
(.

The Viking Microprocessor
·(T.I. TMS390Z50)

User Documentation

(,Sun Microsystems,lnc.. 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300
_/

Pan No: 800-451 ()..02

Sun Microsysaems Proprietary Revision 2.00 of November 1. 1990

(

Preface

This manual specifies the user's view of the Viking microprocessor. It is
intended to provide all necessary infonnation for the use of Viking, both
hardware and software. Detailed pin timing and other physical infonnation may
be found in the TMS390ZS0 Data Sheet from Texas Instruments.

The document is intended to fully specify the operation of Viking and includes:

An introduction to Viking
A simplified pipeline description
Guidelines for code generation
The programmer's model
A description of IT AG-based In-Circuit Emulation facilities
A description of internal software debugging facilities (breakpoints)
A detailed system interface definition

For background ~d supponing infonnation, the following documents are useful:

The Version 8 SPARC Architecture Manual, including
Reference MMU. Memory Model. and Suggested ASI appendices

The Viking Cache Controller (MXCC) Specification (External Cache Controller:
The SPARC MBUS Specification
The DynaBus and XBus Specifications
The IEEE P1149.1 ITAG Specification
The Sun-4M System Architecture Specification
11ie SunDragon Architecture Manual
The Viking SRAM Test Documentation
T.I. TMS390ZS0 (Viking) Data Sheet
T.I. TMS390ZSS (MXCC) Data Sheet ;-:.: .

. :;:-....
. ::;:::::::

.....

Effort has been made to make this an easy-to-use. ~:*Mt:oIllPi~re:doCU~>
ment It may contain errors and/Or omissions. Please report any elTatlrin or .:. /i

requests for additional information to Greg Blanck (gblanclc:@~g$~COM).

>?;;:i.
··:·:::\;L .. :.··:.:::::::

.•. ::; :

-iii-

Revision History

Revision Date Comment
01 9-25-89 First Release
02 11-1-90 Second Release

..

-y-

Contents

Preface .. iii

Revision History :... v

Chapter 1 Introduction to Viking .. 3

1.1. High Integration ... 4

1.2. Full Testability .. _ ___ 5

1.3. High Perfonnance ... __ .. 6

t Chapter 2 Processor Pipeline Overview .. ___ 11

2.1. Pipeline Fundamentals .. : ; _..... .11

2.2. Basic Pipeline Diagram ._ ... _ .. _ ... _;.................. 13

2.3. Pipeline Examples ___ _ __ _ _.. 14

Chapter 3 Code Generation Principles __ _ ___ _ ... _..... 33

3.1. Perfonnance of Existing Code _ __ ... __ ... 33

3.2. Areas that Hurt Perfonnance .. _ _ _ __ _ _................. 33
3.3. General Guidelines . ______ ... _____ _ ... ____________ ... _.. 34

3.4. Insttuction Grouping Rules .. __ __ __ ____ ... ______ .. 42
(:.

Chapter 4 Viking Programmer's Model .. _____ ~.,:·L;~;....... 51

4.1. Viking Processor _ ... _ ... ____ d;::::···::L;··:··\:/:~< :51
.-:.::::::: .-:.:.:::-::.: "::::::::::.;.:<' .. ::.-;.:.:

4.2. CC orMBUS mode .. _... _____ ... ____ LL..;L ·ii<:;') . ;;;;~,...;L ::si
4.3. Reset Operation ________ ___ ... __ .d2:~E:~.;:;:;;,; ... : .. £.5 •••••• : .~i
4.4. Insttuctions ___________ ... _ _ ... ______ ~S: •. ·:i~j.~~2~~ 57

4.5. Memory Model ... ____ ... ___ ... ______ ... _________ ~;;;~~.:;: ... ;L .. _ 60
.. ::;;;::~;~:~~~}::::

-vii-

Contents - Continued

""-j
4.6. Floating Point Unit .. . 65

4.7. Insttuction Cache .. . 68

4.8. Data Cache .. ____ 74

4.9. Data Prefetching .. . 89

4.10. Control Space Access .. . 80

4.11. Memory Management Unit (MMU) .. . 81

4.12. Store Buffer 109

4.13. Traps .. . 113

4.14. Software I>ebugging Facilities 120

4.15. ITAG and Emulