReselVed - - (None) 

Ox02 Control Space Access WIn all 4.10 
Ox03 RefMMU FlushlProbe WIn single 4.11.7 
Ox04 RefMMU Registers WIn single 4.11.11 
Ox05 ReselVed - - (None) 
Ox06 RefMMU TLB Diagnostics LD/ST single 4.11.12 
OX07 ReselVed - - (None) 
OxOS User Instruction W/ST all 4.5.3 
Ox09 SupelVisor Instruction W/ST all 4.5.3 
OxOa User Data wIn all 4.5.3 
OxOb SupelVisor Data wIn all 4.S.3 
OxOc Instruction Cache Tags wIn double 4.7.6 
OxOd Instruction Cache Data wIn double 4.7.6 
OxOe Data Cache Tags wIn double 4.S.6 
OxOf Data Cache Data WIn double 4.8.6 

Ox 1 O-Oxlf ReselVed - - (None) 
Ox20-0x2f RefMMU Bypass LD/ST all 4.5.3 

Ox30 Store Buffer Tags WIn double 4.12 
Ox31 Stpre Buffer Data WIn double 4.12 
Ox32 Store Buffer Control WIn single 4.12 

Ox33~x35 ReselVed - - (None) 
Ox36 Instruction Cache Flash Oear n single 4.7.6 
Ox37 Data Cache Flash Oear n single 4.8.6 
Ox38 MMu Breakpoint Diagnostics WIn double 4.14.4 
Ox39 BIST Diagnostics WIn single 4.3.S 

Ox3a~3f ReselVed - - (None) 
Ox4O-Ox41 Emulation Temps[1-2] wIn single 4.1S 
Ox42~43 ReselVed - - (None) 

Ox44 Emulation Data Inl W single 4.1S 
Ox4S Reserved - - (None) 
Ox46 Emulation Data Out WIn single 4.1S 
Ox47 Emulation Exit PC Win single 4.1S 
Ox48 Emulation Exit NPC LD/ST single 4.1S 
Ox49 Emulation Counter Value lD/Sr single 4.14 
Ox4a Emulation Counter Mode lD/Sr single 4.14 
Ox4b Emulation Counter status WIn 'single 4.14 
Ox4c AcnON register WIn single 4.14 

Ox4d-Oxff Unassigned - - (None) 
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Notes: 

The instructions LDSTUBA and SWAPA generate data_access_exception on ASI 

values other than Ox08-OxOb or Ox20-0x2f. 

Any ASI access with a size other than indicated on table 4-19 will generate 
data_access_exception. 
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5.1. Overview 

5.1.1. To implement 
manufacturing fault 
coverage 

5.1.2. To pennit periphery 
and interconnect testing 

. 5.1.3. To permit built-in self 
test 

5.1.4. To support a remote 
debugging environment 

5.2. JT AG Requirements 

5 
JT AG Serial Scan Interface 

Viking provides the IEEE P1149.1 IT AG serial scan interface mechanism to allow 
observation and control for different applications: 

ITAG allows test software access to internal scan logic to detennine device 
manufacturing correcmess. 

IrAG allows software controlled boundary scan, to test the periphery and inter­
connect between chips on boards which use Viking. Boundary scan testing 
requires software that uses IrAG to scan-in, apply, scan-out and compare vectors . 

Using internal scan. Viking provides BIST. In addition to software initiation using 
ASI Ox39, Viking BIST can be initiated by software that uses the IrAG mechanism. 
(See section 4.3.5, - Built-In Self Test (BIST) for more details on ~IST). 

Remote emulation debug software can use ITAG to halt an application program, 
examine or alter register and memory state (including the program counters), set 
breakpoints or counters (to specify conditions where control should leave the 
application code and return back to the emulator), and to resume control within 
the application code. Such software can download SPARe assembly language for 
the intended emulation function, inspect device specific IrAG status and provide 
a recovery mechanism when emulation instructions fault See section 6, -
Remote Emulation Support for more details on emulation. 

Viking requires that the internal TrAG TAP (Test Access Port) controller be reset 
before normal system operation begins. Also, systems which do not provide a 
TCK input to Viking during nonnal system operation must assert TRST _ during 
power-on reset. Viking requires that the external ITAG busmasterTAP controller 
remain in synchronization with Viking's internal ITAG TAP controller. See section 
4-1, - State after hardware reset for more details on Viking haIdware reset 
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. 5.3. JT AG Interface 

5.4. JT AG Operations 

Imponant Note: 
All systems (with TCK active) which uses the TRST_ assertion to reset 
Viking's internal IrAG TAP comroller must 

Keep TMS assened during TRST_ assertion. 
Hold TMS assened for a minimum of 3 TCK cycles (as seen by 

ViJcing) after negating TRST_. 

After the three TCK cycles have elapsed, the external Ir AG busmaster is allowed 
to negate TMS. 

The IEEE PI 149.1 IrAG serial scan interface mechanism is composed of a set of 
pins and TAP controller state machine that responds to those pins. The design is 
partitioned into several serially scanned 'rings' which are independently 
accessed. Ring access selection is detennined by the IR (Instruction Register). 
Access into the IR scan chain is in accordance with the Ir AG protocol. 

The Viking IrAG interface is composed of 5 wires: 

Test Oock (TCK) 
Test MQ<1e Select (TMS) 
Test Logic Reset (TRsTJ 
Test Data In (TOI) 
Test Data Out (TOO) 

IrAG defines three basic scan chain operations: 

CAPTURE 
SHIFT 
UPDATE 

Each of the serially scanned rings internal to Viking is composed of a 
reconfigurable shift register chain. Each stage of the scan chain has two register 
chains of equal length: 

The primlJry scan chain register 
The update scan chain register 

The primlJry scan chain register is configurable as a shift register, while the 
update register is not. (See the IEEE Pl149.1 IrAG Specification for more 
details). The functionality of a single bit IrAG scan chain register is: 
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(: 

Figure 5-1 One Bit nAG Scan Chain Datapath Element 

~ ~ Primary 
Update -- Scan Chain ~ ScanCbain 

Register Register Q TOI • . . --. 

..--.. 
!\ r+ 

V V A 
ITCK ITCK 

D 

TOO 

The diagram below illustrates the three operations in a simplified functional 
"') view. 

Figure 5-2 nAG operations - CAPTURE. SHIFT. and UPDATE 

5.4.1. JT AG CAFI'URE 
operation 

SHIFT UPDATE 

roI 
Primary Rea PrimaryRq 

TCK 
1DO TCK. TCK. TCK. 

During a CAYI'URE operation, the 11' AG Scan Chain elemem captures selected data 
into the primary register. Differem data is captured for different instructions. 
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BYPASS - captures I-bit zero 
em - captures component ID OxOOOO402f 
BSCAN_INTEST - captures values at output buffers 
BSCAN_EXTEST - captures values at output pins 
BSCAN_SAMPLE - captures values at all pins 
Signature - captures the signature register 
MSTAT - captures MSTAT register 
MDOUI' - captures MOOUI' register 
others - either captures the update register or has no effect 

After one TeK, those captured values are ready to be shifted out (using SHIFT 
operation) to the Viking level TOO at the end of the scan chain ring. In some 
specific cases, DRCAPl'URE captures the value of a particular register into the pri­
mary register. This capability allows capturing of internal logic states, and the 
information is then shifted out to be read. The MDOUI' register provides this 
capability. 

5.4.2. JT AG SHIFI' operation During a SHIFT operation, the IT AG Scan Chain element operates as a shift regis­
ter. Each primary register stores its TOI value and shifts forward its TOO in the 
next TCK cycle, as input to the next primary register in the scan chain. For a ring 
of size N, the TAP controller must shift N times to completely fill the scan chain. 
During this operation, the update register is unused, and retains its value. 

5.4.3. JTAG UPDATE operation During an UPDATE operation, the'ITAG Scan OWn element delivers the value 
~ntained in the primary register into the update register. Except for this 
overwrite period, the update register retains its previous value. Viking internal 
logic only sees the the value contained in the update register. A Single UPDATE 

cycle will deliver the intended values to the update register scan chain. The 
UPDATE is performed after all the values have been shifted into the primary scan 
chain registers. During this operation, the primary register retains its value. 
UPDATE is ignored by non-writable registers. 

5.5. TAP Controller The Test Access Point (TAP) controller is a Viking internal sequencer which 
manages access to all ITAG scan register rings. It ignores TDIIl'DO. The TAP con­
troller examines TRS'I'_ and TMS sequences each cycle for ITAG state transitions. 
The state of the TAP controls assertion of CAPTURE. SHIFT, and UPDATE opera­
tions. See the IEEE Pl149.1 If AG Specification for more details. 
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The TAP controller state transition diagram is: 

Figure 5-3 nAG TAP Controller State Transition Diagram 

IRSCAN 

o 

IRCAPTURE 

Two things guarantee that the TAP controller enters the TEST LOGIC RESET state, 
assertion ofTMS for five consecutive TCK cycles, or a single assenion ofTRST_. 
Both TMS and TRST_ must be negated to exit the TEST LOGIC RESET state, into the 
WAIT state. There are 2 basic TAP Controller state groups: those related to the IR. 
(Instruction Register) scan chain related to a TDR (Test Data Register) scan 
chain. Each state group is composed of 7 member states (see diagram): 

Three states implement CAPI'URE. SInFI'. UPDATE operations within the 
selected scan chain. 

One state is used to stop midway through a SInFI' sequence into the 
selected scan chain. 

Three states make transitions into other states. 

Reading noAG registers requires aCAPI'URE followed by SHlFI'. Writing noAG 

registers requires SHIFT followed by UPDATE. After a complete (write in) SHIfT 
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5.5.1. JT AG Reset 
Requirements 

sequence, an UPDATE is caused to occur by two consecutive TCK cycles with TMS 
= 1. Before a readout SHIFT sequence, a CAPTURE should take place. Recall that 
UPDATE will be ignored for any non-writable registers. 

The 11' AG TAP controller must be reset at power-up to guarantee correct Viking 
operation. IfTCK is not present, TRST_ must be assened at power-up, to properly 
reset the TAP controller. Otherwise, the IrAG IR will be in an indeterminant state 
which could result in undefined operations. 

Recommendation: 
If IrAG is not used in a system, TRST_ should be assened to 
avoid unintended Ir AG operation. 

5.5.2. EtTects Of TAP Reset The following table show what internal states will be selected when TAP reset 
(TEST LOOIC RESET) state is entered 

Table 5-1 State after TAP reset 

5.6. Accessible Scan Chains 
inside Viking 

Register/lntemal state Affected State After TAP Reset 
The IR register OxIO (CIDTDR selected) 
SHIFT. UPDATE, CAI'I'URE negated 
seleccir signal negated 
enable_tdo signal negated 
IrAG UPDATE register outpuce~le bit JlCgated 
MCMD register cleared 
MSTAT register cleared 

There are 5 scan chains inside Viking that are accessible through IrAG, they are: 

The lR register domain 
The standard 1l'AG register domains (BYPASS. em, BSCAN) 
An intemalhaIdware test domain (mtemal use only) 
The BIST register domains (SHORTJUST.LDNG..BIST, SIGNATURE) 
The emulation register domains (MOIN, MCI, MSTAT. MDOur) 
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The block diagram of all TrAG accessible serial scan chains is: 

Figure 5-4 Block Diagram of nAG Scan Chains inside Viking 
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~ + 
RUN_BIST V SIGNATURE 

The 1R. register consists of one S-bit scan chain, and its value selects the TOR scan 
chain for subsequent SHIFT, UPDATE, and CAYl'URE operations. 

The emulation register domain consists of 4 scan chains: MDIN, MCI, MSTAT and 
MOOUT. Two are input, and the other two output. MDIN and MCI provide infor­
mation from the remote emulation processor to Viking internals, while MST AT 

and MOOUT brings information from Viking to the remote emulation processo~ 
See chapter 6, - Remote Emulation Support for more details. 

Hardware test domains-are for manufacturing use only, other usage will provide 
undefined results. 

The BIST register domain permits a BIST sequencer to intemally generate, scan-in 
apply, scan-out and obtain a signature for state vectors. 
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5.7. IR Format and 
Encodings 

The Viking 5-bit lR (Instruction Register) selects TOR scan chains for the SHIfT. 

UPDATE, and CAPTURE operations. The lR scan ring is selected when the If AG 

TAP controller is in the lRCAPl'URE.lR.SHIFT and lRUPDATE states. AnIRCAPTURE 

does not capture the current value of the lR update register. Instead it returns a 
fixed binary encoding of 00001. The low 2 bits of this encoding is required by 
the IEEE P1149.1 IrAG Specification (under IR rule D). 

I£EE 1149.1 identifies public and private instructions for IR encodings. Viking 
offers 18 lR instructions, selected by a 5-bit IR. Most instructions select which 
serial TDR ring to operate on during a If AG "test data register" access, and two 
instructions initiate BIST Oong and short). 
The 18 IR instructions are categorized into 7 categories: 

Table 5-2 Categories of Viking IR instructions 

Cate20rv Number of instructions 
Basic scan rings 2 instructions: ClD, BYPASS 
Boundary scan rings 3 instructions: Extest, Sample, Intest 
Examine PLL clock 1 instruction: SeePLL 
Internal manufacturing scan rings 5 instructions 
Initiate BIST 2 instructions: start long/short BIST 
BIST signature ring 1 instruction: Signature 
Emulation scan rings 4 instructions: MCI. MSTAT. MDIN. MOOtrr 

.. 
.. 
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5.7.1. PublicJTAG 
instructions and scan 
rings 

Chaplet' 5 :- rr AG Serial Scan Interface 147 

The IR encoding to select access to a particular Viking TDR scan chain is: 

Table 5-3 TDR Scan Chain selection I1y IR Encoding 

TDR Ring Selected IR Value 4# bits 
BSCAN_EXTEST OXOO 290 
BSCAN_SAMPLE OxOl 290 
BSCAN_INTEST Ox02 290 
Internal Scan_ Capture_ Clock_Mode Ox03 n/a 
Internal Scan Domain 0 Ox04 n/a 
Internal Scan Domain 1 OXOS n/a 
Internal Scan Domain 2 Ox06 n/a 
Internal Scan Domain 3 OX07 n/a 
MCI Ox08 37 
MDIN Ox09 32 
MOOlIT' OxOa 32 
MSTAT OxOb 13 
SIGNATURE OXOC 32 
RUN_SHORTJIST OxOd nla 
RUN_LONG_BIST OxOe nla 
SeePLL OxOf nla 
CID OxlO-Oxle 32 
BYPASS Oxlf 1 

Three are standard ITAG TOR scan chains (BYPASS,CID.BSCAN). The rest are Vik· 
ing specific scan chains. 

Viking provides 12 public ITAG instructions, which belong to the following 
categories: 

Public IT AG instruction 
BYPASS 
aD 
BSCAN 
BIST 
Sigilature 
Emulation 

A brief description of actions that occur during CAPTURE. SHIfT. and UPDATE 
operations at the different. scan chains are given below. For IT AG more details, 
see the IEEE PI 149.1 ITAG Specification. 
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5.7.1.1 BYPASS 

5.7.1.2 CID 

5.7.1.3 BSCAN 

The BYPASS scan chain comprises a I-bit primary scan register, with no update 
register. When IR selects BYPASS, the chip's TOI and TOO are essentially con­
nected to this primary register, and DRSHIFI' only requires one TCK cycle to for­
ward data. And DRCAP'IVRE loads a I-bit zero into the primary register. DRUP­
DATE has no effect 

The CID scan chain comprises a 32-bit ring of primary registers, where bit[O] is 
always I, bit[1I-I] the manufacturerID, bit[27-12] the part number, and bit[31-
28] the version number. DRCAPTURE loads the value OxOOOO402f into the eID 
primary registers scan chain. Subsequent DRSHIFT cycles shift (bit[O]) out and 
scan newTOI data in (bit[3I]). 1bere is no update register, and DRUPDA1'£ has no 
effect 

[ Note: 
Viking em value is OxOOOO402f. 1 

Viking BSCAN is a 290-bit ring of TrAG scan chain register elements. DRCAP'IVRE 
reads data from the chip pins into the primary register. DRSHIFI' forwards data 
through the scan chain, where bit[O] is outpUt to TOO. For the entire chain to be 
completely written in or read out, 290TCK cycles are needed. DRUPDA1'£ copies 
data from the primary register into the update register, taking only I TCK cycle. 
The following is Vilcing boundary scan map: 

.. 
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T~ble 5-4 Viking Boundary Scan bit definition 

Bit Signal Bit Si2DaI Bit Signal Bit siiiiil 
0 resecin 1 tesCin 2 snntscin 3 ccn1y_in 
4 data63_in 5 data63_out 6 data62_in 7 data62_out 
8 data61_in 9 data61_out 10 data60_in 11 data60_out 
12 data59_in 13 data59_out 14 data58_in 15 data58_out 
16 data57_in 17 data57_out 18 data56_in 19 dataS6_out 
20 dataS5_in 21 dataS5_out 22 dataS4_in 23 dataS4_out 
24 dataS3_in 2S dataS3_out 26 data52_in 27 dataS2_out 
28 data51_in 29 dataSCout 30 dataSO_in 31 dataSO_out 
32 data49_in 33 data49_out 34 data48_in 35 data48_out 
36 data47_in 37 data47_out 38 data46_in 39 ' data46_out 
40 data45_in 41 data45_out 42 data44_in 43 data44_out 
44 vck_in 45 pllbyp_in 46 data43_in 47 data43_out 
48 data42_in 49 data42_out 50 data4Cin 51 data41_out 
52 data40_in 53 data4O_out 54 data39_in 55 data39_out 
56 data38_in 57 data38_out 58 data37_in 59 data37_out 
60 data36_in 61 data36_out 62 data35_in 63 data35_out 
64 data34_in 65 data34_out 66 data33_in 67 data33_out 
68 data32_in 69 data32_out 70 we3_out 71 we2_out 
72 wet_out 73 weO_out 74 dpar3_in 75 dpar3_out 
76 dpar2jn 77 dpar2_out· 78 dparCin 79 dpar1..,.out 
80 dparO_in 81 dparO_out 82 pend_in 83 sizeCout 
84 sizeO_out 85 owner_in 86 owner_out 87 shared_in 
88 shared_out 89 enor_out 90 cchbCout' 91 su_out 
92 'addr23_in 93 addr23_out 94 addr22_in 95 addr22_out 
96 addr2Cin 97 addr2Cout 98 addr20":'in 99 addr20_out 
100 addr19_in 101 addrI9_f)ut 102 addr18_in 103 addrl8_out 
104 addrl7_in 105 addrl7_out 106 addrl6_in 107 addrl6_out 
108 addr1 5_in 109 addrl5_out 110 addrl4_in 111 addr14_out 
112 addr13_in 113 addrl3_out 114 addrl2_in 115 addrl2_out 
116 daboe_out 117 addrlCin 118 addrlCout 119 addrl0_in 
120 addrl0_out 121 adboe_oUl 122 addI09_in 123 addI09_out 
124 addr08_in 125 addr08_out 126 dpboe_out 127 addI07_in 
128 addr07_out 129 slboe_out 130 addr06_in 131 addr06_out 
132 allboe_out 133 elboe_out 134 addrOS_in 135 addr05_out 
136 addr04_in 137 addr04_out 138 snboe_out 139 addr03_in 
140 addr03_out 141 mbboe_out 142 addr02_in 143 addr02_out 
144 mlboe_out 145 stboe_out 146 addrOCin 147 addrOCout 
148 addrOO_in 149 addrOO_out 150 oe_in 151 oe_out 
152 wr_in 153 wr_out. 154 oeboe_out 155 nein 
156 M_out 157 burst_out 158 retJy_in 159 wee_in 
160 wee_out 161 mexc_in 162 ardy_in 163 ardy_out 
164 busreQ...out 165 wrdy_in 166 wrdy_out 167 rnly_in 
168 wgICin 169 rgrcin 170 cmds_in 171 cmds_out 
172 demap_in 173 demap out 174 csa out 175 Idst out 
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(continued) 

Bit Signal Bit Signal Bit Signal Bit . Signal 

176 dpar4_in 177 dpar4_out 178 dparS_in 179 dparS_out 
180 dpar6_in 181 dpar6_out 182 dpar7_in 183 dpar7_out 
184 we4_out 185 we5_out 186 we6_out 187 we7_out 
188 dataO_in 189 dataO_out 190 dataCin 191 datal_out 
192 data2_in 193 data2_out 194 data3_in 195 data3_out 
196 data4_in 197 data4_out 198 dataS_in 199 dataS_out 
200 data6_in 201 data6_out 202 data7_in 203 data7_out 
204 data8_in 205 data8_out 206 data9_in 2rJ7 data9_out 
208 data 1 O_in 209 data 1 O_out 210 datalCin 211 datalCout 
212 data 12_in 213 data 12_out 214 datal3_in 215 datal3_out 
216 data 14_in 217 data 14_out 218 data IS_in 219 data IS_out 
220 data 16_in 221 data 16_out 222 datal7_in 223 data 17_out 
224 datal8_in 225 datal8_out 226 data 19_in 227 data 19_out 
228 data20_in 229 . data20_out 230 data2Cin 231 data2Cout 
232 data22_in 233 data22_out 234 data23_in 235 data23_out 
236 data24_in 237 data24_out 238 data25_in 239 data25_out 
240 data26_in 241 data26_out 242 data27jn 243 data27_out 
244 data28_in 245 data28_out 246 data29jn 247 data29_out 
248 data30_in 249 data30_out 250 data31_in 251 data3Cout 
252 pipeOO_out 253 pipeOCout 254 p~pe02_eut 255 pipe03_out 
256 pipe04_out 257 pipeOS_out 258 pipe06_out 259 pipe07_out 
260 pipe08_out 261 pipe09_out 262 irlO_in 263 irlCin 
264 ir12_in 265 irl3_in 266 adda4_in 267 addl24_out 
268 addr25_in 269 addr25_out 270 addl26_in 271 addl26_out 
272 addr27_in 273 addr27_out 274 addl28_in 275 addl28_out 
276 addr29_in 277 addr29_out 278 addr30_in 279 addr30_out 
280 addr31_in 281 addr31_out 282 addr32_in 283 addr32_out 
284 addr33_in 285 addr33_out 286 addr34_in 287 addr34_out 
288 addr35_in 289 addr35 out 

5.7.1.4 SHORT _BIST. LONG_BIST The Vilcing BIST mechanism is initiated by or examined through either IT AG or 
ASI memory references. When BIST is initiated. any pre-BIST Vilcing state will be 
destroyed. At the completion of a ITAG initiated BIST. the III« needs to generate the 

zaet. Tbis CD be done by entain& the TAP naellt.re by eilber usenion ofNS for S consecu­
tive TCK ~1ea or IIICt1in& TRST_. Inta'IIalIiming sequeaciD& will ~ PIJ. restabilization. 
Once initiated, BIST will be under the control of Viking. Il1d therrAGTAP CIOIlIl'Oll« need not remain 

in WAlTJlWNJIST swe. See section 4.305. - BMill-ln SclfT Ul ('/no) for more details. When IR 

se1ee1S Bpr, CAPnJllE will reaun BJST.J)ONE stalUS. UPDATE his no effect. AI the completion of 
BJST, • CAPI'UllE of the SIGNA11JRI!1DR should be done. 

.. 
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5.7.1.6 Emulation 

5.7.2. PrivateJTAG 
instructions and scan 
rings 

5.7.2.1 SEEYU. 

Chapter 5 -IrAO Serial Scan Interface 151 

Signature scan chain is a 32-bit ring. Both long and shon BIST operations cause 
the BIST sequencer to generate, scan-in. apply, and scan-out a signatUre for one of 
two pre-defined pseudo-random test vectors. The Viking response to these vectors 
is collected and compressed into the signawre register. The correct value of the 
signature register will be different for these two cases. See section 4.3.5, -
Built-In Self Test (BIST) for more details. 

There are four independent scan rings associated with remote emulation: MOIN. 
MCI. MSTAT, and MOOUT. See section 6.3.1.3, -Mel (ETfUlJation Command and 
Instruction) for more details. 

The MDIN scan chain is a 32-bit ring. DRSHIfT shifts data from a primary register 
into the next primary register. Bit[O] goes out to TOO, while bit[31] reads in TOI. 
DRUPDATE copies data from the primary register into the update register. DRCAP­
TURE has no effect See section 6.3.1.2, -MDIN (Emulation Data In) for more 
details. 

The MCI scan chain is a 37-bit ring, covering both subfields MCMO and MlNST. 
DRSHIFT shifts the primary register to the next primary register in the chain, 
where bit[36] reads in TOI, and bit[O] outputS TOO. DRUPDATE copies data from 
the primary register into the update register. DRCAPTURE has no effect. 

The MSTAT scan chain is a 13-bit ring. DRCAPl'URE captures data from the 
MSTAT register into the primary register. DRSHIFr shifts the primary register to 
the next primary register in the chain, where bit[12] reads in TOI, and bit[O] out­
puts TOO. DRUPDA TE copies data from the primary register into the update regis­
ter. 

The MDOUT scan chain is a 32-bit ring. DRCAmJRE captures data from the 
MOOUT register into the primary register. DRSHIFr shifts the primary register to 
the next primary register in the chain, where bit[31] reads in TOI, and bit[O] out­
puts TOO. DRUPDATE copies data from the primary register into the update regis­
ter. 

Viking provides 6 private IrAG instructions, which belong to the follOwing 
categories: 

Private rr AG instruction 

SEE_PU. 
INTERNAL_SCAN_CAPrt1RE_Q.OCK_MODE 
INTERNAL SCAN DOMAIN[0-3] 

This scan chain is used to verify the integrity of the on-chip pu. with respect to 
clock jitter and VCO behavior. WbeD selected (refer to table 5-3, - TDR Scan 
Chain selection by IR Encoding ). the scan chain will output Pll.. clock on TOO. 
This sCan should not be Used when Viking is plugged into a board. 
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5.8. System Level Test 

This scan chain is used for hardware manufacturing tests. details are not provided 
in this manual 

The IEEE PI 149.1 IrAG Specification (chapter Legal Interconnections Of Com­
ponents Compatible With PI 149.1) provides guidelines on how to connect Tel(, 
TMS. TOI and TOO for making serial. parallel and hierarchical configurations for 
ITAG board level su~systems. lbis allows a hierarchical ITAG test technique. 
and Viking supports it. Similar in ways with how Viking selects TOR scan chains. 
a second level ITAG controller (e.g. board level IrAG busmaster) may connect 
multiple chips on a board to fonn parallel and serial paths. Furthermore. a third 
level ITAG conttoller (e.g. backplane level ITAG busmaster) may connect multiple 
second level Ir AG controllers to fonn a chain. 

Figure 5-5 Example of System Level nAG Test Hierarchy 

11 12 13 --. tdi tdi tlnStd tdi Ido 
tms tms 

L2TMSI 

21 ·VTDI. 
VIKING 

VTDO 
23 

tdi tdo t.di tdo t.di Ido -+ 
tInS tInS 

j 

22 
tInS 

L2TMS2 

L2TMSI 
L2JTAG 

L2TDI BUSMASTER L2TDO 

( t . ~ 
L3TDI L3TMS L3TDO 

The example shows one ~ levd 1rAG busmaster controlling 6 IrAG com-
ponents configured into 2 pu;,aJ1el daisy chains. Each componem in the chain 
connects its TOI to the preceding chip's TOO. The first Chip in each oCthe parallel 
daisy chains is tied to a common level-2 TOI, and the last chip in each chain is'~ 
wire-ORed to a common level-2 TOO. Each of the parallel chains receives a '~-
unique TMS from the second level TAP controller. 
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6.1. Overview 

6.2. Emulation Strategy 

6 
Remote Emulation Support 

Viking provides facilities to observe and control processor execution from a 
remote device using the IEEE P1149.1 IrAG se~al scan interface, called in circuit 
emulation. Their use is described in this chapter, and the IrAG interface is 
described in chapter 5. 

Traditionally, systems debugging methods required very expensive dedicated 
add-on hardware, cormected using ribbon cables and fragile cormectors, and are 
not generally available when the first processor prototypes are delivered (which 
is when they would have been most useful). Furthermore, the length of the cable 
was limiting the processor system clock rate when the emulator is being used, 
and also introduced extra electrical-loading which affected pin timings. 

As a solution to that problem, Viking provides in circuit emulation to suppon a 
remote environment for debugging Systems, done entirely over the serial Ir AG 
bus. TIle features are useful for both hordware and software development. It is 
completely non-intrusive into the system design. Neither the pin timings nor the 
processor speed are affected. Nearly all features of traditional emulators are pro­
vided, except for real-time trace and memory emulation. 

All programmer visible state is accessible, and changeable using the IrAQ inter­
face. Software must be provided to control the emulation from a remote com­
puter with a IrAG interface. During emulation, the caches and store buffer con­
tinue to operate; these resources will snoop incoming system bus requests. Many 
emulation resources are shared with standard software debugging features. 

Viking provides virtual in-circuit emulation (VICE), or also known as remote 
emulation. TIle remote emulator's interface to Viking uses the IrAG IR (instruc­
tion register) to select one of four emulation Ir AG TORs. The remote emulator 
provides Viking with emulation protocol commands, emulation instructions, 
addresses and data for updating Viking's state through two IrAG TOR registers: 
MCI (eMulation Command and Instruction), and MDIN (eMulation Data In). Vik­
ing returns existing Viking system state data and emulation protocol status 
through two other IrAQ TOR registers: MDOUT (eMulation Data Out) and MSTAT 
(eMulation STATus). 

Through these registers, the remote emulator can command the processor to tem­
porarily halt execution of the nonnal SPARe instruction stream. Once halted, the 
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processor can be directed to execute any normal SPARC instruction. No processor 
state information which is not explicitly modified by this emulation instruction 
will be altered. 

An example of the simplest emulation sequence is to allow the remote emulator 
to observe an internal Viking register. To achieve this, the emulator halts the pro­
cessor, scam in a SPARC instruction to write the desired register into the MOOUT 
register, then scans out the MDOUT TrAG TOR. Other sequences can be 
significantly more complex. 

6.3. Emulation Register Set The control registers for emulation exist in two register sets: 

6.3.1. JT AQ TDRs emulation 
registers 

6.3.1.1 JR (Instruction Register) 

Type Emulation registers 
TrAG TOR JR. MOIN, MCI, MDOUT. MSTAT 
ASI space PC/NPC. MTMP[l-21. MOIN (ASI Ox44), MDOUT (ASI Ox46) 

Note that the TrAG TOR MDIN and MDOUT are accessible through ASI space as 
well. 1bese registers are briefly described below, but for more details on the 
TrAG TOR operations, see section S. For more details on the ASI visible emulation 
registers, see section 4.16. 

,There are five TrAG TORs that are important for emulation, they are'listed on the 
table below: 

IrAGTDR Name 
JR (Instruction Register) 
MCI (eMulation Command and Instruction) 
MOIN (eMulation Data In) 
MDOUT (eMulation Data OU1) 
MSTAT (eMulation ST A Tos) 

See chapter S for details on TrAG TOR scan operation. 

.. 
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6.3.1.2 MOIN (Emulation Data 
In) 

Chapter 6 - Remoce Emulation Support 157 

The IR register selects which Ir AG TOR scan chain to access. The following table 
only lists IR encoding that select emulation register Ir AG TOR scan chains. For a 
complete listing see table 5-3 and section 5.7. 

Table 6-1 Emulation register TDR Scan Chain selection by IR Encoding 

TOR Ring Selected IR Value # bits 
MCI OX08 37 
MDIN Ox09 32 
MDOtrr OxOa 32 
MSTAT OxOb 13 

This 32-bit register allows information passing from the remote emulator to Vik­
ing. For example, the remote emulator scans in data to the MOIN register. and 
Viking retrieve the data using LDA ASI Ox44. It is particularly useful to set 
pointers to memory references, to update register or memory values. Refer to 
sections 5.7.1.6 -Emulation and 4.15.2 -EmulationfI'AG Data Input Register 
(MDIN) for more details. 

Table 6-2 MDIN Scan Register ForrMt 

6.3.1.3 MCI (Emulation 
Command and 
Instruction) 

Figure 6-1 

MCI: INITM(1) 

36 

MDIN: I MDIN(32) I 
31 0 

The MCI scan chain is 37 bits and comprises 2 subfields: a 5-bit MCMO register 
and a 32-bit MINST register. MCMO qualifies MINST and sends configuration and 
command information to Viking. All bits inMCMO are cleared upon IrAG TAP 
controller reset. (Refer to table 5-1 - State after TAP reset). Also see section 
5.7.1.6 for details onJTAG operation. The fonnat of the IrAG MCI scan register 
{MCMD.MINST} is shown below: 

Mel (Emulation Comnuuul and Instruction) Register ForrMt 

MENTER(I) MEXEC(1) MEXIT(1) MRESET(I) MINST(32) 
35 34 33 32 31 0 

MCMDJNrI'M 
The primary function of this bit is to enable Viking to enter emulation 
mode as a res'Ult of a breakpoint, assuming ACTION register is properly 
programmed. In addition. this bit affects the operation of SIGM (Signal 
Emulation, a Viking-specific instruction). IfINITM=O, SIGM will exe­
cute as a NOP. If INITM= 1 , SIGM initiates a user level emulation entry. 
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.. 

6.3.1.4 MDOUT (Emulation 
Data Out) 

(Refer to section 4.4.6 - Signal User El1IUlation Request (SIGM) and 
4.14.4.5 -Brea/cpointACTION Register). This bit is cleared onITAG 
TAP controller reset 

MCMD.MRESET 
When set, this bit forces a full Viking baniware reset (rather than a 
watch dog reset). This bit is cleared on IT AG TAP controller reset. 

MCMD.MENTER 
When set, Viking is forced to enter emulation mode. TIle program 
counter (PC/NPC pair) is captured to resume post-emulation execution. 
In emulation mode, the Viking prefetch controller stops accessing the 
instruction cache, starts passing NOPs into the IU pipeline and examines 
the state of MEXEC to wait for an instruction to execute. This bit is 
cleared on IT AG TAP controller reset 

MCMD.MEXEC 
When set, a single instance of the MlNST instlUction will be forced into 
the processor pipeline. nus will cause it to be executed as a normal 
SPARC instruction. Once launched, the prefetch controller will clear 
MEXEC. resume passing NOPs into the IU pipeline and monitor valid bits 
at the last stage of the IU pipeline. Once the prefetch controller deter­
mines that no remaining emulation instructions are in the processor 
pipeline, it examines MEXlT to determine whether to remain in emula­
tion mode or to resume normal execution. A floating point related emu­
lation instruction (LOF, STF, LOFSR. STFSR) may ·only be issued when the . 
FP queue is empty (signalled by the MSTAT.FQE bit). This MEXEC bit is 
cleared on IT AG TAP controller reset 

MCMD.MEXlT 
When set, Viking will exit emulation mode (to resume normal execu­
tion) as soon as all execution in the pipeline is complete. The execu­
tion stream branches to the PCINPC values stored upon entry to emula­
tion (and possibly intentionally modified during emulation). The pre­
fetch controller continues to pass NOPs into the pipeline until either an 
MEXEC or MEXlT is assened. This bit is cleared on lI'AG TAP controller 
reset. 

MINST This register contains a single SPARC instruction which is emitted as 
the emulation instruction (qualified by MEXEC). Several emulation 
instructions are typically required to completely execute the semantics 
of an emulator primitive. 

This register stores data to be passed back to the remote emulator. It can be used 
to pass Viking state infoIDlation to ~ remote emulator. This register is accessi­
ble Ibrough ASI space Ox46 (refer to section 4.1S.3). TIle format of the MDOUT 
register is: ' 
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Table 6-3 MOOl.n' (Emulation Data Out) Register Format 

6.3.1.5 MSTAT (Emulation 
Status) 

Table 6-4 

MDOUT: MDOUT(32) 
31 0 

The MSTAT scan chain is 13 bits long, and it contains information about Viking 
emulation status. The only way to retrieve this information is through IT AG scan 
operation. The MST AT register is cleared upon TAP Controller reset The MSTA T 
format is: 

MSTAT (Emulation Status) Register Format 

MSTAT: ECHOTMR MACK TMRM CBKM ZICM DBKM 
12 11 10' 9 8 7 

ZCCM IPND ERRMODE MIFLTD PFPX 

6 5 4 3 2 

MIDONE FQE 
1 0 

MSTAT .ECHOTMR 
ECHOTMR is an echoed version of MCMD.MENTER after it has passed 
through TCK-VCK-TCK synchronization. (TCK is test clock, VCK is Vik­
ing clock). ECHOTMR is asserted asynchronously to emulation instruc­
tion execution. The purpose of this signal is to signal that Viking has 
seen the request to enter emulation mode. Assertion of this signal does 
not indicate that Viking has actually entered emulation mode. This bit 
is cleared upon the IrAG TAP Controller reset 

MSTAT.MACK 
MACK is an indication that Viking is in emulation mode. It is asserted as 
soon as Viking enters emulation mode and stays active until Viking 
leaves emulation mode. It is synchronized to TCK (refer to chapter 5. 
This bit is cleared upon the TAP Controller reset 

Note: 
TMRM, CBKM, ZICM. DBKM and ZCCM qualify MACK to identify to the 
remote emulation service processor software the cause for Viking's 
entry into emulation mode. It is possible that more than one is 
asserted, indiAting that there were more than one cause. 

MSTAT.TMRM 
TMRM indicates that Viking entered emulation due to an MCMD.MENTER 
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requestfrom the emulator. This bit is cleared on TrAG TAP Controller 
reset, Viking hardware reset, or by updating the MCI register. 

MSTAT.CBKM 
CBKM indicates that Viking entered emulation due to a code address 
breaJc:point. Oeared on TrAG TAP Controller reset, Viking hardware 
reset, or by updating the MCI register. 

MSTATZICM 
ZlCM indicates that Viking entered emulation due to a zero instruction 
count breakpoint. This bit is cleared on TrAG TAP Controller reset, Vik­
ing reset, or by updating the MCI register. 

MSTAT.DBKM 
DBKM indicates that Viking entered emulation due to a data address 
breaJc:point. This bit is cleared on TrAG TAP' Controller reset, Viking 
reset, or by updating the MCI register. 

MSTATZCCM 
ZCCM indicates that Viking entered emulation due to a zero cycle count 
breakpoint. This bit is cleared upon a TrAG TAP Controller reset, Viking 
reset, or by updating the MCI register. 

MSTAT.IPND 
IPND assertion indicates the processor has a pending interrupt request 
that is higher than the current Viking PSRJPL or at level lS.1PND is used 
to inform the remote emulation processor that an interrupt is pending 
and that Viking should be released to service it This bit is cleared 
upon the TrAG TAP Controller re,set 

MSTAT.ERRMODE 
ERRMODE indicates Viking has entered e"or mode as a result of a fault 
generated while in emulation mode. Any exception occuning during 
an emulation instruction sequence will force Viking into error mode. 
Entering error mode will induce the watch dog reset sequence, set . 
MSTAT.ERRMODE, and exit emulation mode. 1be ERRMODE bit will 
stay asserted until the next MSTAT update operation (or cleared by the 
TrAG TAP Controller reset). 

Impottant Note: 
When enor mode occurs while in emulation mode, no assertion of 
MEXlT or MRESET is needed for Viking to leave emulation and restart 
execution at the reset vector. 

MSTAT .MIFLTD 
MlFLTD·indicates that an emulation instruction with a data memory 
reference created a. data access fault It does not indicate whether other 
sources of exceptions (e.g. pending FP exceptions) occurred during 
emulation instruction execution. MIFLTD is only meaningful when 
qualified by the assertion of MIDONE status bit No emulation instruc­
tion exception update MFSR orMFAR. Only MSFSR (the shadow FSR) 

,r 
\" j 

Sun M~ ProprietIry Revision 2.00 of November 1. 1990 



[! 

. 
6.3.2. Emulation Registers in 

ASI Space 

Chapter 6 - Remote Emulation Support 161 

will be updated. MSFSR is cleared upon entrance to emulation mode. 
TIle emulation service processor must check the MIFLTD status bit after 
every emulation instruction which references memory, and if that bit is 
set, it is the responsibility of the remote emulator software to clear it 
with an explicit STA emulation instruction to the MSFSR. This MIFLTD 
bit is cleared by nAG TAP Controller reset, updating MCI, or Viking 
reset 

MSTAT.PFPX 
PFPX indicates that a pending floating point exception exists. 
This exception can be caused by two ways: 

Note: 

Prior non-emulation FPOPs (which were already in the FQ and 
continued to execute while the processor has entered 
emulation mode) generate an FP exception. 

Emulation FPOPs can also generate an FP exception. 

Before issuing an FP related emulation instruction, the remote emulator 
must make sure that: All FPOPs have cleared from the FQ (MSTAT.FQE = 
1). There is no pending FP exception generated (PFPX = 0). 

Any taken FP exception in emulation mode will cause error mode. This PFPX bit 
is cleared by clearing out the FQ, by a ViJcing hardware reset, or a nAG TAP Con­
troller reset 

MSTAT .MIDONE 
MIOONE is asserted when an emulation instruction completes execu­
tion. No additional emulation instructions should be issued until the 
current emulation instruction has completed, as indicated by MIOONE. 
If an emulation instruction is an FPOP, MIOONE assertion only means 
that the FPOP was successfully issued to the FPU. Therefore, for floating 
point related emulation instructions, the requirements to satisfy before 
issuing another FP related emulation instruction is error-free execution 
of the previOUS FPOP which is indicated when FQE = 1 and PFPX = O. 
1bis MIDONE bit is cleared by nAG TAP Controller reset, an MSTAT 
register read, subsequent entry into emulation mode, or Viking 
hardware reset. 

MSTAT.FQE 
FQE indicates that the FQ is empty, and is asserted when all FPOPs have 
finished error-free execution . 

There following 4 ASI mapped registers directly suppon emulation: MPC/MNPC. 
MTMP[1-2], MDIN, and MDOUI'. 1be follOwing sections briefly describe each of 
those registers. Other ASI mapped registers are also accessible through SP ARC AS] 
instructions . 
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6.3.2.1 Emulation exit PC/NPC 
Registers ASI 

Ox47 
Ox48 

6.3.2.2 MTMP[I-2] Registers 
ASI 

Ox40-0x41 

6.3.2.3 MDIN Register' 
ASI 
Ox44 

6.3.2.4 MDOtrr Register 
ASI 
Ox46 

Function AcceSs Size Section 
Emulation Exit PC wIn single 4.15 
Emulation Exit NPC wIn single 4.15 

The program counter of the instruction executing just prior to emulation entry is 
written to PC/NPC registers. 1bese values are the targets of the branch when Vik­
ing resumes normal execution upon exit from emulation. These registers can be 
examined or altered by the emulator, and are accessible through LDNSTA Ox47-
Ox48 (refer to section 4.15.4 - Emulation Program Counters ). 

Function Access Size Section 
Emulation Temps[1-2] WIn single 4.15 

These two registers are useful for temporarily storing information while in emu­
lation. If more than two words of information are to be temporarily stored, the 
remote emulator must use its TrAG MDOUf scan capability, and later restore it 
through TrAG MDIN. These M'J'MP(l-2J registers are accessible through ASI Ox4O­
Ox41 (refer to 4.15.1, -Emultuioll Temporary Registers (MTMP{J-2J). 

Function Access Size Section 
Emulation Data Inl LD single 4.15 

An emulation instruction sequence can move incoming emulation data (address 
poinlers and data for Viking system SJate updates) from the TrAG MDIN register 
into the IU register file using WA instructions. Subsequent emulation instructions 
can use this data to update memory or ViJcing state. This MDIN is a reDd only 
register through an AS! Ox44 access. 

Function Access Size Section 
Emulation Data Out I.D/n single 4.15 

An emulation instruction sequence can move outgoing ViJcilig state data from the 
IU register file to the emulation MDOUf polt using a STA. Emulation control 
software can then use this infonnation to display processor state or check status. 
This register is accessible through ASI Ox46. 

c 
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TIle table below identifies the emulation primitives or functions that Viking sup­
ports. 

Emulation primitive Description/Method 
Force Emulation Mode Assen MCMD.MENTER 
R/W integer register PS~ WIM. TBR. Y 
R/W integer register file SPARC LDIST instructions 
R/W floating point register FSR.FQ 
R/W floating point register file SPARC LDIST %fO..%t31 
R/Wmemory SPARC LDIST. LDAISTA to memory 
R/W emulation exit PCINPC lDAISTAASIOx47.()x48 
Observe emulation status Scan out MSTAT 
Resume normal execution Assen MCMD.MEXlT 
Hardware Reset Viking Assen MCMD.MRESET 
Watchdog Reset Viking In emulation. issue TA 
Allow user emulation request Assen MCMDJN1TM, user exec SIGM 

6.4.1. Force Emulation Mode 

6.4.2. RIW Integer Registers 

6.4.3. RIW Integer Register 
File· 

6.4.4. RIW FP Registers 

6.4.5. RIW FP Register File 

Each of the primitive is briefly described: 

TIle remote emulator can force Viking to enter emulation by asserting the 
MCMD.MENTER bit Since this bit is on the MCI scan chain, the only way to 
access it is by rr,f.o scan methodology. 

While in emulation mode, the following IU registers are completely accessible 
through the use of normal SPARC instructions (loaded onto MINST). They are: 
pSR. WIM. TBR, Y. 

While in emulation mode, the IU register file is completely accessible through the 
use of normal SPARC instructions (loaded onto MINST). It covers all implemented 
windows. 

While in emulation mode, the following FP registers are completely accessible 
through the use of normal SPARC instructions (loaded onto MINST). They are: 
FSR, FQ. See "Note on FP related emulation instructions" below. 

While in emulation mode, the FP register file is completely accessible through the 
use of normal SPARC instructions (loaded onto MINST). They are: %fO..%t3l. 
See "Note on FP related emulation instructions" below. 
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6.4.6. Read/Update Memory 

6.4.7. RIW Emulation Exit PC 

andNPc 

6.4.8. Observe Emulation 
Status 

6.4.9. Resume Normal 
Operation 

6.4.10. Hardware Reset Viking 

6.4.11. Watchdog Reset Viking 

6.4.12. Allow user emulatioD 
request 

6.S. Emulation Sequences 

Note on FP related emulation instructions: 
Before issuing any FP-re1ated emulation instructions, the remote emula­
tor must examine MST AT.FQE to make sure that all prior FPOPS in the FQ 
have completed and no pending floating point exception was generated 

While in emulation mode, memory is completely accessible through the use of 
normal SPARC instructions (loaded onto MINST). All ASI spaces are also accessi­
ble. 

While in emulation mode, allow the remote emulator to examine the emulation 
exit PC/NPC pair. TIlere is no simple architectural means available to observe the 
current program counter values, other than CAlL and trapS. nus emulation prim­
itive allows read and write, using LDAISTA Ox47-Ox48. Changes in the processors 
execution stream are accomplished by modifying these PC/NPC register pair. 

While in emulation mode. MSTAT recoRls if the attempted emulation insttuction 
has completed. faulted, caused error mode or has a pending interrupt request. 
MSTAT also specifies if the FQ is empty or has generated a pending ~ exception. 
TIle pending interrupt request can be used to suggest to the emulator that normal 
program flow should be continued. to minimize interrupt latency. 

While in emulation mode, force Viking to resume non-emulation execution from 
the saved (or emulation modified) PCJNPC pair. nus is accomplished by asserting 
MCMD.MEXlT 

Emulation can initiate both a full reset or a watchdog reseL To initiate a full 
reset. assert MCMD.MRESET. 

To initiate a watchdog reset. while in emulation. issue a trap always (T A) emula­
tion instruction. 

By asserting MCMDJNlTM. the remote emulator is allowing a user request to enter 
emulation. which the user accomplishes by executing the SIOM (a Viking specific 
instruction). SIOM executes as a NOP when MCMDlNlTM is not asserted. 

Issuing each emulation instnJ4:tion requires the emulator to send multiple IT AG 
scan sequences. Since the MCI TDR contains both the MINST and MCMO registers. 
only one register needs to be loaded to issue a single emulation instruction. 

/~-', 

Depending on the emulation instruction to execute, MDIN may need to be set 
before the instruction is executed. For more complex emulation sequences, pro­
cessor state will need to be preserved before any state is modified. This involves . 
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many emulation instructions. 

Unless Viking is in error mode. the remote emulator can force Viking into emula­
tion mode by scanning in an asserted MCMD.MENTER value. The emulator polls 
MSTAT for an indication that the instruction is complete. The scan sequence for 
emulating an individual instruction is at least a portion of the following: 

Scan-In any required pointers and data into MDIN. 
Scan-In the emulation instruction (MCI_MINST) and 

emulation protocol command (MCMO). including the 
MEXEC and optionally the MEXIT bits. 

Scan-Out MSTAT emulation status register 
to determine when the emulation instruction has completed, 
faulted, or induced error mode. This poll also indicates 
whether any prioritized intenupt is currently at Viking's pins. 

Scan-Out of any requested Viking system state data from MDOUT. 

This section provides some additional infonnation on how Viking operates in 
emulation mode. 

Viking assumes the following state when in emulation mode: 

Table 6-5 Viking State upon entry into EmuJation mode 

6.6.2. Faults during 
Emulation Execution 

Register/Bit Affected State 
PSR.s asserted 
PSR.EF asserted 
PSR.ET negated 
AcrION.MIX negated 
MCNTL.NF asserted 

Synchronous ST 

As reflected in the table above. when Viking enters emulation mode. all emula­
tion instructions execute in supervisor mode, multiple instruction execution 
mode is disabled, the NF bit is asserted, and emulation ST instructions are syn­
chronous and bypass the store buffer. A store buffer copy-out was done before 
entry into emulation. 1be FPU is still enabled, it is allowed to continue execu­
tion, without being aware that the processor has entered emulation. 

If an emulation data memory reference instruction faults, it sets the 
.MSTAT.MIFLTD bit (but does not cause error mode). The remote emulator must 
force an emulation instruction to clear out the MSFSR register through the MMU 
ASI space. Failing to do'this willleaveMSTAT.MIFLTD asserted, and can give 
subsequent emulation instructions a faulty emulation status indication. 
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6.6.3. Legal and Dlegal 
Emulation Instructions 

6.6.4. Compound Emulation 
. Protocol Commands 

The processor executes with PSR.ET disabled. Any synchronous exceptions that 
are reponed will cause Viking to enterenormode (and setMSTAT.ERRMODE) 
which induces a watchdog reset. 'The faa that PSR.ET was disabled upon emula­
tion entry allows asynchronous exceptions (such as priority intenupts. 
data_store_exception. floating.,poincexception) to be ignored. 

The emulation instruction in MINST must be a legal SPARC instruction. However. 
only a subset of the SPARe instruction set is supponed during emulation mode. 
In general, instructions which affect the flow of execution when not in emulation 
mode are not supponed. A simple example is a branch instruction. There is no 
reason to support control transfer instructions in emulation mode. Operation of 
the processor in emulation mode on these illegal instructions is undefined. 

Legal emulation instructions: 

All legal memory reference instructions (including alternates, atomics). 
All arithmetic and logical instructions, except trapping tagged arithmetic. 
SETHI. 
All integer state register accesses. 

IUegal emulation instructions (but legal SPARC instructions): 

All control transfer instructions (CAU..BICC,FBFCC,lMPL.RETT). 
All software ttaps ('nCC). 
1be FLUSH 'instruction. 
All trapping tagged arithmetic. 
SAVE and RESTORE (manipulate CWP directly instead). 
All illegal instructions. 

Many of these illegal operations will cause entry into enor mode. force Viking to 
leave emulation mode and induce a non-emulation watch dog reset. 

Separate control bits are used to enter emulation, execute an emulation instruc­
tion, and then exit. These separate bits may be used together to optimize emula­
tion sequences. 1be simplest emulation sequence writes the MCI.MINST register 
with a single emulation instruction. and set the MENTER. MEXEC. and MEXlT bits. 
This will cause Viking to enter emulation. execute the emulation instruction. then 
resume execution. This entire sequence will require only a few cycles to execute 
(afterMCI is scanned in throughlrAO) • 

.. 
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Table 6-6 Valid compound e1'TlldLuion sequences 

MENTER 
1 

x 

x 

x 

x 

1 

1 

MEXEC MEXIT Action 
1 0 Enter emulation mode, 

issue a command, 
then pause (awaiting MEXEC or MEXlT). 

1 0 Once in emulation mode, 
issue a new emulation instruction, 
then pause (awaiting MEXEC or MEXIT). 

1 1 Once in emulation mode, 
issue a new emulation instruction, 
exit emulation mode upon completion, 
then resume execution at the captured 
(or altered) non-emulation PC pair. 

0 1 Once in emulation mode, 
immediately resume execution at the captured 
(or altered) non-emulation PC pair. 

0 0 Once in emulation mode, 
is aNOP. 

0 0 Will cause entry into emulation mode, 
and wait. 

0 I Will stan entry into emulation, but then 
immediately exits. No emulation instruction 
is execUted. MST AT .MACK is not updated . 
. To the programmer it might appear that emulation 
was never entered. 
("Ibis sequence is not very useful) 

Simultaneous assertion of MEXEC and MEXlT can dangerously lead to timing 
races in sampling MSTAT.MIDONE that cause bad inferences by the remote emula­
tion service processor. Upon completion of the last emulation instruction in the 
current emulation session, this compound MCMD mode will exit emulation 
mode. MSTAT.MIDONE will be set and MSTAT .MACK will be negated. 

TIle remote emulator must check MSTAT to make sure the previous emulation 
instruction has completed and was error-free. A re-entry into emulation clears 
outMSTAT.MIDONE and MSTAT.MIFLTD, and it could do so before the remote 
emulator can checkMSTAT. If this corrupted case, the remote emulator would 
mistakenly assume that the last emulation instruction had not completed. 

It is recommended that an MEXEC be issued without MEXlT. 1be MST AT can 
determine the completion status of the last emulation instniction. When MSTAT 
reports error-free, MEXlT without MEXEC can be issued to exit from emulation. 
An immediate re-entry iIito emulation mode will allow the emulation program to 
differentiate between the end of the first emulation session and the stan of the 
·second emulation session. 
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6.7. Emulation Instruction 
Sequences for 
Common Emulator 
Functions 

1bis section will describe some possible emulation instruction sequences for 
some common emulatot primitives. Many other implementation are possible. 
TIle primitives may be combined to create other functions as needed. 

The primitives to be described are: 

ReadlWrite Integer Registers 
Read/Write Integer Control Registers (PSR WIM TBR Y) 
Read/Write Floating Point Registers 
Read/Write Floating Point Control Registers 
Read/Write Memory (byte,half,word,double,etc.) 
Read/Write Memory (Normal and ASI) 
Set Code and Data Address Breakpoints 
Single Step 
Run for N Cycles 
Run Until Breakpoint reached 

The next sections provide detailed sequences for each of the above operations. 
Throughout these sequences, numerous symbolic constants will be used. 

The symbolic constants are described below: 

Table 6-7 Symbolic ConstlllltS for Emulation Sequences 

mdiag Ox38 
bkv OXOOO 
bkm Oxl00 
bkc 0000 
bIcs Ox300 
mtmpl Ox40 
mtmp2 Ox41 
mdin Ox44 
mdout Ox46 
mpc Ox47 
mnpc Ox48 
ctrv Ox49 
ctrc Ox4a 
ctrs Ox4b 
action Ox4c 
XREG emulation register 
XADDR emulation memory addr 

.. 
I~~ 
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6.7.1. Integer Register File 
Read 

6.7.2. Integer Register File 
Write 

6.7.3. Integer State Register 
Read 

6.7.4. Integer State Register 
Write 
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The most basic emulator operation is to display an integer register. TIle" following 
emulation instruction sequence will transfer the contents of the integer register 
XREG within the current CWP to MOOtrr register. Once in MOOtrr, the data can be 
scanned out to the emulator. 

/I copy XREG to mdout; scan it ouL 
scan_in("sta %XREG, [%gO] mdout", mci, poll) 
scan_out(mdoul, remote_emulator) 

To store a new value (or restore an old value) into an integer register at the 
current CWP, the following sequence can be used. The new value for integer 
registerXREG is assumed to have been previously scanned-in to registerMDIN. 

/I scan in new value; install it into iu rfile. 
scan_in(new _iu_rfile_entry _ value,mdin) 
scan_in("lda [%gO] mdin, %XREG", mci, poll) 

The following sequence will transfer any of the integer state registers (PSR WIM 
TBR Y) registers into the MOOtrr register. The sequence below assumes-access to 
the PSR is desired. Note the use of the MTMPI register to preserve and restore 
integer register stale. 

I/prologue 
scan_in("sta%gl, [%gO] mtmpl", mci, poll) 

/I copy iu..:.creg to mdout through gl temp. scan it ouL 
SC8n_in("Jd %psr, %gl". ma, poll) 
scan_in("sta%gl, [%gO] mdout", mci, poll) 
SC8n_out(mdoul, remote_emulator) 

I/epilogue 
scan_in("lda [%gO] mtmpl, %gl", ma, poll) 

TIle following sequence will modify any integer state register. The new value for 
the given IU state register is assumed to have previously been scanned-in to 
MDIN. The sequence below modifies the PSR . 

.. 
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6.7.5. Memory Read 

II prologue 
scan_in("sta%gl, [%gO) manpl", mci, poll) 

II scan in new value to gl and install into psr. 
scan_in(new _iucrelL value,mdin) 
scan_in("lda [%gO] mdin, %gl". mci. poll) 
scan_in("wr%gl. %psr", mci, poll) 

lIepilogue 
scan_in("lda [%gO] manpl, %gl", mci, poll 

The sequence below demonstrates reading a signed byte value at a given memory 
addressXADDR within an implicit alternate address space (supervisor data space 
where ASI=Oxb). This ASI is used since the processor is effectively executing in 
supervisor mode. The value of XADDR is assumed to reside in the MOIN I/O regis­
ter before any emulation instruction is emitted. 

At the conclusio~ of the sequence, the value of the signed byte residing in 
memory address .xADOR within the implicit supervisor data space ASI (Oxb) will 
be placed in the MOOUT register. When MJOONE is asserted, the data can be 
scanned-out to the emulator. . 

The sequences for signed and unsigned half-word, word and double WOM reads 
are very similar. Reads from alternate address spaces are also similar. the LDSB 
instruction is replaced with a lDSBA. . 

//prologue 
SC3Il_in("sta%gl, [%80] munpl", mci, poll) 
SC3Il_in("sta %g2, [%801 munp2", mci, poll); 

II SC3Il in xaddr. copy to gl 
SC3Il_in(new _xaddr_ value,mdin) 
SC3Il_in("lda [%80] mdin, %gl", mci, poll) 

II load g2 w/*xaddr; copy to mdout scan it out 
SC3Il_in("ldsb [%gl], %g2", mci, poll) 
SC3Il_in("sta%g2, [%80] mcloutH, mci. poll) 
SC3Il_out(mdout, remote_emulator) 

//epilogue 
SC3Il_in("lda 
SC3Il_in("lda 

[%80] munpl. %gl". mci. poll) 
[%801 munp2. %g2". mci. poll); 

.. 
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6.7.7. Floating Point Register 
Read 
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The following sequence modifies memory by writing a byte value at a given 
memory address XADOR within an implicit alternate address space (supervisor 
data space where ASI=Oxb). 

During a memory write, MDIN will be used twice by the emulation software. Ini­
tially the remote emulation software will scan into MOIN the value of the memory 
address XADOR to be written. Once this address is transferred to the IU register 
file, the remote emulation software will then scan in the new value 
(NEW_OATA_VALUE) to be written at the specified memory location (XADDR). 

The sequences for half-word, word and double word writes to are very similar. 
Writes to alternate spaces are also similar, with the STB instruction replaced by a 
STBA. 

I/prologue 
scan_in("sta%gl, [%80] mtmpl", mci, poll) 
scan_in("sta%g2, [%80] mtmp2", mci, poll); 

/I scan in XADDR value. copy XADDR to g 1. 
scan_in(XADDR_ VALUE, mdin) 
scan_in("lda [%gO] mdin, %gl II ,mci, poll) 

/I scan in NEW_DATA value. copy NEW_DATA to g2. 
scan_in(NEW _DATA_VALUE, mdin) 
scan;..in("lda [%gl] mdin, %g2",mci, poll) 

/I install NEW_DATA at XADDR. 
scan_in("stb%g2, [%gl]" ,mci, poll) 

I/epilogue 
scan_in("lda 
scan_in("lda 

. 

(%gO] mtmpl, %gl", mci, poll) 
[%gO] mtmp2, %g2", mci, poll) 

For simplicity, this example provides the save address in registerMDIN, its selec-
tion is assumed to be safe. 1be following sequence will transfer a floating point 
register XREG into the MDOUr register for the emulator to scan ouL The sequence 
for reading floating point control registers is similar . 
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6.7 JL Floating Point Register 
Write 

I/prologue 
scan_in("sta%gl, [%80] mtmpl", mci, poll) 
scan_in("sta %g2, [%80] mtmp2" , mci, poll) 

/I scan address of background memory word (XADDR). 
/I copy XADDR into %gl; load ·xaddr into g2. 
scan_in(xaddr_ value, mdin); 
sC3ll_in("lda [%80] mdin, %gl" ,mci, poll) 
scan_in("ld [%gl], %g2". mci, poll) 

/I this emulation primitive MUST not change non-emulation 
/I memory state. FP reads require we alter and then 

. /I restore a background memory state. No sufficient number 
/I of mnnp to do this so we augment the storage by scanning 
/I out to external remote emulation processor memory. 
scan_in("sta %g2, mdout" ,mci, poll) 
scan_out(mdout, remote_emulator_templ) 

/I before issuing next emulation instruction, 
/I make sure mstaLfqe= 1 and mstaLpfpx=O 
/I copy fp entry to bgnd word; copy into iu temp. 
scan_in("st %fXREG, [%gl]",mci, poll) 
scan_in("ld [%gI1, %g2",mci. poll) 

/I copy FP entry to mdout; scan out fp entry. 
scan_in("sta %g2, [%gO] mdout" ,mci, poll) 
scan_out(mdout, remote_emulator) 

/I restore original background memory word 
scan_in(remote_emulator_templ,mdin) . 
scan_in("lda [%80] mdin, %g2", mci, poll) 
scan_in("st %g2. [%gI1" ,DIci, poll) 

I/epilogue 
scan_in("lda 
scan_in("1da 

[%80] mtmpl. %gl",mci, poll) 
[%gO] mtmp2. %g2". mci, poll) 

The sequence for writing floating point registers is similar to the reading 
sequence. except a floating point register is loaded from memory. rather than 
written. The following is a possible code sequence: 

Sun Microsystems Propri-..y Revision 2.00 of November 1. 1990 



r 

6.7.9. Floating Point State 
Register Read 
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II prologue 
scan_in("sta%gl, [%gO] mtmpl", mci, poll) 
scan_in("sta %g2, [%gO] mtmp2", mci, poll) 

/I scan address of background memory word (XADDR). 
/I copy XADDR into %gl; load ·xaddr into g2. 
scan_in(XADDR_ VALUE, mdin) 
scan_in("lda [%gO] mdin, %gl" ,mci, poll) 
scan_in("ld [%gl], %g2", mci, poll) 

/I preserve original background word in remote_emulator_tempI. 
/I this emulation primitive must not change non-emulation 
/I memory state. FP writes require we alter and then restore 
/I a background memory state. No sufficient number of nump 
/I to do this so we augment the storage by scanning out to 
/I external remote emulation processor memory. 
scan_in("sta %g2, mdout" ~ci, poll) 
scan_out(mdout, remote_emulator_temp 1) 

/I scan in new new fp_data_ value 
I/load it into iu rfile. write it to background word. 
scan_in(NEW _FP _DATA_ V ALUE,mdin) 
scan_in("lda [%gO] mdin, %g2" ,mci, pall) 
scan_in("st %g2, [%gl]",mci, poll) 

/I before issuing next emulation insttuction, 
/I make sure mstalfqe= 1 and mstalpfpx=O 
/I install new value into FP register. 
scan_in("ld [%gl]. %fXREG" ,mci. poll) 

/I restore original background memory word. 
scan_in(remote_emulation_templ,mdin) 
scan.....in("lda [%gO] mdin, %g2". mci, poll) 
scaD_in("st %g2. [%gl]" ,mci, poll) 

/I epilogue 
scan_in("lda 
scan.....in("lda 

(%gO] mtmpl, %gl", mci, poll) 
[%gO] mtmp2, %g2", mci, poll) 

Reading values from floating point state registers, such as the FSR is similar to the 
previous two examples. The floating point memory references are replaced by 
store FSR operations. Extracting entries from the floating point queue is more 
difficult. While in emwation mode, FQ entries should never be extracted unless 
MSTAT.PFPX indicates an FP exception. Otherwise the remaining FPOPS in the FQ 
should be allowed to execute. If PFPX is asserted and the emulator wants to 
recover, the FQ can be read with a double word size. Since MDOUf is only a 
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6.7.10. Floating Point State 
Register Write 

6.7.11. Setting Code and Data 
Addre~ Breakpoints 

single word wide, two scan passes are required to transfer the full queue entry to 
the emulator. 

The following sequence will read the floating point queue. 

There is an additional archiucrural side affect of reading the floating point 
queue. When an entry is read, it is effectively removed from the queue. Since 
emulation is required to be non-intrusive to program execution, the old Stale of 
the queue must be restored. If the queue state is to remain unchanged after being 
observed, then all entries in the queue must be extracted using STDFQ until it is 
empty. This must be followed by re-inserting (re-writing) all of these removed 
entries back into the queue. However, there exist no simple instruction to allow 
writing to the FP queue. It may however be restored by executing a floating point 
instruction while in emulation mode. TIle'instruction and PC value are both 
stored in the queue. By writing the PC into the MDIN register, and then issuing 
the floating point instruction as an emulation instruction, the queue will be 
restored. 

Writing to the floating point state registers is similar to reading them. The same' 
restrictions apply. 

TIle sequence below will set up a code or data address breakpoint and resume 
normal execution. When (if) the breakpoint occurs, the processor will re-enter 
emulation mode. 

,A string of emulation instruction sequences will be required to write the code 
address breakpoint register seL 

Write the desired code or data space breakpoint address 
value (vinual or physical) into MDIAG_BKV. 

Write the code or data space breakpoint address compare 
mask into MDIAG..BKM. 

Write the breakpoint control register, MDIAG_BKC, 
to clear {C,D)BKFEN, and select the desired value 
for CSPACE. PAMO. CBKEN. DBREN and DBWEN, 

Write the breakpoint status register. EDIAG_{C,D}BKS 
to clear any prior code breakpoint status. 

Write the action on event control register, EDIAG..AC110N, 
so that the desired breakpoint event will generate 
an emulation request and (optionally) assert an 
emulation strobe (ESB pin). 

An example for such an emulation sequence code is given below: 

.. 
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I/prologue 
scan_in("sta%gl, [%gO] mtmpl", mci, poll) 
scan_in("sta %g2. [%gO] mtmp2", mci, poll) 
scan_in("sta %g3. [%gO] mdout", mci, poll) 
scan_out(mdout, remote_emulator_temp 1) 

1/ set gl to ASI cbkv addroffset wfm MOIAG ASI; 
scan_in("or %gO, bkv, %gl",mci, poll) 

1/ scan-in lower 32-bit (of 36 bits) for next cbkv value 
/I install it in g2 of register pair g[23]. 
scan_in{NEW _CBKV _V ALUE_L032,mdin) 
scan:..in("lda [%gO] mdin, %g2" ,mci, poll) 

1/ scan-in upper 4-bit portion (of 36-bits) for next cbkv value 
1/ install it in g3 of register pair g[23]. 
scan_in(NEW _CBKV _ V ALUE_HI4,mdin) 
scan_in("lda [%gO] mdin, %g3" ,mci, poll) 

/I install register pair g[23] into mdiag cbkv. 
~_in("stda %g2. [%gl] mdiag",mci. poll) 

1/ set gl to ASI cblem addr Offset wfm ~IAG ASI; 
scan_in("or %gO, bkm, %gl" ,mci, poll) 

/I scan-in lower 32-bit portion (of 36-bits) for next cblem value 
/I install it in g2 of register pair g[23]. 
scan_in(NEW _CBKM_ V ALUE_L032,mdin) 
scan_in("lda [%g01 mdin, %g2" ,mci, poll) 

/I scan-in upper 4-bit portion (of 36-bits) for next cblem value 
/I install it in g3 of register pair g[23]. 
scaD_in(NEW _CBKM_ V ALUE_m4,mdin) 
scalLin("lda [%10] mdin, %g3" ,mci, poll) 

/I install g[23] to cbkm 
scan_in("stda %g2. [%gl] mdiag" ,mci, poll) 

/I set gl to addr cbkc; 
scan_in("or %gO, bkc, %gl" ,mci, poll) 

(Code sequence is continued an next page) 
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6.7.11. Run for uN" 
InstructionslCydes 

II scan-in NEW _CBKC_ VALUE. 
II read it into the iu rfile; install it into CBKC. 
scan_in(NEW _CBKC_ VALUE, mdin) 
scan_in("lda [%gO] mdin, %g2" ,mci, poll) 
scan_in("sta%g2, [%gl] mdiag" ,mci, poll) 

II set gl to addr cbks in mdiag; clear cbks. 
scan_in("or %gO, bles, %gl" ,mci. poll) 
scan_in("sta%gO, [%gl] mdiag",mci, poll) 

II scan-in NEW _ACI10N_ VALUE. 
scan_in(NEW _ACI10N_ VALUE, mdin); 
II read it into the iu rfile;' install it into AcrION. 
scan_in("lda [%gO] mdin, %g2" ,mci, poll) 
scan_in("sta.%g2, [%gO] action" ,mci, poll) 

II epilogue 
scan_in("lda [%gO] mtmp 1, %gl", mci, poll) 
scan_in("lda [%gO] mnnp2, %g2", mci, poll) 
scan_in(remote_emulator_temp 1, mdin) 
scan_in("lda [%gO] mdin, %g3", mci, poll) 

Setting a breakpoint on a specific data memory address reference is very similar 
to the above sequence. The only difference is the value written into memory 
mapped BKC and AcnON asi registers. In the above example, CSPACE, CBKEN and 
lEN_CBK are set. A write-only data address breakpoint would clearcsPACE, 
DB FEN. DBREN' and IEN_DBK while DBWEN' would be set. 

Sequences for programming "Run-for-N" instructions and cycles are similar to 
setting codeIdata breakpoints. The cycle counter breakpoint is most useful for 
statistically profiling execution of a program. The instruction counter breakpoint 
is useful for single stepping, or block stepping through a program execution. 

.. 
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/I prologue 
scan_in(tlsta%gl, [%gO] mtmpltl, mci, poll) 
scan_in(tlsta %g2, [%gO) mtmp2", mci, poll) 
scan_in("sta %g3, (%gO] mdout", mci, poll) 
scan_out(mdout, remote_emulatoctemp 1) 

/I set gl to ASI address for CNTV w/in EDIAG. 
scan_in("or %gO, OxOOQ, %gl" ,mci, poll) 

/I scan-in NEW _CNTV _VALUE for ICNT/CCNT. 
/I read it into %g2; install into CNTV. 
scan_in(NEW _CNTV _VALUE, mdin); • 
scan_in("lda [%gO] mdin, %g2" ,mci, poll) 
scan_in("sta%g2, [%gl] cntvtl,mci, poll) 

/I clear cnts 
scan_in("sta %gO, [%gO] cnts" ,mci, poll) 

II scan-in NEW _AcrION_ VALUE for AcrION. 
II read it into %g2; install it into AcrION. 
scan_in(NEW _AcrION_ VALUE, mdin); 
scan_in("lda [%gO) mdin, %g2" ,mci, poll) 
scan_in("sta%g2, [%gl] action",mci, poll) 

/I scan-in NEW _CNTC_ VALUE for ICNTEN/CCNTEN. 
/I read it into %g2; install it into CNTC. 
scan_in(NEW _CNTC_ VALUE, mdin) 
scan_in("lda (%gO) mdin, %g2" ,mci, poll) 
scan_in("sta%g2, [%gl] cruc" ,mci, poll) 

II epilogue 
scan_in("lda [%gO] mtmpl, %gl", mci. poll) 
scan_in("lda (%gO] mtmp2. %g2", mci. poll) 
scan_in(remote_emulator_teD1pl. mdin) . 
scan_in("lda (%gO) mdin, %g3", mci. poll) 

Each emulation instruction execution requires several multi-bit IrAG TOR scan 
operations. 

.. 
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6.9. Details about Entering 
Emulation 

6.10. Emulation Exeeption 
Issues 

The number of emulation insUuctions per emulator primitive is: 

1 to access an IU register file entry 
4 to access an IU connol register 
7 to access a memory location 
13 to access a floating point register 
13 to set up an instruction(cycle) counter expiration 
21 to set up an instruction (data) address breakpoint 

The number of MDIN (or MDOUT) scan operations per emulator primitive is: 

1 scan operation per IU register file accesses 
1 MDIN scan operation per FP register file write 
1 MDIN and 1 MDOUT scan operation per FP register file read 
2 (MDIN or MDOUT) scan operatio~ per memory access 
3 MDIN scan operations per setting of a breakpoint or counter event 

Each emulation instruction scan in and emulation status scan out takes about 50 
TCK cycles (about 500 native VCK cycles). Each MDIN scan in takes about 40 TCK 
cycles. Each MDOUT scan out takes about 40 TCK cycles. 

Emulation mode can be entered through anyone of six different ways: 

1. Set MCMD.MENTER to force emulation. 
2. Execute SIOM, with MCMD.INTM seL 
3. 1bmugh Code Address Breakpoint. 
4. ~ugh Data Address Breakpoint. 
5. 1bmugh Instruction Counter Breakpoint. 
6. 1bmugh Cycle Counter Breakpoint. 

The first is used by the remote emulation processor to unconditionally present an 
emulation mode request by using the TrAG tap controller to asselt 
MCMD.MENTER. The other ways require ASI registers to be configured so they 
conditionally generate an emulation request. SIGM (a special Viking instruction) 
also allows emulation entry, see 4.4.6 for more detailS. For further description on 
how to set up the breakpoints, see table 4-16. 

During emulation. PSR.ET is negated and MMU.NF is asserted. Negating PSItET 
disables any asynchronous exception from being honored by the Vilcing IU while 
in emulation mode. This includes priority intenuptS, store buffer exceptions, and 
floating point exceptions. Any synchronous non data_acces8_exception will 
cause the ViJcing IU processor to enter watch dog reset. 

JPND informs the emulator that a priority intenupt is being defened while in 
emulation mode. MIFLTD informs the emulator that a store buffer (or emulation 
memory reference) exception is being deferred while in emulation mode and the 
MFSR registefwill describe the.nature of the fault in more detail. MSTAT.PFPX 
informs the emulator that a floating point exception is being deferred while in ,'fC 

emulation mode. When any of these events occurs, the action to be taken is emu-', . 
\iii.., j' 

lator dependent. The remote emulation processor shoulcl avoid issuing an emula-
tion instruction that might cause control to be transferred to an exception handler. 

Revision 2.00 of November 1.1990 



Chapter 6 - Remote Emulation Support 179 

Floating point exceptions during emulation mode are of particular concern, 
requiring elaborate trap handlers. Care must be taken to examine all the signals 
indicating elTOr-free condition before issuing an FP related emulation instruction 
(refer to section 6.3.1.5 for more details. 
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7.1. Multiple System 
Interfaces 

7.1.1. Lower Cost Systems ~ 
MBUS 

7.1.2. Higher Performance 
Systems -+ Viking Bus 

7.1.3. Selecting Bus Modes 

7 
System Interface 

Viking supports a variety of different system environments. This flexibility 
allows system designers to make proper cost and perfonnance tradeoff's. 

This chapter will briefly introduce Viking's two bus interfaces. Further details on 
each interface will be presented in later chapters. In addition, functions which are 
common to both interfaces (clock, reset, inter:rupts, test) will be described in this 
chapter. 

Viking supports two primary bus interfaces. The SPARC MBUS standard is pro­
vided for direct connection to MBUS systems. A more optimized interface, the 
Viking Bus is provided for higher performance systems and other more dedicated 
applications, including the use of an external secon4 level cache. 

For lower cost systems. Viking provides a standard SPARC MBUS interface. The 
MBUS is described in detail in the SPARC MBUS specification. Viking's implemen­
tation of the MBUS will be described in chapter 8. MBUS is a 64-bit multiplexed 
cache consistent bus. Using the MBUS interface. Viking's data cache operates in a 
buffered copy-back mode. with write miss allocation. 

For higher performance, or other non-MBUS systems. Viking provides its own bus 
interface, called the Viking bus. The Viking bus is a non-multiplexed. highly 
pipelined bus which has been optimized to interface with external second level 
cache implementations. The bus is very flexible. allowing Viking to be used in a 
variety of system environments. Using the Viking bus. the data cache operates as 
a write-through cache. Cache consistency is also maintained. Viking Bus opera­
tion is fully described in chapter 9. Use of this bus interface places the processor 
into cc 1'I'IOde, as described in earlier chapters. 

The choice of bus interface must be made statically in the system. Viking 
configures itself for operation in a particular mode based on the CCRDY _ pin. This 
pin must be valid whed RESET_ is deassened, and must never be changed during 
normal system operation. System software may view the state of this pin in the 
MCNTL.MB status bit If the bit is a one. Viking is in MBUS mode. otherwise Vik­
ing bus is selected. 
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7.2. Clock Operation 

7.2.1. Phase Locked Loop 
Operation 

7.2.2. Input Clock 
Requirements 

This section will describe Viking's clock requirements. Proper clocking is essen­
tial at high operating frequencies. In order to reduce system clock skew, a phase 
locked loop (Pll) is implemented on chip. For testing and other purposes, a Pll 

bypass mechanism is provided. When the PLLBYP_ signal is active (low), the Pll 
circuitry will be bypassed completely. 

The Pll. operates by constantly measuring internal clock routing delay and inter­
nally generating a clock which is effectively ahead of the external clock by an 
amount equal to that internal routing delay. This ensures that all intemallogic 
sees a clock signal nearly equivalent to the external clock pin. All system logic 
using the same clock as the processor is expected to provide acceptable setup and 
hold times relative to the processor clock input pin 

Imponant Note: 
Prior to normal operation, the Pll must be allowed time to stabilize. 
During this time, RESET_ should be active. The time required is lOOms 
(milliseconds). 

The input clock to Viking must never be stopped or changed from its 
normal periodic operation while the Pll. is enabled. Doing so will cause 
PlJ.. instability and unpredictable operation. 

While the PlJ.. does improve system performance, it must also be used carefully.· 
As noted above, the external clock. input must be stable at all times. The PlJ.. 

, may take .long periods of time. to stabilize initially. During this initialization time, 
the RESET_ input must be assened, as the internal clock may be unstable. 

Imponant Note: 
It is essential that the rrAG TAP conuoller be reset prior to, or at the 
same time as RESET_ in order for the PlJ.. to begin iilitialization. The 
TAP controller may be initialized either by assening the TRST _ pin, or 
by asserting the TMS pin for five consecutive cycles ofTCK (Test 
ClOck). If this reset does DOt occur, the Pll. clock feedback loop may 
DOt be estabUshed. and ~ctable operation may result 

Whenever the TrAG interface is not in use by a particular system. 
assening the TRST_ signal statically is strongly recommended. 

Other than providing a cle~ stable clock, Viking can tolerate most clock sources 
when the PlJ.. is enabled. 

With the PlJ.. enabled. Vikin, uses only the rising edge of the incoming clock. 
Intemally, Viking multiplies. then divides the clock to provide a stable 50% duty 
cycle clock. Input duty cycle must be at least 2S'IJ (either bigh or low). 

When the PlJ.. is bypassed, care must be taken to provide a SO% duty cycle cloc~/ 
Pin timings for operation with the PU. bypassed are not fully defined. 
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7.3. Reset Operation 

7.3.1. JTAG and Hardware 
Reset 

7.3.2. Pin States During Reset 

7:3.3. Reset Timing 

7.3.4. Response to Reset (RAM 
Redundancy) 

7.3.5. Execution Following 
Reset 
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Imponant Note: 
Operation in a system with the PLL bypassed is not recommended or 
fully specified. Use in this manner will generally require reduced 
operating frequencies and very careful system design. 

Proper reset of Viking is critical. Improper use of reset will result in unpredict­
able operation. From a software perspective, two reset operations are defined: 
Hardware Reset and Watchdog Reset. Since watchdog reset is strictly a function 
of software enol'S. it will not be discussed here. This section will describe 
hardware reset requirements. 

In addition to hardware reset, another reset must be considered for proper system 
operation. nAG TAP Reset must be asserted during initial power-on reset. This 
may be accomplished either by asserting the TRST_ signal, or holding TMS active 
for five cycles ofTCK. 

As soon as RESET_ is assened. Viking will Ui-state all signals immediately 
(except forTDO and ESB). All extemallogic should monitor RESET_ to ensure the 
Validity of control signals. 

Once the PLL has initialized. RESET_ must be assened for an additional sixteen 
cycles. IT funher reset operations are required beyond the initial power-up reset, 
RESET_ need only be assened for a total of eight cycles. Since PLL synchroniza­
tion time is not exact, eight cycles beyond that time is not a critical specification 

Vildng implements internal RAM redundancy to increase component yield. A por­
tion of this redundancy must be initialized each time the component is reset 
(hardware reset ol11y). This initialization takes approximately 340 cycles, and is 
intemally timed. These cycles begin once the RESET_ signal is deassened. and 
before the processor tries to fetch its first instruction. During this time the bus 
will be inactive. Vilcing will Ui-state all 110 signals. All bus requests will be inac­
tive. Viking will execute its first bus cycle 345 cycles after RESET_is deassened. 

Immediately after hardware reset and redundancy repair are complete. Viking 
will execute a reset trap. This trap will cause the processor to enter boot mode 
(MCN'ILBT is set) and begin execution at vinual address OxOOOOOOOO. This will 
force a READ-SlNGLE bus operation at physical address 0xflU000000. The upper 
eight bits are set as a result of boot mode (See section 4.3 - Reset Operation for 
a detailed description of boot mode and processor state at reset. 

In response to the read single operation. system logic should supply two valid 
SPARe instructions on the 64-bit data bus (in accordance with either MBUS,or Vik 
ing bus protocols). Onp: these instructions have entered the pipeline, another' 
read single request for the next two instructions will appear on the bus. TIle phy­
sical addresses requested by these reads will be contiguous until a control 
transfer instruction is executed (nonnally within two or ~ instructions). 
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7.4. Interrupts 

7.5. Memory Model 
Support (PEND J 

Viking provides four external interrupt request signals, IR.L[3:O]. External inter­
rupt requests are given to the processor by setting the IR.L[3:0] pins to the proper 
interrupt level. 

The externally applied level corresponds to the same SPARe interrupt levels. A 
value of zero (1RL{3:0]=OOOO) on the pins indicates no interrupt is present. A value 
of Ox! (IR.L[3:O]= 1111) is considered a non-mDS1cable interrupt All interrupts are 
disabled (even non-maskable interrupt) if the PSR.EI' (enable traps) bit is not set. 

Interrupt requests are level sensitive. System logic is expected to maintain all 
interrupt status, prioritize all external requests, and apply proper interrupt levels. 
Once an interrupt occurs, system software should manipulate any system control 
registers necessuy to satisfy the interrupt request. 

Interrupt requests are synchronized for three cycles after being applied to the 
IRU3:O) pins. A debouncing circuit compares the values of the interrupt requests 
after two and three cycles. If the values are the same, that level interrupt will be 
presented for comparison with PSR.PIL. If the incoming value is greater, or equal 
to Ox!, the interrupt request will be presented to the pipeline (provided PSR.EI' is 
asserted). If the values in these two stages of synchronization are different, no 
interrupt request will be made. 

The synchronization mechanism above allows interrupt requests to be asynchro­
nous. Due to the synchronization time, pending interrupts will remain active for 
several cycles intemally after they are removed extemally. System software 
should ensure that enough time is allowed between clearing external interrupt 
requests and re-enabling interruptS to" the processor. 

The two standard memory models, TSO, and pso (see section 4.5 - Memory 
Model), are supported under system control using the PEND_ input pin. This pin 
may be used in both MBUS and cc modes. It's use is generally not required, or 
recommended in MaUS mode however. Selection ofTSO or PSO mode affects 
MBUS operation only if PEND_ is not always asserted. (In nOrmal operation it 
should be tied to vee). 
Viking will sample this signal prior to the start of all bus transactions which 
require permission to perform a store transaction on the bus. If the PEND_ signal 
is asserted. the access will not begin. PEND_ must be asserted along with the . 
ready response of the previous store to guarantee that it is seen before the next 
store. TIle uansactions which require this check depend on the memory model 
selected. The table below defines the significance ofPEND_ . 

.. 
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7.6.1. JTAG 
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Table 7-1 PEND_ operation 

Viking Bus MBUS 

Transaction Type PSO TSO PSO TSO 

Write-through Store Only if prior STBAR Yes N/A N/A 
Non-cacheable Store Only if prior STBAR Yes Only if prior STBAR Yes 
Swaps Only if prior STBAR Yes N/A N/A 
Non-cacheable Swaps Only if prior STBAR Yes OnlyifpriorSTBAR Yes 
Control Space (CSA_ Yes Yes N/A N/A 
Demaps Yes Yes N/A N/A 
Internal ASI's Yes Yes Yes Yes 
Copyback writes N/A N/A Only if prior STBAR Yes 

Note that internal ASI operations (both loads and stores) will wait for deassertion 
of the PEND_ signal. There is one exception to this, ASI Ox4c, the "Action on 
event" register, which does not depend on. PEND_. 

Viking provides considerable support for system test. This support includes 
TrAG, and several dedicated test pins. 

TrAG boundary scan is provided to allow for system continuity testing. See sec-
. tion 5 -IrAQ Serial Scan Interface. and the IEEE Pl149.1 specification for a.full 
description of this interface. 

The 1I'AG interface is also used to gain access to additional functional test facili ~ 
ties. A BIST (built in self test) mechanism is available that can be used either 
from the 1I'AG interface. or from software. Extensive debugging and emulation 
facilities are also available over TrAG. (See sections 6 - Remote Emulation Sup­
port. and 4.14 - Software Debugging Facilities). 

7.6.2. Dedicated Test 
Functions 

Several device pins are provided to improve external visibility of processor. 
operation. The PIPE{9:0] pins provide information about the current state of the 
processor pipeline. These signals are defined as an aid to system hardware and 
software debug. 

A single strobe pin is available. called ESB. This pin operates under software 
control to provide a programmable external synchronization pulse. It may be trig­
gered by code, ~ or cycle count breakpoint detection (see section 4.14 -
Software Debugging Facilities). A typical application of this signal is to trigger 
logic analysis equipment. 

Viking provides a simple mechanism to disable all outputs. The TEST_pin will 
immediately tri-state all output drivers when asserted. This allows external test 
equipment to control Viking signals. Nonnally,1I'AG boundary scan will be used 
to accomplish this function. The signal is provided primarily for non-IrAQ 
environments. Processor state is not guaranteed after assertion ofTEST_. Note 
that the TOO and ESB pins are not tristated in response to TEST_assertion . 
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. 8.1. Compatibility 

8.2. Selecting MBUS Mode 

8 
:MBUS Interface 

This section describes Viking's implementation of the SPARC MBUS standard. Vik­
ing is fully compliant with the SPARC MBUS standard. . . 
Viking implements level-2 MBUS. This allows operation in a multiple processor 
environment. Cache operation and consistency policies are defined in the MBUS 
speci fication. 

This section will not describe basic MBUS operations. For this information, refer 
. to the MBUS specification. Since the MBUS allows for many variances in detailed 
processor operation, details of Viking's MBUS operation are described . 

Viking may be used in conjunction with some other MBUS processor modules, but 
not all. In particular, modules which require the virtual address superset bits will 
not be compatible. 

Vildng responds properly to all standard MBUS transactions, though it does not 
produce all of them. Only 32-byte burst transactions are supported. All cache 
consistent transactions operate on 32-byte blocks. 

All responses on MSH_ andMIIC are provided at time "A+3" (the third cycle 
after assertion of address on the bus). Vildng can operate in a system with vari­
able response times, up to •• A+ 7". MBUS systems should be designed to accept 
these timing variations. 

Even though Vildng may be protocol compatible with some modules, electrical 
and signal timing differences may make certain modules incompatible. See 
11.2.3 - MBUS pin timing, or the Viking data sheet for pin timing details. 

MBUS operation is selected by driving the CCRDY _ pin inactive. This signal 
sh,ould be driven statically by the system. Any change in the state of this signal 
after ~ deassertion of RESET_will result in unpredictable operation. Operation 
in MBUS mode may be determined by software reading the MCNI'LMB bit. 
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8.3. Module ID 

8.4. Cache Policy 

8.5. Level-2 Consistency 
Operation 

The current module number is determined at reset by the processor. The MID[3:0] 

signals are cOIUlected to Viking's address bus. pins ADDR[3:0]. The module 
number should be asserted statically by system hardware. 

The number may be any value except 0000. which references the reserved boot 
mode address space. 

The leve1-2 MBUS requires copy-back cache operation. Caches must also write­
allocate data for write misses. This is due to a lack of any write broadcast 
(cached data update) operation on the bus. All cacheable writes are done to the 
local cache. so the line must be allocated (read) first for write misses. 

Cacheability for instruction and data references is described in tables 4-6 and 4-7 
respectively. 

The leve1-2 MBUS speCifies a single ownership. write invalidate cache con­
sistency policy. Only a single cache may own a modified copy of a cache line at 
anyone time. Multiple slimed copies of modified or clean data may exist within 
the system at any time. These multiple copies are invalidated any time the cache 
line is modified· (the modified data may then be re-read from the owner and 
cached as modified &: shared infounation). This protocol is described int he 
MBUS specification. 

~ng any coherent read transaction. all processors in the system will assert the 
MSH_ (Shared) signal if they currently have a cached copy of that data. Since 
several caches may be sharing the information. the MSH_ signal is open collector. 
and may be asserted by all caches simultaneously. MSH_ must be pulled inactive 
external to the processor (typically a resistive pull-up). MSH_ may be asserted at 
any time prior to the first data acknowledgment for the transaction. MSH_ must 
be asserted for at least one cycle. 

Any cache may intervene. in a read transaction by asserting the MDI_ (memory 
inhibit) signal. Since there may be only one owner at a time for each cache line. 
only a single cache may assert MIle Viking asserts MSH_ and M1H_ signals in 
cycle .. A+3", three cycles after the address phase of each MBUS transaction. 

Once Viking assertsMDI_ in response to a read (CR. oreRI) transaction. it will 
complete the bus cycle by supplying data and a ready reply starting four cycles 
later. During these four cycles, the memory controller can drive other data and 
ready signals in response to the transaction for two cycles, followed by a thiro 
cycle where the bus is driven high. Any replies received during this time are 
ignored by Viking. No exceptions may be reported after asserting MDI_ • 

.. 

• ~!! Sun Mic:Iosyaems Proprietary Revision 2.00 of November 1.1990 



[ 

Chapter 8 - MBUS Interface 193 

The diagram below represents the cache consistency algorithm used by Viking's 
data cache on the MBUS. 

Figure 8-1 Cache consistency algorithm: Data cache on the MBUS 

.. 
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8.6. MBUS Transactions 

8.6.1. Non-Cacheable 
Operations 

The diagram below represents a simpler consistency algorithm used by Viking's 
instruction cache on the MBUS. 

Figure 8-2 Cache consistency algoritlun: Instruction cache on the MBUS 

Valid 

Viking CR (MSH_ is don't care) 

(U:adlll MISS) 

Bus CR (Assert MSHJ 

Viking will produce all valid MBUS transactions. except for CWI (Coherent Write 
and Invalidate). Viking accept all transactions (including CWI) from other system 
components. 

The transaction type used by Viking depends on the processor state (including the 
instruction, and MMU state). as well as the current state of the cache line within 
the processor. 

For I/O transactions. or during boot up. non-cacMable transactions will be used. 
No snooping is done for these references. The standard MBUS level-! transac­
tions are used for reading and writing, When the store buffer is enabled 
(MCNTL.SB) non-cacheable stores will be queued into ViJcing's store buffer. the 
processor will not wait for completion. All non-cacheable reads will cause the 
buffered stores to copyout before the read is begun. 

Cacheability of transactions is computed according to tables 4-6 and 4-7 

.. 
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8.6.1.1 Reads 

8.6.1.2 Writes 

8.6.1.3 Atomic Operations 

( 

8.6.1.4 Pon Register Reads 

8.6.2. Cacheable Operations 

8.6.2.1 Reads 
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Non-cacheable re2d operations (for code or data) use the READ transaction. Only 
single cycle (64-bits maximum) transfem will be used. Viking cannot burst 
transfer non-cacheable data. 1be transaction may be byte, half-word. word, or 
double word in length. big-endiim word ordering is used (the least significant 
bytes in a word appear on the high bits of tile bus. according to SPARC standards.) 

Non-cacheable write operations are queued in Viking's store buffer. As soon as 
Viking receives a bus grant, the transactions will be issued on the bus. The pro­
cessor will not wait during this time, unless the buffer fills (see section 4.12-
Store Buffer for a detailed description of store buffer operation.) 

Burst writes will not be used for non-cacheable writes. Bytes, half-words, words, 
and double words may all be stored, with big-endian ordering. Any errors are 
reported as deje"ed data store errom. (Only after MMU protection has succeeded). 

For synchronization reasons, all cacheable stores will wait until the store buffer 
has completed all non-cacheable stores before completing. 

Non-cacheable atomic transactions are caused by ex~cution of either SWAP or 
LDSTUB instructions. These operations are perfonned as a locked sequence of 
READ and WRITE transactions. 

The lock bit field in the address phase of the read and write transactions will be 
set. Viking will not release tile bus between the two transactions, unless explicitJ y 
requested by a relinquish and retry (R&R) reply. R&R repliC$ are accepted for 
both read and write portions of atomic transactions. 

MBUS port registers may be read using non-cacheable accesses to physical 
addresses in the range 0xff1~. depending on module number 
being addressed. It is legal for a processOr to address it's own pon register. This 
is the only case of snooping on non-coherent read transactions. 

See section 8.10, for full details of the port register. 

During normal operation, most transactions are cacheable. Cacheable transac­
tions will use the level-2 consistency mechanism. The exact transactions 
requested by Vilcing depend on the instJuction being executed, the cacheability of 
the reference, and the current state of the cache line. 

'There are three typeS of read transactions on the MBUS. Standard non-coherent 
READ transactions are used fornon-cacheable operations. Coherent Read (CR) 
and Coherent Read with Invalidate (CRl) transactions are used for cacheable 
references. 

CR transactions are used to read data from the current ow~r. The owner may be 
memory, or another cadle. CR will be used for all data cache load misses. and all 
instruction cache misses. If another cache owns the data, it will respond by 
asserting the MIH_ signal, and providing the data. 

CRI transactions are used to read data from the current owner for write allocate 
operations. Use of this transaction implies that the data will be modified upon 
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8.6.2.2 Writes 

8.6.2.3 Atomic Operations 

8.6.2.4 Pure Consistency 
Operations 

8.6.3. Table Walk Operations 

arrival at the processor. 111e current owner should relinquish ownership. all 
copies of the cache line should be invalidated. After the transaction completes. 
Viking will be the excillsive owner of the cache line. 

All CR and CRI transactions use critical word first ordering. 1be doubleword 
which is needed first will be the starting address of the transaction. Doublewords 
from memory must be rewmed in modIdo 32-byte address order. Once the 
needed data anives, the processor will use it immediately. 

Any processor which has a valid cached copy of data referenced by CR transac­
tions must assen the MSH_ signal to indicate that the infonnation is shared. Vik­
ing can accept the assertion of MSH_ at any time until receipt of the first data 
word. 

If the data is owned by another cache, Vildng will ignore any data ready 
responses until four cycles beyond the assertion of MIle nus allows memory 
controllers to begin transmitting data sooner. Memory controllers must not 
respond with data until a time equal to the maximum MIle assertion delay for 
any cache in the system. 

MBUS does not provide any true coherent write ttansactions. A processor must 
own data before it may write to it As a result. all cacheable write operations are 
done locally to a processor cache. 1be WRITE transaction is used for all non­
cacheable stores, and for cache copyback operations. WRITE operations to any 
~ data will cause CI transactions to be issued to all other shared ~pies. 

Vildng will relinquish ownership of a cache line -under several circumstances: As 
a result of a copyback operation (using a WRITE ttansaction). In response to a CRI 
transaction for that line. In response to either a CI, or CWI transaction. 

Since all cacl1eable data is modified locally, no special handling is needed for 
cacheable atomic operations. A normal CRI transaction is used to fetch read data, 
and an internal write operation will store the modified data locally. 

Vilcing will request only a single type of pure consistency operation (operations 
which transfer no data. but affect the state of a cached line). This is the CI, 
coMrent invalidate. 1be CI will invalidate all cached copies of a line in the sys­
tem. 'Ibis is used when the processor attemptS a store to a slimed line, regardless 
of ownership. After the CI, the processor will become the excillsive owner of the 
cache line. The processor will wait for proper completion of the CI transaction 
before allowing the internal write to occur. 

All page tables should be treated as non CQCMable in Viking direct MBUS sys­
tems. As a result. only level-l transactions are used to reference page tables. Dur­
ing the duration of the table wdlk. Vildng will maintain bus ownership, unless ' 
explicidy told to release by an R&R response. 1be lock bit in the MAD field will 
be set. 
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8.6.4. Bus-initiated 
(consistency) 
Operations 

8.6.4.1 Reads 

8.6.4.2 Write 

8.6.4.3 Pure Consistency 
Operations 

8.7. Store ButTer Operation 
inMBUSMode 
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All levels of the page table will be read with standard single word READ transac­
tions. Updates to R and M bits. or just M bits will be done with standard WRITE 
operations. Updates the the R bit only will be done with non-cacheable atomic 
swaps (See non-cacheable atomic references above). 

This mechanism eliminates potential status bit inconsistencies when multiple 
MMUs are attempting to update page tables simultaneously. 

Viking maintains cache consistency on the level-2 MBUS by snooping other pro­
cessors transactions. The sections below describe three different classes of con­
sistency operations that Viking must participate in. 

Viking will respond with the proper MSH_ and MIlC signals in response to a 
coherent read (CR) transaction on the bus. These signals ~ driven in the "A+3" 
cycle. If Viking owns the cache line. after asserting MIle Viking will wait an 
additional four cycles and respond with data. For CRI transactions. the MSH_ sig­
nal will never be assened, MIH_ will be asserted if the processor owns the data. 

The MSH_ pin is driven as an open collector style signal. It will only be driven 
low, it must be pulled inactive externally. Anytime MIH_ must be driven, it will 
be driven low for a cycle, then driven high again for a cycle, then tri-stated. 

Since write transactions are non-coherent, Viking does not snoop these opera-
tions. CWI transactions are treated as simple invalidates. . 

Viking will treat all pure consistency operations as simple invalidations. This 
includes CI and CWI. 

Since no reply from the processor is required, Viking can accept CI and CWI tran­
sactions at maximum bus rate, every other cycle. The rate of these transactions is 
controlled by system logic, and will generally be slower than two cycles per tran­
saction. 

Viking's store buffer will be used to buffer all copy back data. as well as non­
cacheable stores in MBUS mode. Any errors on these transactions will be reported 
as deferred dIlla_store_e"ors. See section 4.5.6 - Memory, Exceptions and 
No-Fault operation for details of these exceptions. 

Viking's store buffer maintains consistency. During copy back operations, the 
store buffer becomes the owner of a cache line. The store buffer will snoop all 
coherent read operations and respond appropriately with the status of the line. By 
definition, the contents of the copyback buffer are owned. Data is always 
returned in critical word first order. 

The following table describes the actions taken if a coherent transaction hits copy 
back data in Viking's store buffer: 

• s.un 
-,u.n. 
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Table 8-1 Store buffer copyback snoop hit actions 

MBUS transaction Action 
CR MIH_. MSH_. supply data, continue copyback 
CRI Mlle. supply data. cancel copyback 
a cancel copyback 
CWI cancel copyback 

8.8. Bus Arbitration Viking requests the use of the MBUS with the MBR_ signal. This signal will be 
asserted when there is any internal bus cycle pending. Since Viking issues some 
transactions speculatively, the request for a particular transaction may disappear 
after the bus has been requested. The MBR_ signal will be deasserted immediately 
should this occur. If the internal request is still valid when the MBUS is granted, 
the transaction will occur. Viking will attempt to overlap arbitration with current 
bus cycles (including its own bus cycles). 

8.9. Error and Retry 
- Handling 

8.9.1. Errors 

A processor is granted future use of the bus by receiving the MBG_ signal. When 
MBG_ is receiVed, the bus may still be busy servicing the previous-owner. This 
will be indicated by the MBB_ (MBUS busy) signal. The MBR_ signal will be " 
deassened as soon as MBG_ is assened. In order to gain ownership of the bus, the ", _-­
processor waits for its MBG_ signal to be active, and the MBB_ to be deassened. 
Once this OCCUrs, it will"assertMBB_. After arbitration is complete, the processor 
will assert MAS_ to begin the transaction. " 

Bus busy will be maintained during locked and atomic transactions (like table 
walks). If Viking already owns the bus there will be no arbitration delay to begin 
subsequent transactions. 

Several different transaction responses are defined by the MBUS. Successful bus 
cycles are terminated with the Valid Data Transfer acknowledgment (Ready). 

Unsuccessful transactions may be terminated with several different error 
responses, or retries. Viking supports all error responses, but ~y one of the retry 
responses. 

All error responses are applied to the cunent data transfer only. Any data 
received with a Valid Data Transfer response will be assumed correct and used 
intemally. If any errors occur during the transfer of a cache line, the internal 
cache will not be validated. All data returned prior to the error may be used inter­
nally. 

'There are three error responses defined. 'These are ERROR1 (Bus Error), ERROR2 
(runeout), and ERROR) (Uncorrectable). Viking treats all these errors in the same 
manner, and sets the MFSR to indicate the exact error response, as shown in the ,-­
table: 
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8.9.2. Asynchronous Errors 

8.9.3. Relinquish and Retry 
(R&R) 

8.9.3.1 Retry 

8.10~ Port Register 
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Response MFSR Setting 
ERROR1 (Bus Error) MFSR.BE 
ERROR2 (Timeout) MFSR.TO 
ERRORJ (Uncorrectable) MFSR.UC 

All RETRY responses will be treated as ERRORJ replies. 

Viking will assert the AERR_ signal whenever the processor enters error mode, or 
an exception occurs during a store buffer copyout AERR_ will remain asserted 
until the MFSR register is cleared of the exception (it is clear on read). 

Viking supports relinquish and retry (R&R) replies only on the first response to 
any transaction, including copyback operations. After receiving an R&R, Viking 
will release bus ownership, and attempt to retry the transaction. 

Viking does not support the retry reply. All retries will be turned in the equivalent 
ofERRORJ replies. Viking expects that all data returned to the processor with a 
READY response is truly correct 1bis data is used immediately by the pipeline. 
Viking can not tolerate late error responses under any circumstances. 

. The MaUS port register contains vendor identification information for the com­
ponent Processors respond to READ transactions to an address which is based on 
the current modUle ID value (See MID above). See the MBUS specification for 
further details. 

Viking will return the value OxOOOOOOO4 on MAD[31:O] in response to any read of 
its port register. This indicates device 0, revision 0 for the vendor (Texas instru­
ments). The version number may change in future releases of the component 
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8.11. MBUS Pin 
Connections 

Since Viking's bus interface is shared between MBUS and Viking Bus, unique pin 
connections must be made for each interface. The table below shows pin connec­
tivity for Viking on the MBUS. Only connections unique to the MBUS are shown 
here. 

Pin Type Pin Name Direction MBUS Connection 
ADDR{35:0] I/O ADDR[3:0)=MID[3:0) 

ADDR[35:4]=n/c 
Busses DATA[63:0] 110 MAD[63:0] 
[l08] DPAR[O:7] I/O nIc 

Data Size BURST 0 nIc 
[3] SIZE[l:O] 0 nIc 

Request RGRT_ I vee 
Strobes WGRT_ I MBG_ 

[3] BUSREQ.. 0 MBR_ 
ARDY_ I/O MAS_ 

CCRDY_ I vee 
RRDY_ I vee 
WRDY_ I/O MRDY_ 
CCHBL_ 0 nIc 

Access CMDS_ 110 n/C 
Strobes CSA_ 0 D/c 

(13) LDST_ 0 D/c 
SU_ O D/c 

DEMAP_ ·110 D/c 
RD_ 110 D/c 

WEE_ 110 MBB_ 
WR_ 110 D/c 

IRL[3:0] I IRL[3:O] 
MEXC_ I MERR_ 

Exception PENn_ I vee 
Signals RESET_ I RSTIN_ 

[9] RETRY_ I MRTY_ 
ERROR_ 0 AERR_ 

vcr I a..x 
Oock VPU.RC I VPU.RC 

PlLBVP_ I vee 
Cache OE_ 110 D/c 

[9] WE.JO:7] 0 D/c 
Copyback OWNER_ 110 MIH_ 

. [2] SHARED_ 110 MSH~ 

.. 
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9.1. Overview 

9.1.1. Bus Transaction 
Overview· 

9.1.2. Cache Consistency 

9 
Viking Bus Interface 

The Viking Bus in1erface provides a non-multiplexed highly pipelined bus inter­
face for a variety of system applications. The interface is very flexible. and can 
be used to cormect to a range of systems from low cost DRAM optimized designs. 
to high performance second level cache based machines. 

The following sections introduce the basic transactions produced by the Viking 
Bus. The interaction of these transactions with the cache consistency protocol 
will be described as well. 

Read and write single transactions are the most basic bus operations. They will 
appear very similar in most designs. Block read and burst write transactions are 
used to improve Viking-bus bandwidth.. Most transactions may be pipelined to 
provide additional perfOlDlance improvements. A swap (atomic load/store) 
operation is defined to provide locked bus transactions. 

As examples, the operation of these bus cycles in several different system 
configurations will be provided. 

When using the Viking Bus, the processor is operating in CC mode. This forces 
the intemal data cache to operate as a write through cache. Since the cache 
writes through. all modifications that the processor makes to cached data will be 
reflected extemally. 1bese transactions are used to keep in1ernal caches, external 
caches, and other external processors up to date with any write operations. 

Vilcing's internal caches are kept up to date by i1JValidation. Whenever an exter­
nal bus master assens the CMDS_ and WR_ signals (with DEMAr _ deasserted), any 
copies of data cached intemaIly that match the address on the bus will be invali­
dated. 

In systems with external caches, inclusion is nolDlally maintained with the exter­
nal cache. This allows the external cache controller to filter many system bus 
transactions, and pass OIl only those which require action within the first level 
cachCs to Viking. 
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9.1.3. MMU Consistency 
"Demap" transactions are used by Viking to flush one or more pages from its 
MMU's TI.B. Internally, these are generated by reference MMU flush operations 
(see section 4.11.7 - MMU Probe and Demap/Aush). The information transmit­
ted for a DeMap includes viltUal address and type, which the MMU uses as cri­
teria to match pages in the TI.B for removal. The context to be used for the 
demap is broadcast in bits 47 through 32. The lower 32 bits are equivalent to the 
data fonnat of the ftushoperation. The exact format is: 

Table 9-1 Broadcast DeMapDataFormat 

9.2. 'Systems Without 
External Cache 

I Rsvd Context VFPA Rsvd Type Rsvd 
63 48 47 32 31 12 11 10 8 7 1 

In addition to broadcasting this demap transaction extemally, Viking can receive 
external demaps. When a demap is received, the processor executes the demap as 
if it had been generated internally, only using the provided context rather than the 
current internal context. 

Vildng requires a single ready reply for the demap operation. It is system 
hardw8leS' responsibility to ensure that the demap is broadcast to, and completed 
by all MMUs in the system. Incoming demaps use a two phase request/reply pro­
tocoL 

. Jmponam Note: 
If broadcast DeMaps are used, only a single DeMap transaction may be 
pending in the system at any one time. System software is responsible 
for maintaining this. Indeterminate operation may result if multiple 
DeMaps are in progress at the same time by any processor. 

Viking systems built without an external cache are targeted towards lower cost. 
and ge:nerally lower performance applications. Good performance can be 
achieved in this environment by taking full advantage of Vildng's on-chip caches, 
and providing low latency access to system memory. The Vildng bus allows for 
efficient implementation of a variety of systems in this class. 

1be sections below will describe operation of such a system as an example. The 
system described assumes the use of static column mode dynamic RAM. Similar 
configurations could be built with nibble, or fast page motU DRAM . 

.. 
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9.2.1. Cache Consistency 
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An example of this interface is shown below: 

Figure 9-1 Viking Non-Cached System 
Addrels 

Data 
Strobes 
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I ' : ... 1 ... 1 >J~I sS a~ 
... >-

~i ~; ~! :e'J @§ ;,; = 
::> ::> :"'~ '" • • Memory IJ() ." 

Viking Controlla' Processor Additional 

(MC) (lOP) Processor(s 
......................... 

D D 
DRAM Interface I/O Interface 

This diagram shows the principle components of such a system: Viking, a 
memory controller device, and an ua processor. The diagram isa logical 
diagram only. Additional devices, and possibly buffering may be required 
depending on the exact implementatiorL The protocol allows for additional pro­
cessors, although this may contribute unacceptable bus traffic and electrical load­
ing. 

Two simplifications are made to the protocol and interconnect for this environ­
ment One involves Viking's bus grant signals, the other deals with its •• data 
ready" signals. As discussed in section 9.3, Viking has separate bus grant signals 
for read and write: RGRT_ and WGRT_. which are separate to allow overlapped 
read and write cache misses. RRDY_ and WRDY_ are also separate, to clearly 
qualify data for these accesses. Since this overlap is not needed in a DRAM based 
system, RGRT_ and WGRT_ may be tied together, to fonn a single bus grant signal, 
shown above as BUSGRT_. Similarly, RRDY_ and WRDY_ are wired together, 
defined above as DRDY_. 

In this configuration, cache consistency is managed with invalidation. Since Vik­
ing is operating in CC mode, all internal store operations will write through to 
external memory. All other caches in the system should see these write transac­
tions and cause any internal copies of that cache line to be invalidated. 

Viking's internal cachet snoop on each others transactions as they appear on the 
bus. Only write transactions will cause invalidation to occur. All read responses 
will come from main memory, which is always correct due to the write through 
operation of the cache. Self modifying code is implicitly supported by this 
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9.2.2. Arbitration 

protocol, FLUSH instructions are still required to guarantee proper operation (see 
section 4.4.4 - Rush (IFLUSH». 

When Viking needs to perform an external bus access, it must have access to the 
system bus. Access is granted to Viking by asserting the bus grant signals RGRT_ 
and WGRT_. In systems with external caches, these signals will nonnally be con­
trolled independently. In simpler DRAM based systems, a single compOsite 
BUSGRT_ signal may be used, by connecting WGRT_ and RGRT_ together. 

Viking supports lazy arbitration; if the bus grant is already assened when Viking 
wants to begin an access, the access will begin immediately. If a grant is not 
present, the BUSREQ signal will be asserted until the bus is granted. Once the 
bus is granted, Viking may issue an access, as described in the following sections. 
The bus grant must remain active for the duration of the bus cycle. If the grant 
signal is deasserted, Viking will tri-swe it's busses on the following cycle. 

Important Note: 
Viking will begin a transaction on the bus immediately if the bus grant 
signals are active. Since it is possible for Viking to begin a bus cycle at 
the same time external arbitration is removing these bus grants. system 
logic must monitor the CMDS_ signal to ensure that a transaction has 
not started as the bus grant was removed. Since external arbiters should 
ensure that an empty cycle exists between bus owners, this cycle may "I·· "­

be used to detect the arbitration collision. 

Once the bus grant has been deasserted, Viking will tri-state it's I/O 
signals on the next cycle. 1bis will generally interfere with the transac­
tion that has been started, although" some transaction may still be com­
plete<l. 

When this situation occurs, it should be resolved by retrying Viking's 
transaction. When the memory or external cache controller detects the 
arbitration conftid (grant is deasserted and CMDS_ is asserted), it 
should immediately assert the REI'RY _ signal. This will force Viking to 
cancel the pending transaction and re-arbitrate for use of the bus. 

Viking also samples the OE_ pin to prevent collisions with returning read data 
from reads generated by the external cache controller. Although it is generally 
legal for Viking to overlap write cycles with outstanding read miss requests, this 
can cause a data drive COnOid when the external cache controller is reading from 
the SRAM, and Viking tries to begin a store transaction. Viking will not initiate 
driving the data bus if the Oil. signal was asserted extemally on the previous 
cycle. 1bis case should generally be covered by arbitration, but is included for 
extra protection. .. 
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9.2.3. Error Reporting 

Table 9-2 

9.2.4. Memory and 110 
Transactions 

MEXC 
1 
1 
1 
1 
0 
0 
0 
0 
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All Viking bus transactions may have error responses. There are several different 
types of error responses which are encoded on the RRDY ... WRDY_, RETRY_ and 
MEXC_ signals. The encoding is similar to the encoding defined for MBUS error 
responses. RRDY_ and WRDY_ are interpreted the same way, qualified by read and 
write transactions. The table below defines the legal replies: 

Rep/yCodes 

WRDYJRRDY RETRY Reply Definition 
1 1 No reply (idle) 
1 0 Retry 
0 1 Data transfer complete 
0 0 Error: UD (Undefined) 
1 1 Error: BE (Bus Error) 
1 0 Error: TO (Timeout) 
0 1 Error: UC (Uncorrectable) 
0 0 megal Response (Reserved) 

1broughout the bus cycle examples in this chapter, a standard error response with 
MEXC_ and either (or both) RRDY_ orWRDY_ asserted is used. This error will be 
interpreted as an uncorrectable error. 

Other than retry responses, the error replies are all treated in exactly the same 
-manner. The particular error type is decoded and use to set the appropriate bits in 
the MFSR. See section 4.11.11 for a full description of the MFSR register. 

Memory transactions are generally cacheable. while 'Va transactions are gen­
erally nol Cacheable read operations, with the exception of MMU table walk 
operations, will use read block transactions. Non-Cacheable transactions will 
always use single cycle transfers. 1be CCHBL_ signal will be asserted during all 
cacheable transactions . 

.. 
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9.2.4.1 Read Single 

9.2.4.2 Read Block 

The following timing diagram shows a Viking read single operation. The read 
single is indicated by the BURST signal being inactive. Read singles may be one, 
two, four, or eight bytes; specified by SJZE[l:O). An example of a read single is 
shown below. Timing will vary depending on the devices used. 

-. 
_.,..-r . ... u. 
CIIDS. 

lID. -. -. 
_.�WD�'_ -

Figure 9-2 Read Single Protocol 
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This diagram shows Viking arbitrating for the bus, using BUSREO- and BUSGRT_ 
(RGRT.JWGRTJ. The commlllld SITobe signal. CMDS_, is then asserted, identify­
ing the beginning of the access, and qualifying the initial address and strobes, 
such as RD ... WR... BURST, and SIZE. The RD ... WIt-. and SlZE[1:0) signals will 
remain active for the duration of the transfer. The BURST signal will be inactive 
for all read single operations. 

The memory controller responds with AmY ... to show the current address has 
been accepted, and that another may be sent. DRDY _ (RRDY.JWRDY.J is also 
asserted by the controller to qualify returned data. If an enor is encountered on 
the read, MEXC_ may be asserted to terminate the access, as shown in the exam­
ple above •. 

Read block timing is similar in some respects to the read single. However, its 
target is always memory, since read blocks are cacheable accesses. 32-bytes of 
data are always returned. Read block latency is system dependent, and to a large 
degree determines system performance. A read block operation to static column 
DRAM is shown in the figure below. This figure asswnes that the memory system 
is capable of providing one data word every other cycle. 

The transaction begins in the same manner as the read single. The BURST signal 
will be active along with the command strobe assertion. 'BURST will remain active 
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for the first three transfers and deassert for the fourth. indicating the end of the 
transaction. 

Figure 9-3 SCRAM Read Block - Alternate Cycle Data 
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TIle memory conttoller responds with ARDY_. to show the current address has 
been accepted, and that another may be senL DRDY _ (RRDY.JWRDY.J is also 
asserted to qualify returned data 1be last line. "DRAM Cycle", is given as an 
example of possible SCRAM timing. 

In order to improve performance, it is possible to use two banks of memory to 
interleave data transfer. This can achieve twice the memory bandwidth of the 
previous example. Operation in a system such as this is described to show the 
flexibility of the Viking bus in supporting different memory configurations. After 
an initial access time, this model can return subsequent data doublewords every 
cycle. This example also shows no BUSREQ..; when Viking already has the bus 
(RGRT.JWGRT_ is asserted), it may begin an access immediately . 
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Figure 9-4 Read Block - Dala on Consecutive Cycles 
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This configuration has ARDY_ constantly asserted, allowing Viking to send out all 
four block addresses immediately in consecutive cycles. This allows the memory . 
controller to look ahead into the transaction and stan: memory cycles as early as 
possible. 

The memory controller may return exceptions along with any of the four double­
words by assening MEXC_, as shown below. Vilcing also checks parity on each of 
the incoming doublewords OfMCNTL.PE is enabled). Memory exceptions are sig­
naled for both parity enors and MEXC_. The handling of memory exceptions is 
described in further detail in section 4.5.6. 

Memory exceptions always invalidate the Viking cache block into which they 
were being placed. However, the execution stream actually responds to the 
exception only if the specific exception data was being demanded by the pipe­
line. In all other cases. the access is treated as a prefetch, and the enors are 
ignored. An example of memory exception signalling is shown below. . 

.. 
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9.2.4.3 Overlapped Read 
Blocks 
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Figure 9·5 Readfrom SCRAM with Exception 
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To further improve memory usage, Viking can overlap memory reads to a large 
extent The example below illustrates this overlap. 
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Figure 9-6 Overlapped Read Blocks 
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9.2.4.4 Write Singles 

In this example, as in figure 9-4, ARDY _ is grounded, allowing subblock 
addresses to be issued in consecutive cycles. DRDY_ is assened for each returned 
doubleword. However, the second read begins before the first has completed. 
Specifically, once Viking has seen the first DRDY_ of the previous access, the next 
may begin. When the read blocks are to the same SCRAM page, the effect is to 
combine them, into one nearly continuous stream of reads. Even without con­
secutive SCRAM hits, memory latency is reduced significantly. Typically, the 
memory controller will check if the two bus transactions are to the same RAM 
page, which would allow use of static column or page mode DRAM optimizations. 

Note that overlapped read singles are precluded. A read cannot stan until one 
DRDY_ is seen from the previous read; however, this single DRDY_ completes the 
previous transaction. This also prevents the potential complexity of overlapped 
I/O reads. 

Overlapping may be disabled by negating the bus grant signals (RGRT.../WGRTJ 
after each read block has started. As an alternative, not assening ARDY_ con­
stantly will eliminate the overlap. 

A write single is shown below. In this particular example, Viking's bus grant sig­
nals are not assened, so Viking must request the bus first before proceeding. As 
with reads, CMDS_ is then assened for one cycle, to begin the access. ADDR[2:0] 
indicates the staning position of the transfer on the data bus, and SIZE{I:01 indi­
cates the number of bytes (1,2,4,8). WR_ identifies this transaction as a write, it 
will remain assened for the duration of the write. 

Figure 9-7 Write Single to DRAM 
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Note that Address and Data are driven throughout the write cycle, until a WRDY _"--. 
is received. Parity is generated and driven with data. Although ARDY _ is 
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9.2.4.5 Burst Writes 
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grounded, as in the earlier read block cases, the address does not advance until 
data is also accepted, with DRDY_. This avoids confusion between consecutive 
write singles. Memory errors may also be reponed by the memory controller 
with MEXC_ in this cycle, as shown below: 

Figure 9-8 Write Single to DRAM with Exception 
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The WEE_ signal controls assertion of the WE[7:0] .pins. If WEE_ is not assened 
prior to the ready response, the WE[7:0] pins will remain in tri-state. 

Viking may issue an aIbitrary length seqUence of write single transactions as a 
write burst. This burst can continue as long as the store transactions in the store 
buffer are within the same 32-byte cache line. Any transaction crossing this 
boundary will cause the write burst to tenninate. The individual transfers within 
the burst may be of any size. They need not be to consecutive bytes or words, 
only within the cache line. 

This optimization is typically used to eliminate cache tag checks in 
configurations with an external cache, but it can also be used in DRAM based 
designs as described in this section. In particular, since the burst does not cross 
32-byte boundaries, it is guaranteed not to cross the page address of most 
dynamic rams (static column, nibble mode, page mode, etc.). This allows optim­
ized DRAM write cycles to be used, typically avoiding RAS time. 

An example burst write is shown below. The figure displays a burst of three 
writes. .. 
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9.2.4.6 Overlapped 
Read/Wri~ 

Figure 9-9 Burst Write to SCRAM 
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The burst is identified by two signals, CMDS_ and BURST. Command strobe is 
asserted once at the beginning of.the burst BURST will remain asserted until the 
beginning of the last ~tion in the burst The next data and address in the 
burst will appear in the cycle immediately following assertion of the WRDY _ sig­
nal. CMDS_ will not be asserted for each transfer. Assertion of the BURST signal 
indicates that there will be at least one more store in the burst. 

The WEE_ signal is used to enable subsequent transfers in a burst write. If the 
WEE_ signal is not asserted prior to the first ready response, subsequent transfers 
will be forced to reassert CMDS_. This essentially disables all burst write transac­
tions. The WEE_ signal also controls assertion of the WE[7:O] signals. If WEE_ is 
not asserted any time before the first ready, the WE[7:O] signals will remain in tri­
state. 

Read and write cycles may be overlapped in the same manner as overlapped 
reads. The initial write latency may be interleaved with a previOUS read. Viking 
can overlap any write with a preceding read block, as shown below. Store data is 
not valid until all data from the preceding read block has been returned. System 
logic is responsible for detemlining when the data is valid on the bus, there is no 
explicit signal to indicate this. Viking automatically insens a single buffer cycle 
between incoming read data, and outgoing write data, to avoid bus collisions. 
Once store data is driven on the bus, it will remain until WRDY _ is asserted. .. 
Write bursts may overlap read blocks. as well as write singles, since the protocol 
is identical. Only the first address will overlap with data being returned on the 
bus . 
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9.2.4.7 Swap 
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Figure 9·10 Overlapped Read/Write Block 
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This overlap can be disabled by negating the bus grant signal (WORT..) during the 
read block access. 

Viking performs swaps by issuing writes before reads~ This allows system logic 
to takes advantage of the read·modify·write cycle of most DRAMS, allowing the 
Swap to be performed in one memory cycle. The timing for this is shown below. 
Swap bus cycles are generated for the SWAP and LDSTUB transactions, as well as 
some page table status updates from. the MMU. Two ready responses are required 
for this transaction: one for the write portion, another for the read. The memory 
controller must store the write data during the write phase, and only modify 
memory after the read phase has completed. System logic should not return data 
for the read phase until the RD_ signal has been asserted. Returning data sooner 
may cause bus drive confficts . 

.. 
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9.2.4.8 Processor Initiated 
Demap 

Figure 9-11 Swap with SCRAM 
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LDST_ identifies an access as an atomic Swap. SIZE[l:O) indicates whether one or 
'four bytes will be swapped (these are the only legal sizes for swaps). LDST_. RD_., "~ 

and WR_ are all assened continuously for the duration of the swap operation. 
After the first DRDY _ assertion. Vildng will wait for another DRDY_. indicating 
that read datil is ready. To return this old data. the memory controller must 
buffer the store data. then read memory first -After data is returned to Viking. it 
can then write the contents of the buffer into the RAM, using the second portion 
of a read-modify-write Cycle. 

Viking uses the Demap transaction to remove a PrE from all system nBs. In this 
type of system, a demap may affect an 110 nB, other processor MMUs, or simply 
be reflected back by the memory controller with no action taken in the system. 
1be timing for the demap transaction is simUar to a swap, two replies are 
required. 1be first reply (using WRDY_ acknowledges receipt of the demap 
request. The second reply intOnDS the processor that the demap has successfully 
completed across the system, and is signalled with the RRDY_ signal. Both ready 
signals may be assened at the same time, as shown in the diagram below, but two 
separate ready responses must be given. Exceptions may be reponed to the 
demap, by asserting the exception along with the RRDY_ response. 

,~' 
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9.2.4.9 External Demap 
Requests 
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Figure 9-12 Processor Initiated Demap 
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The demap is signaled by assertion of DEMAP _ and CMDS_. All information for 
the demap, including the virtual address, context, and command inform~tion, is 

. passed on DATA[63:O). The address is a "don't care" for demaps, and will be all 
zeroes. The format is defined in table 9-1. 

Many systems may chose not to take any action in response to the Demap. They 
must respond to the demap with two RRDY..JWRDY _ assertions. In this case, the 
memory controller may hold RRDY..JWRDY_ active for two consecutive cycles. 

Important Note: 
Ifbroadcast DeMaps are used, only a single DeMap transaction may be 
pending in the system at any one time. System software is responsible 
for maintaining this. Indeterminate operation may result if multiple 
DeMaps are in progress at the same time by any processor. 

Incoming demaps use a two phase protocol. The fim phase of the protocol is an 
external tlemtzp request. The second phase is a reply to that request There may 
be other bus activity between the request and reply. 

The request portion of the demap is issued by an external bus master activating 
CMOS_, and DEMAP _. DATA(63:0] should contain the demap command in the for­
mat described in table 9-1. This command should be issued on the bus for a sin­
gle cycle. Viking will not respond to this request immediately. 

. .. 
Once the external request has been serviced internally, Viking will begin a demap 
reply transaction. This reply appears on the bus similar to an internally generated 
demap. The major difference being that it is signalled as a read. rather than write. 
The reply is signalled by Viking asserting CMDS_, RD __ and DEMAP _. System 
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9.2.5. Bus Monitoring 

9.3. External Cache Based 
Machines 

logic should respond with a ready (RRDY.J to complete the transaction. An 
example external demap transaction is. shown below. 

Figure 9-13 ExterMlly Generated Demop and Reply 
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In cc mode, all consistency is done through invalidation. Whenever the bus 
grant (RGRT...JWGRT.J signals are deasserted, an external bus master is free to ini­
tiate an invalidation on the Viking bus. The external master must assert CMDS_. 
WIL. and ADDR[3S:O). 

Viking's Bus Unit supports an external second level cache, which Significantly 
enhances perfOlUlance. This E-cache may be built primarily from discrete 
SRAM chips, allowing it to easily track advances in commercial RAM technol­
ogy. The on-chip control logic supports a simple, flexible cache design. for the 
different sizes, types and speeds of SRAMs which may be available upon 
Vildng's completion. 

An exremal cache controller (CC) controls the cache and provides an interface to 
memory and VO. The external cache controller also implements system cache 
consistency functions, in conjunction with Viking cache invalidations. 

, [ 

The key features and operaticms descn"bed in this section are pipelined memory 
transfers, overiapped cache accesses, and cache consistency operations. ~~ 
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9.3.1. Basic System 
Configuration 

9.3.2. External Cache 
Organization 
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This section will describe general processor operation with the MXCC cache con­
troller chip, along with pipelined cache RAMS. Detailed operation of the MXCC is 
described in a separate document - the MXCC Specification. The'nominal pro­
cessor l'TIOdule configuration is shown below: 

Figure 9-14 Viking with External Cache 

CACHE 
CON'tROILER 

The external cache nonnally consists of eight SRAM chips. These RAM chips are 
organized as either 128Kx9 or 128Kx8. The "by nine" configuration provides 
for external cache parity. 

The CC is responsible for controlling Viking's access.to the cache, including bus 
grant and data ready signals. The CC must also process cache misses, and cache 
consistency operations (snoops). This requires an interface to a system memory 
bus, as shown to ·the right of the figure. 

To optimize cache miss handling, Viking has separate bus grant·and data ready 
strobes for reads and writes. TIle use of these strobes will be shown below in 
detail, as cache misses are discussed. 

Many E-cache characteristics arise from Viking, the MXCC chip, system require­
ments, and the use of discrete RAM components. This section generally describes 
one external cache implementation, many alternatives are possible. Some of the 
characteristics of this environment are described below. 

TIle E-cache is always a physical address cache. Typically, the cache is imple­
mented as a direct mapped cache, but it is possible to construct set associative 
caches. The E-cache must have a line size of at least 32-bytes (the processor 
intemalline size). Larger line sizes can be accommodated, with appropriate logic 
in the cache controller. Sub-blocking may be implemented. as long as the sub 
block at least 32-bytes. Processor data.access is done on a 64-bit data bus. The 
system bus interface can be 64-bits. or possibly larger. 

TIle cache controller is free to implement whatever cache consistency policy 
desired. The cache controller interacts with Viking using invalidation requests to 
propagate the consisteney policy into the processor. Typically, the cache con­
troller contains an integrated set of tags for the E-Cache. These tags are kept up 
to date as a superset of the infonnation contained in Viking's caches. This allows 
the cache controller to snoop bus activity and .only pass required invalidation 
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9.3.3. Consistency 
Requirements 

requests in to the processor. There is some loss of internal cache occupancy due 
to this policy of inclusion, which is minimized by the large size of the external 
cache. . 

The E-cache is a single processor cache. Generally, it should not be shared with 
other processors. This is largely due to the high bandwidth requirements imposed 
by a single Viking processor. Although it is not recommended, sharing can be 
accomplished by conlOlling bus arbitration as described above. 

The E-cache·protocol is optimized for single cycle pipelined transactions. This 
assumes registered input and output SRAM devices. An E-cache read takes three 
cycles to complete, throughput is one read per cycle (pipelined). Non-pipelined 
RAMs can be used, with reduced performance. A variety of access times can be 
supported (all timing is determined by the cache conuoller). 

The two major properties supporting E-cache consistency are inclusion, which 
ensures that all infonnation stored in Viking's Instruction and Data Caches is also 
present in the external cache. A second property is for Viking's D-cache to 
write-through all stores to the E-cache. 

An example of a processor with external cache is shown below: 

Figure 9-15 E-Cache Processor Configuration (four system busses) 
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9.3.3.1 Write Through. Cache 
Inclusion 

9.3.4. Cache Hit Transactions 

9.3.4.1 Read Single and Read 
Block 
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Cache inclusion is assumed in any Viking system with an external cache. This 
allows the cache controller to snoop system bus transactions on behalf of the pro­
cessor. Viking's address bus is usually occupied. snooping all bus traffic would 
reduce performance. When a snoop write-hit occurs, the E-cache forces Viking 
to release it's bus (by deasserting RGRT_ and WGRT_ at the appropriate time. see 
section 9.2.2 - Arbitration). Once the bus is available. it can update the E­
cache. At the same time, Viking snoops its address bus to determine if it must 
invalidate its caches also. This combined snoop mechanism provides a simple 
system interface, where consistency information comes from one source. the E­
cache tags. 

Cache inclusion may restrict what can be cached within Viking. Viking's 5-way 
associative Instruction cache and 4-way associative Data cache may not contain 
any data that is not also present in the E-cache. Whenever the E-cache replaces a 
line externally it must force Viking to invalida~ any internal copies of the victim­
ized line. This can lower the performance of the internal caches by forcing cer­
tain data to be invalidated where it would otherwise remain in the cache. This 
suggests that the E-cache should be several times the size of Viking's combined 
caches. a 256K-byte external cache is a good minimum size. 

Invalidation occurs when the cache controller asserts CMDS_, WR_ and the snoop 
address on ADDR[3S:O), enabling Viking's snoop logic. Viking can accept one 
snoop transaction every other cycle. 

The impact of writing through all ~res to the external cache is minimized by the 
Viking's store buffer, which allows the processor to Continue even though some 
stores haven't yet reached the E-cache. The store buffer has lower priority than 
read transactions, so stores usually do not interfere with cache miss traffic. This 
interference is further reduced by burst writes and overlapped accesses. 

This section describes accesses which hit in an external cache. The protocol is 
very similar to Viking's access to main memory in DRAM based systems 
described in section 9.2. Several important differences exist, and will be 
described in this section. Bus grant signals for read and write accesses have been 
separated, as have read and write data-ready strobes. Another difference is that 
two strobes (OE_ and WE.l7:0]), are provided to control the cache SRAMs directly. 
The WEE_ (write enable enable) signal is used to control Vikings use of the 
WE.l7:0) signals. 

Most of the timing diagrams that follow illustrate Viking bus timing with a cache 
controller chip like the MXCC, and pipelined single-cycle SRAMs. Many varia­
tions are possible. such as different memory timing. At the end of this section, 
~eral examples with different memory timing are provided. 

The following timing diagram shows two cache read hits: a read single and a 
read block. RGRT_ is assened throughout, allowing Viking to perform both reads 
witlK>ut arbitration delay. For all read transactions, WGRT_ is not required, only 
RGRT_ is needed. 

Revision 2.00 of November I, 199( 



222 TMS390ZS0 - ViJcing User Documentation 

Figure 9-16 E-Cache Read Hits 
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To begin the read single. VUcing asserts CMDS_. ADOR[3S:01. SlZE(l:Ol. RO_. OE_ .. 
ADOR and OE_ are directly connected to the SRAMs, which latch the signals on 
the next clock rising edge. 

After latching address and strobes. the cache controller performs a tag lookup 
and compare to determine if the access hits in the E-cache. The SRAM read. takes 
place in parallel with this. in preparation for returning the data to Viking. This 
parallel access is possible since the E-cache is direct mapped. The data is latched 
in the SRAM data output latch on the next clock rising edge. In the following .. 
cycle. this data is driven on the DATA(63:O) bus to Viking. As the data is transmit­
ted. the cache controller asserts the RROY_ signal to indicate a cache hit It the 
access were a cache miss. no ready would have been generated and Viking would 
have ignored any data driven on the bus. 

Since both outgoing address and received data are latched on rising edges. these 
accesses can be pipelined to form a read block. In these examples. ARDY_ is 
always asserted. allowing Viking to issue new addresses every cycle. Four 
addresses are issued. each requesting consecutive doublewords from the same 
32-byte block (with wraparound). To identify the access as a block. Viking 
asserts BURST along with the first three addresses. then negates it for the last. 
marking the last address of the block. All block reads transfer exactly four dou­
ble words. The RO_ and OE_ signals are asserted as long as addresses are driven . .. 
The SRAMs latch all four addresses and OE-, and return data for each. delayed by ,.,-., 
two cycles. The cache controller also returns fourRRDY_'s. it only needs to actu-: . 
ally check tags once. since all four are always from the same cache block. ' 

• 'sun 
-,.-
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9.3.4.2 Overlapped Read Hits 

r 

9.3.4.3 Write Singles 
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The pipelined read mechanism employed for nonnal block reads also allows 
multiple cache blocks to be read consecutively, without buffer cycles. Maximum 
data read bandwidth is achieved using this overlap. The timing for two over­
lapped read blocks is shown below: 

Figure 9-17 Overlapped Read Hits 
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Each block consists of four addresses, which read four doublewords from their 
respective 32-byte ·cache block. There is no relation between the blocks. The 
cache controller performs tag compares for both· blocks, allowing them to be 
from arbitrarily different addresses. 

Cache writes require more time than cache reads. As shown above, read accesses 
always read the cache, whether or not there is hit Writes cannot begin until the 
cache tags have been checked. Otherwise copy back cache data could be cor­
rupted.' 

Since the E-cache tags are external to Viking several cycles are required to per­
form the tag compare before Viking can actually write to the cache. Viking issues 
CMDS_ and WR_. Viking drives address and data continuously, while the cache 
controller performs the tag check. The controller may respond by asserting either 
WRDY_ (for an E-cache miss), or WEE followed by WRDY_ (for a cache hit). In 
this example, ARDY _ is always assened, but does not affect the assertion of new 
write addresses. Write address generation is controlled by WRDY _. not ARDY_. 

The cache controller asseltS'WEE __ (write enable enable), in response to the tag 
check. This allows Viking to assert the appropriate WE.l7:O] signals to begin a 
store to the cache RMB. There are eight separate WE_ strobes, one for each byte, 
so that individual partial words can be stored without read-modify-write cycles .. 
The write enables are asserted until WRDY_ is received from the cache controller. 
which terminates the write. 
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Figure 9-18 Write Single Hit 
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Depending on the cache consistency algorithm used, certain writes (for example " j 

to shared data) must be broadcast to the system before they are written into the 
.external cache. In these cases, cache controller may respond with WRDY-, 
without asserting WEE__ This tenninates the write as far as the processor is con­
cerned, just as if a miss had occurred. Once the transaction has been completed in 
the system, the cache controller may gain bus ownership and actually perform the 
write to the cache RAM. This operation is shown below, it is a combination of a 
write miss followed by a snoop write-update. The write update ponion will ~use 
Viking to invalidate any internal copies of the data. 

.. 

lteYision 2.00 of November 1. 1990 



r 

9.3.4.4· Write Bursts 
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Figure 9-19 Shared Write Single 
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The penalty for the write tag checks may be amonized among several conseCu­
tive writes. if they are to the same cache block.. Although each Store is generated 
by a separate Store instruction, Viking's store buffer can recognize these neamy 
stores. and group them. The length of the write burst is ari:>itrary. It will continue 
as long as store transactions to the same cache block continue. The example 
below illustrates four consecutive transfers in a write burst Four double word 
(64-bit) stores. four transfers is the most likely duration. since that covers the 
entire 32-byte block. Each transaction in the burst may have a different size, and 
does not need to be in any order. 
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Figure 9-20 Write Burst Hit 
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Once the cache controller has determined that the access has hit it issues WEE_, as 
for normal write hits. Since this qualifies the whole 32-byte cache block for writ­
ing, Viking may perform multiple writes in consecutive cycles. This win con­
tinue until either the writes are exhausted, or tbe controller requires the bus and 
negates WGRT_. See section 9.2.2 - AIbitration for more details on arbitration. 

9.3.4.5 Overlapped Read/Write the penalty for ~ store tag check can be completely eliminated in many cases. 
Hits In the same way that reads are overlapped, Vildng allows a preceding cache read 

block to overlap the tag-check for a write block. This takes advantage of the fact 
that, for read blocks, the address bus is free before the data bus. Since only the 
address is required for the write's tag check, it may be driven out immediately, 
even though data is still returning from the previous read block. The three-cycle 
pipelined read timing is well suited to this mechanism: the read block and write 
tag compare both finish at exacdy the same time, allowing the SRAMs to be writ­
ten with no additional delay. Viking will drive valid data after a one cycle bus 
turnaround delay after the last RRDY_ for the read burst. The cache controller 
should asselt WEE_ no sooner than one cycle after the last RRDY __ The first 
WRDY _ asseltion should be in the cycle follOwing WEE_. 

In this example, a write burst is shown following a read block. 

.. 
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9.3.4.6 Swap 
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Figure 9-21 Overlapped Read/Write Hits 
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To support packet-switched system busses, Viking performs Swaps (atomic 
read/writes) by issuing the write before the read. Otherwise, an atomic swap 
would require two bus transactions and a locking mechanism on the packet 
switched bus. 

The swap begins much like a write single. Vildng drives out CMDS_, along with 
ADDR, DATA, WR_, LDST_ and RD_. The LDST_ signal is equivalent to the logical 
AND ofRD_ and~. The OE_ is oot driven by Vildng at any point during the 
swap. The cache conttOller latches the data and returns WRDY_, ending the write 
portion of the Swap. The cache conuoller should check the cache tags to deter­
mine how the remainder of the swap must proceed. In the simplest case, the 
external cache is the exclusive owner of the referenced data, allowing the swap to 
complete locally. If the data is shared, the swap must be broadcast to the system 
prior to local completion, which complicates the bus cycle. 

Once the write portion is complete, the cache conuoller should negate the bus 
grant signals, RGRT_ and WGRT_. This will force Viking to relinquish the bus, 
allowing the cache controller to control the SRAM and complete the reference as 
required. 

If the access can be completed locally, the cache controller reads the SRAMs, by 
asserting addresses and OE_. When the data is valid from the SRAM, the cache 
conuoller should signal the processor to accept this data by asserting the RRDY_ 
signal. Once this read is complete. the cache controller can retain ownership of 
the bus, and perform the modify portion of the swap to the SRAMs, by asserting 
the stored data, address, and the appropriate WE[7:OL signals. 
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9.3.4.7 Demap 

9.3.5. External Cache Misses 
(and Non-Cacbeables) 

If the cache block is shared with other processors the cache controller must 
broadcast the store across the system bus before supplying Vilcing with the previ­
ous data. This is done to ensure proper system synchronization. Once the broad­
cast has completed, Viking can return the correct data to the processor by driving 
the data bus and asserting RRDY_.1be write update portion of the swap can then 
proceed as above. An example of this case is shown in the figure below. 

Figure 9-22 Swap Hit (Shared, with invalidate) 
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Note that WEE_ must never be asserted, even if the access is not shared. WEE_ 
would allow Viking to write diJectly into the SRAM, overwriting the old data, 
which must be returned to Viking during the read phase of the swap. 

Demap transactions, both processor and system initiated, operate in the same 
manner as described for non-extemal cache systems. They will not be described 
funher heJe. 

In most applications, the external cache will have an outstanding hit rate, 
approaching or even exceeding 99%. Still, long miss penalties can have substan­
tial effects on perfonnance. Some of this perfonnance loss can be reclaimed by 
efficiently using the Viking bus in the presence of cache misses. 1be effect is to 
reduce and sometimes to eveR eliminate the penalty of cache misses. 

Basic read and write miss protocols are described below. Overlapping bus 
accesses to increase perfonnance during cache misses will be presented in detail. "-' 
1bese overlapped accesses may result in Viking generating two concurrent cache 
misses, one from a read miss. the other from a write miss. This can makes good 
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9.3.5.1 Read Misses 
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use of packet switched buses. which can support multiple outstanding requests. 
Non-cacheable reads and writes are commonly used to access IJO devices. and are 
described to conclude this sectiOIt 

A read miss begins as a normal read access. Because the E-cache tag compare 
indicates a miss. RRDY _ is not asserted. Any data that may be returned by the E­
cache RAM during this time is ignored. Viking must wait while the cache con­
troller accesses main memory to obtain the required cache block. During this 
time. the controller negates RGRT_. preventing Viking from issuing any additional 
reads. 

While waiting for a response from memory. the WGRT_ signal may remain 
asserted, allowing write operations to overlap the read miss. When data is about 
to return from memory. the cache controller should deassert WGRT_ (taking into 
account any pending write operations). TIlis action allows the cache controller to 
control the SRAM. and initiate a write operation when the read data arrives from 
memory. The sequence for this is shown below. Examples of overlapped tran­
sactions are presented later. 

As data returns from main memory. the cache controller writes it into the exter­
nal cache. Note that the "CC Cycle" and "SRAM Cycle" lines are skewed by one 
cycle. because of the one cycle delay imposed by the pipelined SRAM. To per­
form the writes. the cache controller drives ADDR. DATA, and WE.10:7]. one cycle 
for each double word. 

At the same time that data is written to the cache, the RRDY _ signal is asserted, 
which will allow Viking to sample the data at the same time it is written in to 
memory. 

... 
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9.3.5.2 Write Misses 
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Figure 9-23 Read Miss 
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Exceptions can be reported on any of the four incoming doublewortls. The tim­
ing diagram above shows an error on the third doubleword. All such exceptions . 
cause both the CC and Vildng's on-chip caches to invalidate their respective 
cache line. A trap is only reported to the pipeline if the exception occurs on the 
first word. and is a demand access. Exception handling is described in more 
detail in section 4.5.6. 

Write cache misses are handled quite differently from read misses. When a miss 
is detected, the write operation is aborted by asserting the RETRY_ signal. By 
deasserting the write grant signal (WORT J, the processor is prevented from 
attempting this retry until the bus is once again granted for writes. Once the write 
alIocau to the E-cache has been completed by the cache conttoller, the write is 
retried, and now hits in the external cache. This protocol is required to prevent 
Vilcing from driving ADDR and DATA until it received a WRDY_. which would 
prevent the CC from being able to write the required cache line. The timing for 
this is shown below. 

.. 
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Figure 9-24 Write Miss 
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The write is started by driviJig ADDR, DATA, CMDS_, and WR_. The cache con­
troller performs a tag compare. After determining the write is a miss, the cache 
controller assens RETRY_ and negates WGRT_, and begins to handle the miss. The 
RETRY_ assertion tells Viking to end the transaction, and retry it later. The 
WGRT_ negation tells Viking that it cannot attempt to retry the write yet. WGRT_ 
stays negated until the CC bas finished fetching the missed cache block. 

As the missed block arrives from memory, the cache controller writes it into the 
cache, shown above as "Write Fill". The is similar to read fill operations for 
read misses. One major difference is that RRDY_ is not asserted as the double­
words come in. The write fill operation is invisible to Viking. 

When the write fill is done, the cache controller assens WGRT ... allowing Viking 
to retry the write. The retried write is shown in the timing diagram as "Write 
Retry (Viking)". This time it hits in the cache, and completes normally. 

The memory conttoller may encounter a memory exception on any of the four 
incoming doublewords. Since the write fill is invisible to Viking, the error cannot 
be reported immediately to the processor. The preferred action for the cache con­
troller to take is to delay reporting the error, and allow Viking to retry the write. 
The cache controller can then repon the error synchronously to the write, by 
asserting MEXC_ with WRDY_. The write is guaranteed to be associated with the 
error, since Viking always performs writes in order. This matches Viking's store 
exception handling policies, for both buffered and synchronous writes. Synchro­
nous write exceptions are reported directly to the processor pipeline, while errors 
on buffered stores cause a store buffer exception to occur. See section 4.12.5 -
Store Buffer (Data Store) Exceptions for a more detailed description. An 
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example of this is shown below. The cache controller must invalidate the tags for 
the data being fetched in this case. 

Figure 9-25 Write Miss with Exception 
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In some systems, depending on the state the fetched data, additional system tran­
sactions may be required before the write miss is completed. An example below 
illustrates broadcasting a shared write to the system immediately following the 
write miss. This transaction combines a write miss with a shared write hit, as 
described earlier. Notice that the WEE_ signal is not assened. This allows the ' 
write to complete from the processors perspective, while it has still not pro­
pagated through the system. When the system operations are complete, the cache 
conuoller will update the external cache by performing it's own write operation. 
The exact operation of this type of sequence is system dependenL 

.. 
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9.3.5.3 Overlapped Hits and ' 
Misses 
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Figure 9-26 Write Miss, Shared 
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The shared write broadcast may also encounter an error, it would be reponed 
synchronously, by assening MEXC_ with WRDY_. 

Cache misses may require many cycles in some systems. Previous examples 
have shown the Viking bus to be idle while misses are being processed. In many 
cases, Viking can maice use of this idle cache bandwidth. Except for cenain syn­
chronization points, Viking's reads are issued independently of writes, and vice 
versa. By separating RGRT_ from WGRT_, and RRDY_ from WRDY_, the Viking 
bus can also treat these independently. As a result, when writes are blocked by 
an external cache miss, Viking can still issue reads to the cache. This prevents a 
store, which is usually buffered in Viking's store buffer, from potentially block­
ing the IU-pipe by interfering with external cache reads. An example is shown 
below. 

.. 
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Figure 9-27 Overlapped Write Miss and Read Hits 
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After a write miss occurs, the cache controller negates only the WGRT_ signal. 
RGRT _ remaim assened, allowing Vildng to issue read transactiom. When the 
cache controller has received me write miss data from l,Ilemory, it disallows 
further reads by finally negating RGRT_. While both WGRT_ and RGRT_ are 
negated, the cache controller writes the incoming line into the cache SRAMs. 
Then, Viking can retry the write at its convenience (other intervening transactiom 
can occur). . 

Conversely, while Viking is waiting for a read miss to be processed, it can issue 
stores to copy its store buffer to the external cache. This allows the store buffer 
to drain to the external cache while a read miss is being processed, using other­
wise idle bus time. An example of this is show below . 

.. 
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9.3.5.4 Overlapped Read/Write 
Misses 

Figure 9-28 

-"-
""-

--
cc eyel. 

--.... ,-
DATA 

Chapter 9 - Viking Bus Interface 235 

Overlapped Read Miss and Write Hits 
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After a read miss, the cache conuoller negates RGRT _ to indicate the miss. WORT_ 
remains assened, allowing Viking to initiate write transactions. Although read 
misses generally stall the processor pipeline, Viking's store buffer is unaffected, 
and may issue stores. nus example shOws one such store, which hits in the 
cache. Once the ~ controller receives the read miss data, it disallows fwther 
writes by finally negating WGRT_. With both RGRT_ and WGRT_ negated, the 
cache controller completes the read miss, writing the data into the cache SRAMs 
and passing it onto Viking by asserting RRDY_ for each doubleword. The con­
troller then asserts both RGRT_ and WGRT_. allowing Viking to proceed nonnally. 

The previous examples described cache hits that can occur while the external 
cache conuoller is processing a cache miss; specifically, read hits during a write 
miss, and write hits during a read miss. These overlapped "hits" could also 
result in cache misses, which must be properly serviced. Since reads and writes 
are handled independently, the protocol is not altered if both accesses generate 
cache misses. 1be following two examples show a read miss followed by a write 
miss, then the reverse . 

.. 
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Figure 9-29 Overlapped Read/Write Miss 
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This example shows Viking issuing a read miss. then attempting to copy out a 
store buffer entry while the read was being processed. as before. After checking 
tags for the read. the controller negates RGRT..; but leaves WGRT_ assened. TIlis 
allows writes to be issued while the read miss is taking place. The write also 
misses. forcing the cache controller to negate WGRT_. as for a normal write miss. 
All further Viking accesses are blocked at this point 

Eventually read miss data is returned from memory to the cache controller. As 
the controller writes data to the cache SRAMs. it passes it onto Viking by assening 
RRDY_. At this point RGRT_ is reasserted. unblocking funher Viking reads. Later. 
when the write miss data anives from memory. the cache controller retakes the 
bus by negating both RGRT_ and WGRT_. and writes that line into the cache. 
Fmally. the cache controller asserts both RGRT_ and WGRT ... allowing Viking to 
perform reads and writes as it desires. In this example. Viking chose to retry the 
write immediately. which completed normally. 

The example can be reversed. Viking can generate a read miss while a write miss 
is already in progress. This case is handled the same way. and is shown in detail 
below. 

.. 
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9.3.5.5 UO and Reads and 
Writes 

Chapter 9 - Viking Bus Interface 237 

Figure 9-30 Overlapped Write/Read Miss 
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Note that the read and write misses can be serviced out of order. Even if the read 
miss happened first, it is possible that the write miss line CQuId have returned 
before the read does. This ordering is completely legal. Viking simply proceeds 
with whatever access the cache controller allows, as signaled by the RGRT_ and 
WGRT_lines. 

Non-cacheable and UO reads are similar to read misses for both Viking and the 
cache controller. They always initiate system bus transactions to transfer the 
needed data. The cache controller can differentiate between cacheable and non­
cacheable reads by sampling the CCHBL_ pin for any transaction. The CCHBL_ sig­
nal is determined by the state of the C (cacheable) bit in the correspondingTLB 
entry, or by theMCNTL.AC (alternate cacheable) orMCNTL.TC (tablewalk cache­
able) bit if no TLB entry applies. If CCHBL_ is asserted, the access is cacheable; 
otherwise, it is considered non-cacheable. During system reads the cache con­
troller can allow Viking to perform cache writes by negating RGRT_ while keep­
ing WGRT_ asserted. When the incoming data arrives, both RGRT_ and WGRT_ are 
negated, and the incoming data is driven onto the Viking bus, qualified with 
RRDY_. Only one "packet" of data is transferred. comprising one, two, four, or 
eight bytes. UO enors are reported synchronously with RRDY_. 

All non-cacheable references are single word transfers. Cache controllers may 
implement other caching policies than those indicated by the CCHBL_ pin . 
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Figure 9-31 Noncacheable Read 
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va and non-cacheable writes are handled differently than other write misses.' 
When the cache cOntroller sees a non-cacheable write (identified by CCHBL_ 
negated). it negates WGRT-t as for a write miss. This causes VikIng to stop driv­
ing ADDR and DATA. nie controller should not assen RETRY -' so Viking contin­
ues to wait for the write to be acknowledged. even though it is not driving the 
busses. 1bis condition exists until the needed data is received. and ack­
nowledged (although the va write may simply be placed the targets store buffer) . 
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9.3.5.6 Cache Invalidations 
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Figure 9-32 Noncacheable Write 
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The cache controller negates WGRT_ during this time·to allow it access to the 
cache, to satisfy system requests. 

Frequently, the cache controller must invalidate a block of data that is cached in 
Viking's internal caches. This can occur when the cache controller replaces a 
line in the external cache. To maintain cache inclusion, Viking must also remove 
this line. Invalidation is also required when the the cache line is updated due to 
another processor's write. . 

The invalidation protocol is very simple. When the cache controller is bus mas­
ter. Viking snoops external bus traffic, using the same signals that it nonnally 
uses to perfonn accesses. The controller becomes bus master by negating RGRT_ 
and WGRT_. It then asserts CMDS_, and WR_, telling Viking to invalidate the cache 
line, if any match the current address on ADDR. 
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Figure 9-33 Viking Cache Une Invalidation 
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Invalidations can be issued every other clock cycle. 

In most cases. the cache controller can invalidate Viking's internal cache line at 
the same time it is updating the E-cache SRAM. For example. when the CC is 
copying out a modified line. it can also force Viking to invalidate the same line, 
as shown in the example below. 

Figure 9-34' Invalidation During Une Read 
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Before proceeding. the cache controller obtains the bus from Viking by negating 
RGRT_ and WGRT_. Then. it reads a block from the SRAM much like Viking. by 
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9.3.6. SRAM Timing 
Variations 

9.3.6.1 Accesses to Slower 
Pipelined SRAM 
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driving ADDR and the SRAM output enable, OE_. The controller asserts WR_ to 
qualify the current ADDR value, telling Viking to invalidate the internal cache line 
that matches it, if any. 

Viking's protocol supports many variations of cache timing, in addition to the 
one-cycle pipelined SRAM described above. Two classes are discussed here; the 
first relaxes the internal SRAM access time. The second example shows how Vik­
ing would be interfaced to more traditional SRAM, which do not have address 
and data registers. 

The most common type of pipe lined SRAM perfonns actual memory accesses in 
one cycle. However, slower pipelined memory can be used. The following 
example increases the SRAM access time to two cycles, while maintaining the sin­
gle cycle assertions of the standard interface. 

Figure 9-35 Slower Pipelined Reads 
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To slow down the rate at which Viking generates pipelined addresses, the cache 
controller must toggle ARDY_ rather than asserting constantly as before. Pipe­
lined SRAMs generally have single registers for address (~d data); thus, Viking 
must keep ADDR valid for two SRAM cycles. The controller accomplishes this by 
toggling ARDY_ as shown. Viking keeps driving its current address until ARDY_ is 
asserted. Similar timing is also needed for RRDY _. to qualify the returned data 
every other cycle. 
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9.3.6.2 Accesses to 
Nonpipelined SRAM 

The use of non-pipelined SRAM for the cache usually implies lower perfonnance. 
The SRAMS must be able to see the incoming address, read the internal memory 
array, and generate data. all before the next address can be asserted by Viking. 
This dramatically increases the time required to read a block from the cache. This 
variation is described here primarily to demonstrate the flexibility of the bus pro­
tocol. 

Figure 9-36· 3 Cycle Non-Pipelined Reads 
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To inhibit address pipelining during reads, the cache controller must negate 
ARDY _ until a given read is complete. TIlen, ARDY _ is again asserted with RRDY_ 
as the SRAM data appears. Write timing is not as dramatically affected, since 
write addresses are generally not pipelined. 

Higher speeds can be obtained with very fast SRAMs, and extremely careful sys­
tem design. An example is shown below . 

.. 
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f 
Figure 9-37 2 Cycle Non-Pipelined Reads 
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10.1. Electrical Issues 

[ 

10.2. Pinout Descriptions 

10.2.1. Bidirectional Signals 

10.2.1.1 ADDR[35:00] 

10 
Signal Description 

TIlis section will describe the characteristics of Viking's pins . 

Viking has been designed to operate in a transmission line environment. Care 
must be taken to carefully match the system physical design to Viking's I/O cir­
cuitry. I/O levels are defined in the TMS390ZS0 data sheet (TI). In general, the 
circuitry is designed to provide controlled rise and fall times, as well as restricted 
voltage swing. ' 

Viking assumes the existence of /wIding drivers on all bidirectional. or input only 
signals. 11lese drivers must be provided externally. typically in an external cache 
controller, or in an MBUS device. 

, Internal pull-'up resistors are provided on a number of signals. these are iden~fied 
in the sections that follow. 

sPICE'simulations are recommended to guarantee proper operation at high fre­
quencies. 

Detailed signal timing is specified in the TMS390ZS0 Data Sheet 

This section lists and describes all Viking pins, grouping them as bidirectional. 
input. and output signals. A summary table is provided at the end of the section. 

Package pin outs are described in the TMS390ZS0 Data Sheet 

All inputs are latched on rising clock edges. All outputs are sent out latched on 
rising edges, and are driven for a whole cycle. Setup and hold time requirements 
are different for each signal. Individual pin descriptions are given below. 

As an input. this bus provides snoop addresses to Viking. When qualified by the 
proper signals (See Vikjng bus description). the address will be used to invalidate 
internally cached copies of data at the specified address. 

As an output, Viking drives addresses onto this bus on all external reads and 
writes. ADDR[35:0] is sent out registered on rising clock edges. and is valid from 
one clock~utput time after the clock edge, until one hold time after the next 
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10.2.1.2 DATA[63:0] 

10.2.1.3 DEMAP_ 

10.2.1.4 DPAR[0:7] 

10.2.1.5 OWNER_(MIHJ 

rising clock edge. The signal is designed to meet the set up time requirements of ,­
the MXCC cache controller arid pipelined SRAM. The bus is tristated one 
clock~disable time after the rising edge. One unused transfer cycle is required 
to change direction, and owner of the bus. 

In MBUS mode, the address bus in largely unused, and should not be connected. 
The least significant three bits are used to sample the module identification value 
from the MBUS. 

These pins are pulled to a logic one state with weak internal resistive pullups in 
MBUS mode only. 

On reads, this bus is an input, and synchronously supplies data to Viking. On 
writes, data is output synchronously to the system. DATA[63:0] is sent out 
registered on rising clock edges. and is valid from one clock--K)utput time after 
the clock edge, until one hold time after the next rising clock edge. The signal is 
designed to meet the set up time requirements of the MXCC cache controller and 
pipelined SRAM. The bus is tristated one clock~disable time after the rising 
edge. One unused transfer cycle is required to change direction. and owner of the 
bus. 

In MBUS mode, this pin functions as the multiplexed address and data bus. 
MAD[63:0). 

Byte ordering is always big-endian. byte 0 in memory will be stored on bits . 
DATA[63:S6). 

This pin is an input whenever Viking is not the bus master. As an input, this pin 
is assen.ed along with cMDS_ signal, to indicate an incoming demap request This 
signal qualifies the input value on the DATA[63:0) bus as demap request informa­
tion. 

This pin is pulled inactive with a weak internal resistive pullup in MBUS mode 
only. 

Data bus parity. These pins carry parity in both directions. As an input, this bus 
is used to check. data parity on Viking reads. As an output, Viking drives gen­
erated parity onto this bus whenever it drives data. 

Parity checking and generation is conttolled by the MCNTL.PE bit When parity is 
disabled. Viking generates inco"ect parity. to allow simple parity bit diagnostic 
testing. 

Parity bit ordering corresponds to the big-endian convention used throughout 
ViJdng. Parity bit 0 COJTesponds to memory byte zero. which is stored on data bus 
bits [63:56]. 

This signal is used in MBUS mode only, and corresponds to the MIH_ signal. Vik­
ing drives this signal when it is-the owner of a cache line currently being 
requested on the bus with a CR or CRl transaction. It is used to inhibit memory 
from responding to the pending transaction. 
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10.2.1.6 RD_ 

10.2.1.7 SHARED_ (MSH..) 

r 
10.2.1.8 WR_ 

10.2.1.9 ARDY _ (and MAS...) 
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As an input, Viking samples this pin while performing a CR or CRI transaction on 
the MBUS. It is used to qualify any MRDY_ responses that may come at the same 
time, or several cycles after another cache responds with M1H_. 

'This pin is pulled inactive with a weak. internal resistive pullup in Viking bus 
mode only. 

As an output, Viking drives RD_ to qualify all valid addresses on the bus as read 
cycles. It is also asserted, along with WR_ for swaps, as well as along with 
DEMAP _ for external demap replies. 

'This signal is used as an input onJy for internal SRAM test mode. It is not used in 
MBUS mode. 

'This pin is pulled inactive with a weak internal resistive pullup in MBUS bus 
mode only. 

'This signal is used in MBUS mode only, and corresponds to the MSH_ signal. Vik­
ing drives this signal when it has a copy of any cache line currently being 
requested on the MBUS. It is used to inform other caches that the information is 
shared. 

Viking samples this signal when it is requesting an MBUS transaction. If the signal 
is active, the data received will be considered shared in the cache (which 
prevents writes until other copies are invalidated). 

'This pin is pulled inactive with a weak. internal resistive pullup in Viking bus 
mode only. 

As an output. Viking drives WR_ to qualify all valid addresses on the bus as write 
cycles. It is also asserted, along with RD_ for swaps, as well as along with 
DEMAP _ for demap requests. 

WR_ is used as an input to qualify external invalidation requests. If WR_ is 
asserted, along with CMDS_. by another bus master. the address on the bus will be 
used as an invalidation request address. 

WR_ is not used in MBUS mode, and is used in SRAM test mode to qualify external 
write requests. 

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus 
mode only. 

This signal is used as an input in Viking bus mode. to indicate that system logic 
is prepared to accept another address or bus cycle. 

In MBUS mode, the signal is used as both an input and output, connected to the 
MAS_ (Address strobe) signal. When Viking is granted access to the MBUS, it 
may initiate bus cycles by asserting the MAS_ signal. When other processors own 
the bus. Viking sampleS-the MAS_ signal to determine the beginning of bus cycles 
which it must snoop . 
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10.2.1.10 WEE_ (MBB..J 

10.2.1.11 WRDY _ (MRDY..J 

10.2.1.12 CMDS_ 

10.2.2. Input Signals 

10.2.2.1 CCRDY_ 

This signal is used as an input only in ViJcing bus mode. It is used to control 
assertion of the WE[7:0L signals to external cache RAM. 

In MBUS mode, it is connected the the MBB_ (MBUS busy) signal. and used as both 
input and output Viking drives this signal while it retains MBUS ownership, and 
samples the pin to determine when other bus masters have released their use of 
the bus. 

In ViJcing bus mode, this signal is used as an input only, indicating completion of 
the current write transaction on the bus. It may be connected in parallel with the 
RRDY_ signal, if only a single global data ready signal is required. 

In MBUS mode, this pin serves as the MRDY_ signal. and is both an input and out­
put It is an input when ViJcing has a current bus cycle pending; an output when 
Viking is responding with data that it owns for a CR or CRI transaction.. 

This signal is only used in ViJcing bus mode. It indicates the beginning of a Vik­
ing bus transaction. It is an output when Viking is bus master to initiate transac­
tions. 

When Viking is not the bus master, as indicated by both WGRT_ and RGRT_ being 
deassened, CMDS_ is used to initiate all external snoop transactions, including 
invalidates and demaps. 

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus 
mode only. 

This signal is used as an I/O in Viking bus mode only. Generally, it is used as an 
outpUt to conttol the pipelined output enable of external cache SRAM. As an 
input, it is sampled to prevent certain bus collisions. See section 9.2.2 - AIbitta­
tion for complete details. 

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus 
mode only. 

This input tells Viking whether to operate in native Viking bus mode (CC mode), 
or to operate in MBUS mode. The signal must be statically assened, and not 
changed during nonnal operation. 

When CCRDY_ is assened, Viking will use its'native bus protocol. deassened will 
seI~t MBUS mode. 

This signal is pulled inactive with a weak internal resistive pullup . 

.. 
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10.2.2.2 IRL[3:0] 

10.2.2.3 MEXC_ 

10.2.2.4 PEND_ 

10.2.2.5 RETRY _ (MRTY .J 

[ 

10.2.2.6 RESET_ 

10.2.2.7 RGRT_ 

10.2.2.8 RRDY_ 
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Intenupt Request Level. This field tells Viking the level of the highest priority 
intenupt request that is currently pending. IfIRL(3:0]=OOOO. no intenupts are 
pending. The highest priority is JRLl3:O]= 1111. which is a non-maskable (except 
by PSR.ET) intenupt All other priorities are maskable. within the integer unit 
Since the system could be asserting multiple intenupts. an external intenupt con­
troller must select the highest priority intenupt. and drive its IRL onto these pins. 

This signal is used exclusively as an input in both bus modes. This signal is 
encoded. along with the ready and retry signals to indicate the exact type of error 
response. See the MBUS specification. and section 9.2.3 - Error Reponing for 
full details. 

This signal is an input only. used generally in Viking bus mode only. but may be 
used on the MBUS mode as well. It is sampled. depending on the memory model 
in use to detennine whether certain bus cycles may stan or not See 7.5 -
Memory Model Suppon (PENDJ for complete details of this signals operation. 

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus 
mode only .. 

This signal is used exclusively as an input in both bus modes. This signal is 
encoded, along with the ready and exception signals to indicate the exact type of 
error respOnse. See the MBUS specification, and section 9.2.3 - Error Reponing 
for full details. 

Reset. This signal is assened when an external reset request occurs. such as on 
power-up. The action that Viking takes in response to reset is defined in section 
4.3 - Reset Operation, as well as section 7.3 - Reset Operation. 

This signal tells Viking that it may perform a read on the system bus. This signal 
may be comected to the ·WGRT_ signal if only a single global bus grant signal is 
required. See section 9.2.2 - Arbitration for more details. 

RGRT_ is unconnected in MBUS mode. This pin is pulled inactive with a weak 
internal resistive pullup inMBUS bus mode only. 

Read Data Ready, Viking bus mode only. This signal qualifies incoming read 
data. When RRDY_ is assened, Viking will sample incoming data, on the same 
clock edge as RRDY_. This signal may be directly connected to the WRDY_ signal 
if only a single global data ready signal is required. 

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus 
mode only. 
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10.2.2.9 WGRT_ (MBG.J 

10.2.3. Output Signals 

10.2.3.1 BURST 

10.2.3.2 BUSRECL (MBR.J 

10.2.3.3 CCHBL_ 

10.2.3.4 CSA_ 

10.2.3.5 ERROR_ (AERR.J 

,~, -
In both bus modes, this pjn is'used exclusively as an input and grants bus ac 
to Viking. In Viking bus mode, it is used to allow write transactions on the b 
only. In MBUS mode, it is the only bus grant. 

In Viking bus mode, it may be connected to the RGRT_ signal if only a single 
grant signal is required. 

This signal is used in Viking bus mode only, as an output It indicates that tJ 
current address on the bus is pan of a burst bus cycle. If this signal is active, 
there will be at least one additional transfer request in the burst 

For read bursts, there are exactly four transfers in every burst The BURST si~ 
will be asserted for the first three of them, and deasserted for the last to indie 
the end. 

FOr write bursts, the number of transfers in a burst varies from two to infinitl 
BURST will be asserted for all but the last transfer in a burst. 

This signal is used as an output only in both bus modes. It has the same mea 
in both modes, to request the bu$ for use by Viking. 

This signal is used as an output, and only in Viking bus mode. It indicates tJ 
the current transaction is iruemally cacheable. Cacheability is determined b 
state of several bits iruemal to Viking. (See programmers model for full det 
on cacheability). 

CSA_ is an 01Jtput only, and is used only in Viking bus mode. It indicates thl 
current bus cycle is a control space transaction. It is asserted for ASI transa( 
to ASI space Ox02. 

This signal is an output only. and is used in both bus modes. When ERROR_ 
asserted, it indicates that Viking entered an error mode state, and will take a 
watchdog reset ttap. See section 4.3 - Reset Operation for full details on I 
operation. 

This signal is driven (not tri-stated) while in Viking bus mode. In MBUS mo 
since the AERR_ signal is common to all processor modules, it is only driVel 
when asserted, and tri-stated otherwise. 

1be signal will remain asserted until the MFSR.EM (error mode) bit has beell 
cleared. 

Sun MicrosySfelIil Proprieury Revision 2.00 of November 



( 
10.2.3.6 LDST_ 

10.2.3.7 SIZE[I:0] 

10.2.3.8 WE.J:0:7] 

[ 

10.2.3.9 SU_ 

10.2.4. Clock Pins 

10.2.4.1 VCK (CLK) 

10.2.4.2 VPLLRC 
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nus signal is an output, and is only used in Viking bus mode. The signal is 
asserted when Viking is performing an atomic swap operation on the bus. It is 
equivalent to the logical OR of the RD_ and WR_ signals. 

nus signal is used in Viking bus mode, only as an OutpUL It indicates the 
transfer size of the current bus transaction, encoded as follows: 

Table 10-1 SIZE(l:O} Encoding 

Value Size 

00 Byte 
01 Halfword 
10 Word 
11 Doubleword 

These signals are used in Viking bus mode only to directly control the write 
enable signals of synchronous SRAM used for an external cache. They are output 
only. These signals are driven active to match the valid byteS during a bus write 
transaction, when the WEE_ (write enable enable) signal is asserted. 

The signals are hi-stated whenever WEE_ is not asserted, to allow an external 
cache controller to to connol the cache RAM. nus pin is pulled inactive with a 
weak. internal resistive pullup. 

WE_ bit ordering corresponds to the big-endian convention used throughout Vik­
ing. WE[O] corresponds to memory byte zero, which' is stored on data bus bits 
[63:56]. WE{7] corresponds to memory byte seven, which is stored on data bus 
bits [07:00]. . 

The su_ pin is an output. used in Viking bus mode only. When asserted, it indi­
cates that the current bus transaction is a supelVisor transaction. 

The following pins define the clock interlace to Viking. 

This pin provides Viking with its primary clock source. Full details on clock 
requirements are presented in section 7.2.2 - Input Clock Requirements. 

In general, only the positive edge of this clock signal is significanL Duty cycle is 
not significant since the clock is intemally multiplied, and divided based on the 
incoming rising edges. 

PU..RC InpuL This pin is connected to an external 0.1J.LF capacitor connected to 
ground. 

Sun Microsyst.ems Proprietary Revision 2.00 of November 1. 19'X 



254 TMS390Z50 - Viking User Docwnentation 

10.2.4.3 PLLBYP 

10.2.5. Test Pins 

10.2.5.1 TEST_ 

10.2.5.2 TCK 

10.2.5.3 TOI 

10.2.5.4 TOO 

10.2.5.5 TMS 

10.2.5.6 TRST_ 

10.2.5.7 ESB 

10.2.5.8 PIPE[9:0] 

10.2.5.9 SRMTST_ 

This pin is an input only, used to bypass the internal PlL. When this pin is 
asserted, the external clock input will be routed directly to internal clock distribu­
tion, with no delay compensation. Operation in this mode is not recommended, 
or fully specified. It is intended primarily for debug and test purposes. 

This pin is pulled inactive with a weak internal resistive pullup. 

The following pins are used to simplify component and/or system testing. Many 
are related to ITAG-based scan testing. The PIPE signals are for observability. 

Operation of the ITAG signals is described in the ITAG chapter. 

This signal is an input only, used for board level testing. When TEST_is asserted, 
Viking de-asserts all its outputs except ESB and TOO. 

This pin is pulled inactive with a weak internal resistive pullup. 

ITAG test clock input This pin is pulled to logic one with a weak it:lternal resis­
tive pullup. 

Jtag test data input This pin is pulled to logic one with a weak internal resistive 
pullup. 

ITAG test data output Also used to observe internal clock operation when the 
SEEPLL ITAG instruction is executed (non-standard IT AG) .. The signal is tri -stated '­
under the control of the IT AG controller. The TEST_pin will not cause TOO to tri­
state. 

ITAG test mode select input This pin is pulled to logic one with a weak internal 
resistive pullup. 

ITAG test reset inpuL This pin is pulled inactive with a weak internal resistive 
pullup. 

Execution SU'Obe output See section 4.14.5 - External Monitors. It is not tri­
stated in response to the TEST_ signal. 

Pipeline monitoring signals used improve internal operation observability. See 
section 4.14.6. and section 4.14.5 for a description of these signals. 

The SRMTST_ signal is an input only. used to initiate a special internal SRAM test 
mode for manufacturing purposes. It should be connected to vee for nonna! 
operation. This pin is pulled inactive with a weak internal resistivj: pullup . 

.. 
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10.3. Pin Summary 

Chapter 10-Signal Description 255 

Viking's pins are swnrnarized below. All signals are latched either as inputs or 
outputs -latched outputs are valid for one cycle, minus a set-up time for the 
driver. 

Table 10-2 Viking Pin Summary 

Pin Type Signal Name Direc:lioo LaId! Edge MBVS Pullup7 VBus Pullup7 MatIS Use Active Slate 
ADDR[3S:O) IJO Rising Yes No (3:0) are MID High 

Busses DATA(63:0J IJO Rising No No MAD[63:0J High 
[108J DPAR[O:7J IJO Rising No No n/e High 

DlIlaSize BURST 0 Rising No No n/e High 
[3) SIZE[l:O) 0 Rising No No n/e High 

Request RGRT_ I Rising Yes No n/e Low 
Strobes WGRT_ I Rising No No MBG_ Low 

[3) BUSREQ. 0 Rising No No MBR_ Low 
ARDY_ 00 Rising No No MAS_ Low 

CCRDY_ I Rising Yes Yes vc:c Low 
RRDY_ I Rising Yes No vc:c Low 
WRDY_ 00 Rising No No MRDY_ Low 
CCHBL_ 0 Rising No No n/e Low 

Access CMDS_ 00 Rising Yes No n/e Low 
Strobes CSA_ 0 Rising No No n/e Low 

[13J lDST_ 0 Rising No No n/e Low 
SU_ O Rising No No n/e Low 

DEMAP_ 00 Rising Yes No ole Low 
RD_ 00 Rising Yes No ole Low 

WEE_ 00 Rising No No MBB_ Low 
WR_ 00 Rising Yes No n/e Low 

IRL[3:0) I Rising No No lRL[3:O) High 
. MEXC_ I Rising No No MERR_ . Low 

Exceptioo PEND_ I Rising Yes No PEND_ Low 
Signals RESET_ I Rising No No RSTIN_ Low 

[9) RETRY_ I Rising No No MR1Y_ Low 
ERROR_ 0 Rising No No AERR_ Low 
va I - No No CLK -

Cock VPLl.RC I (analog) - No No VPURC -
PILBYP_ I Risinl Yes Yes pu..syp_ High 

Cac:be OE_ 00 Rising Yes No n/e Low 
(9) WEJO:7] 0 Risinl Yes Yes n/e Low 

Copyback OWNER_ 00 Risinl No Yes MIH_ Low 
(2J SHARED 00 Risina No Yes MSH_ Low 

TCK I RisiDl Yes Yes TCK High 
11>1 1 Risinl Yes Yes 11>1 High 

TrAG TMS I Risinl Yes Yes TMS High 
Sips 11tST_ 1 Rising Yes Yes 11tST_ High 

(6) ESB I Risinl No No ESB High 
roo 0 Rising No No roo High 

Tell SRMTST_ 1 Rising Yes Yes SRMTST_ High 
Sipal. 1'EST_ 1 Rising Yes Yes 1'EST_ High 

(12) PIPE(9:0J 0 Rising No No PIPE(9:OJ High 
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imul 4 
imulcc 4 

Doc Typo 
(Section 3.3.3, Floating point register dependency, 
the first example on the page, title~ Bad Example, states 
PIPELINE STALL FOR 4 CYCLES ! 
Should be: 
PIPELINE STALL FOR 2 CYCLES 

Doc Clarify 
(Section 4.3.2 Watchdog Reset, 2nd to last paragraph, 
discussion on Viking behavior during error mode) 
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Errata Class 
Page 62 

Errata Class 
Page 69 

Errata Class 
~age 75 

Errata Class 
Page 75 

Errata Class 
Page 95 

Errata Class 
Page 97 

Should add: 
In CC mode, when error mode is encountered, Viking asserts 
ERROR for one cycle, allowing the cache controller (or 
external system logic) to record the occurence of error mode. 
The completion of this bus cycle causes watchdog reset. 
In MBUS mode, Viking asserts AERR_ until MFSR.EM is cleared. 
For example, a read on MFSR clears it. This is then 
followed by a watchdog reset. 

Doc Clarify 
(Section 4.5.3 Load and Store Alternates) 
The 2nd paragraph discusses about which ASIs do not flush 
the store buffer before starting execution. 
Should clarify: 
Nearly all ASI operations cause a store buffer copy-out 
(both LOA and STA) before starting execution, except: 
ASI Operation 
Ox20-0x2F STA 
Ox40-0x4C LOA/STA 
OxS,Ox9,OxA,OXB STA 
OxS,Ox9,OxA,OXB Cacheable LOA 

Doc Clarify 
(Section 4.7.2 Instruction Cache Replacement Policy) 

Whenever a memory reference hits in the cache, the history 
bit is written to one. 
Should be: 
Whenever an instruction fetch hits in the cache, the history 
bit is written to one. 

Doc Clarify 
(Section '4.S.3 Data Cache Replacement Policy) 

Whenever a memory reference hits in the cache, the history 
bit is written to one. 
Should be: 
Whenever a LO instruction hits in the cache, the history 
bit is written to one. 

DoC Typo 
(Section 4.S.2 The 2nd sentence in the 1st paragraph after 
Table 4-7) 
"When the cache is enabled, the C bit from the MMU n 

Should be: 
"When the cache is enabled, the C bit from the PTE n 

Doc Clarify 
(Section 4.11.10, discussion about the exceptions that are 
not disabled by setting MCNTL.NF) 
Should add: 
Unassigned ASIs will trap regardless of MCNTL.NF 

Doc Clarify 
(Section 4.11.11.1 Description of MCNTL.PE bit) 
Should add: 
When set, even parity is generated by Viking. When 
zero, odd parity is generated. , --------------------------------------------------------------------------

Errata Class 
Page 104 

Doc Typo 
(Section 4.11.11.3 

Access Type") 
Table 4-12 "Access Permissions vs 

had errors. 
Should be: 
AT PTE.V-O PTE. V-I, PTE. ACC­

o 1 2 3 4 5 6 7 
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Errata Class 
Page 109 

Errata Class 
Page 110 

Errata Class 
Page 110 

Errata Class 
Page 114· 

Errata Class 
Page 123 

Errata Class 
Page 127 

Errata Class 
Page 127 

Errata Class 
Page 127 

.•.•••.•.••...•..••.... :.: •••..•.•.•......•.•.••.•.••..•.•••.••..•.••.••••••..•.......... / ·:·········)<>.re12·.·.··errauLrnex·:········)·\········ ... 
.:< .... ~....... . ......••••• :-....• ;: ........... . , 

--------------------------------------
0 1 2 3 3 
1 1 2 
2 1 2 2 2 3 3 
3 1 2 2 2 
4 1 2 2 2 2 3 3 
5 1 2 2 2 2 
6 1 2 2 2 2 2 3 3 
7 1 2 2 2 2 2 2 

Doc XRef 
(Section 4.12.1 General Operation of the Store Buffer) 
Should add: 
Reference to Section 9.2.4.5 Burst Writes, and index 
entries added. 

Doc Clarify 
(Section 4.12.5 Store Buffer Exceptions) 
Should add: 
In CC mode, during a store buffer exception, Viking asserts 
ERROR for one cycle. In MBUS mode, during a store buffer 
exception, Viking asserts AERR until MFSR.SB is cleared. 
For example, reading MFSR clears it. 

Doc Typo 
(Section 4.12.5 Store Buffer Exceptions) 
(1st paragraph, last sentence) 
••• and the MFSR.NF bit should be deasserted 
Should be: 
••• and the MCNTL.NF bit should be deasserted 

Doc Typo . 
(Section 4·.13, 1st paragraph on page, 2nd sentence) 
Viking can executes .•• 
Should be: 
Viking can execute •.• 

Doc Clarify 
(Table 4-16 Breakpoints - Crontrol and Status) 
Should add: 
When writing into the control registers BKC, ACTION, CTRC, 
care must be taken to avoid overwriting unintended fields. 
It is best to exercise a read-modify-write programming 
sequence to overwrite only the intended bits and not disturb 
the other bits/fields. 

Doc Typo 
(Section 4.14.4.1 Description lines of register BKS) 
nCBKIS Indicates that an interrupt was generatedn 
Should be: 
nCBKIS Indicates that an interrupt was takenn 

Doc Typo 
(Section 4.14.4.1 Description lines of register BKS) 
nCBKFS Indicates that an interrupt was generated II 

Should be: 
nCBKFS Indicates that an interrQpt was taken ft 

Doc Typo 
(Section 4.14.4.1 Description lines of register BKS) 
nDBKIS Indicates that an interrupt was generated n 
Should be: 
nDBKIS Indicates that an interrupt was taken ft 
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Errata Class 
Page 127 

Errata Class 
Page 128 

Errata Class 
Page 128 

Errata Class 
Page 191 

Errata Class 
Page 191 

Errata Class 
Page 192 

Errata Class 
Page 193 

Errata Class 
Page 199 

Errata Class 
Page 199 

····· •••••..• • ••••.••••.• • •.•.•.• ·~~l~.·.·.·.~!±~~.fuex. .•...........•.•••..••..•............. 
Doc Typo 
(Section 4.14.4.1 Description lines of register BKS) 
"DBKFS Indicates that an interrupt was generated .. 
Should be: 
"DBKFS Indicates that an interrupt was taken " 

Doc Typo 
(Section 4.14.4.4 Description 
"ZICIS Records the status 
Should be: 
"ZICIS Records the status 

Doc Typo 
(Section 4.14.4.4 Description 
"ZCCIS Records the status 
Should be: 
"ZCCIS Records the status 

Doc Clarify 

lines of register CTRS) 
was generated ..• " 

was taken •.. " 

lines of register CTRS) 
was generated ... " 

was taken ... " 

(Section 8.1 MBUS Compatibility) 
Should add: 
Virtual address 19 through 12 (multiplexed on MAD(53:46]) 
is used to carry virtual address bits 19 through 12 of a 
read or write block transfer for virtually indexed caches, 
also known as the "superset" bits. In compliance with the 
MBUS Specification, Viking drives these virtual address 
superset bits (VA(19:12] or MAD(53:46]) high. 

Doc Clarify 
(Section 8.1 MBUS Compatibility) 
Should add: 
This bit is the supervisor access indicator bit, multiplexed 
on MAD(59). For MBUS mode operation, during user-mode 
operation, it is recommended to operate with the store buffer 
enabled. When the store buffer is enabled, Viking drives 
MAD.SUP high, compliant with the MBUS Specification. 
When the store buffer is disabled, however, the MAD.SUP bit 
is not driven high. Instead, during copyback operations, 
MAD.SUP bit will be obtained from the state of the current 
transaction which caused the copyback to occur. 

Doc Typo 
(Section 8.5 the last sentence the in first paragraph) 
"This protocol is described int he MBUS " 
Should be 
"This protocol is described in the MBUS " 

Doc Typo 
(Figure 8-1, arc from "Clean Exclusive" to "Owned Exclusive") 
"Vik Wr. (Bus CI)" 
Should be: 
"vik Wr." 

Doc Clarify 
(Section 8.10 Port Register, the 2nd sentence in the last 
paragraph on the page) 
This indicates device 0, revision 0 for the vendor (Texas 
Instruments) . 
Should be: 
This indicates device 0, revision 0, and 10 4 for the SPARC 
Licensee (Texas Instruments). 

DoC Clarify 
(Section 8.10 Port Register, MBUS Interface) 
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( Errata Class 
Page 238 

Errata Class 
Page 240 

Errata Class 
Page 255 

Errata Class 
Page 255 

Should add: 
, 

This MBUS port register is read-only. 

Doc Typo 
(Figure 9-31 Noncacheable Read) 
label WRDY_ 
Should be 
label RRDY_ 

Doc Typo 
(Figure 9-33 and 9-34) 

CMOS was not asserted 
Should be: 
CMOS should be asserted at the same time as WR 

Doc Typo 
(Section 10.3 
(Signal Name) 
DI?AR[O: 7] 
WE_[0:7] 

Viking Pin Summary, Table 10-2) 
(MBUS pullup) (VBus pullup) 

No No 
Yes Yes 

The correct entries should be: 
DI?AR[O: 7] Yes No 
WE_(0:7] No No 

Doc Typo 
(Section 10.3 Viking Pin Summary, Table 10-2) 
(ESB was listed as Input instead of Output) 
The correct entry should be: 
(Signal Name) (Direction) 
ESB 0 " 

3.0 Known Design Bugs 

=-=-=-=-=---=-=-----=---=---------------~-=-------------=-=-=-=-=-=-----=-
Reference Description =-= _______________________ ~ _______________ = _________ = _______________ a_=_=_ 

Errata Class 
Page 67 

Errata Class 
I?N2860 2/7/91 

Known Design Bug (Fbfcc in fpx does not cause Sequence Error) 
(Section 4.6.4 Floating Point Exception Details) 
The last paragraph discusses how a sequence error will be 
triggered if a new FP request is made when the FI?U is in 
exception mode. 
Should add: 
There is a special case of this floating point request 
which does not trigger a sequence error, and that is the 
FBFCC instruction. When an FBFCC-instruction is issued 
while the FPU is in exception_mode, Viking does not cause 
a sequence_error. 

Known Design Bug (aix vs fpx order of traps taken) 
(Section 4.13 Traps, page 114, should add the following) 
Suppose we have"the following instruction group: 
------ break group ------
fdiv %fO,%fO,%fO (fpop, generates fpx) 
st %fO, [%10) (stf, generates iax, reports fpx) 
------ break group ------
where 
fpx - fp_exception, priority-ll, tt-Ox08 
iax - instruction_access_exception, priority-5, tt-OxOl 
Scenario: 
The FPOP generates fpx 
The STF generates iax, and accepts fpx generated by FPOP 
There must exist a dependency between the fpop and stf. 
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Register. cOlllilllUd 
SBCNTL.Fptr, 113 
SBCNTL.SE,113 
SBTAGS.SP.59 
SCNTL.Dptr. 111 
Shadow FSR. 96 
Windows, 4 
Write, 13 

Reset, 51 
Hardware, 52 
Hardware Effects. 53 
Wa~hdog.54;64.252 

Retry, 230,231 

S 
Shared, 192 
Signal 

ADDR[35:0].247 
AERR ... 252 
ARDY_.249 
BURST. 252 
BUSREQ..,252 
CCHBL_.252 
CCRDY_.250 
CLK. 253 
CMDS ... 250 
CSA_.252 
DATA[63:0].248 
DEMAP-J248 
DPAR[O:7].248 
ERROR __ 252 

. ESB, 121. 130 
IRL[3:0].251 
LOST ... 253 
MAS-J 249 
MBB-,250 
MBR-,252 
MEXC_.251 
MIH_.248 
MRDY_.250 
MRTY __ 251 
MSH_.249 
OE_.250 
OWNER-,248 
PEND-, 186.251 
PIPE[9:0). 130. 254 
PLLBYP.254 
RD-,249 
RESET-,251 
RETRY-,2S1 
RGRT ... 2.S1 
RRDY_.251 
SHARED-, 249 
SJZE[I:0),2S3 
SU-,253 
TCI{.254 
TDL254 
TDO,254 
TEST .... 254 
TMS.254 
TRST .... 254 
VCK..2S3 
VPl.l.RC, 253 

Signal, COlllitwed 
WE.lO:7]. 253 
WEE-,250 
WGRT_.252 
WR_.249 
WRDY-, 250 

Snoop. 218 
Enable. 97 

Squash. 23. 28 
SRAM 

Configurations, 241 
Non-Pipelined. 242 
Timing, 230, 241 
Wrile Enable, 253 

STag, 72 
Store 

Non-Cac:heable, 195 
Synchronous. 232 

Store Buffet. 4.109, lll. 225 
Enable. 97 
Exception. 232 
Rush. 18 
Hits. 18 

Strong Ordering. 60. III 
Supersc:a1ar.4.6.11 
Supervisor Pin. 253 
Swap. 215. 216. 227 

Tag 
T 

Check, 227 
Compare. 223 
Hit. 222 
Lookup. 222 

Test. 254 
Testability, 5 
TLB 

Replacement Policy. 88 
TMS390ZSO - Vilcing User Documentation 
Total Store Ordering. 60 
TSO. 60. 186 

V 
VICE, 155 

w 
Walchdog Reset. 99 
Write 

Burst. 80, 227 
Enable. 223 
Fill. 231 
GrIll1, 231 
Miss. 230 
Retry. 231 • 
Shared Miss, 232 
Single, 212. 223 

" Write Enable, 253 
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Boating Point. COnlimu!d 
Quad, 66 
Queue. 20. 66 
Special Numeric:. 66 

Forwarding 
Data. 40 
Operand, 40 

G 
Grouping Rules. 42 

I 
I/O. 195 

Consistency. 238 
Controller. 205 
Read, 237 
Write, 237 

InslnlCtion 
AS!. 62 
Atomic, 61 
Branch. 22. 24 
Branch Couple. 25 
Can. 26 
C~11.15.40 
Control Transfer. 11 
en 11.12. 22 
Decode, 11 
Boating Point. 18 
Grouping Rules. 42 
IDlV.57 
!FLUSH. 58 
IMUL,57 
Integer Divide. 20. 57 
Integer Multiply. 20. 57 
JMPl.,26 . 
ID.15 
LD/ST.62 
lDSTUB.61.195 
Queue. 11 
Restore. 26 
RE'IT.29 
Save, 26 
SIGM.59 
Squash. 23. 24 
STBAR. 59. 60 
Store. 59 
Store Bmier. 59 
SWAP. 61. 195 
Viking-specific, 57 
WRPSR.S8 

Instruction C8dae. 68. 97 
Cacheability.68 
Consistency. 71 
Data, 73 
Enable. 97 
Flash Clar. 72 
Replacemenl Policy. 69 
Tags. 72 

Integer Divide. 4. 20 
Integer Multiply. 4. 20 
Inaerioc:k 

Casclded ALU-Load. 13 
. Condition Codes. 13 
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Interlock. COfIliNuut 
Lo8d-Load, 13 

Internal Error. 95. JOO 
Interrupt, 28 

Priority. 120 
In~t~y. 114 
IntemJpU. 186 

Latenc:y.114 

J 
ITAG. 5.131. 155.254 

Insttuction Register. 155. 156 
IR. 155. 156 
MCI. 155 
MCI Register. 157 
MDIN.155 
M[K)UT. 155. 158 
MSTAT. ISS. 159 
TOR. ISS 
Test Data Register. 155 

M 
Memory 

Controller. 205 
Exception. 210 
Interleaved, 209 
Non-Cacheable. 237 
Parity. 210 

Memory Management Unit. 81 
Memory Model 

PSO.6O.186 
Strong, 60, 
TSO.60.186 

MFSR.198 
MIlC 192 
MMU.81 

BreIlcpoint, 124 
Coherence, 204 
Context, 96, 98 
Control Register. 96 
CTP.98 
DeMap. 204. 216 
DeMap TrlllACtion. 204 
Diagnostic:. 124 
Enable, 98 
Error Handling. 91 
Hit, 16 
MCNTL. 74. 96 
MFAR.96 
MFSR. 96, 198 
MSFSR.96 
No Fault, 94. 97 
Page Descriptor Cache. 106 
Page Tlblc Entry. 82 
Page Tlblc PoinIc:r. 82 
Rcferatc:ed and Modified bits, 87 
RegislelS. 96 
Replacement Policy. 88 
Shadow FSR. 96 
TLB.4. 106.204 
TrlllSpll"erlt Mode, 133 

Mode 
Boot, 55 
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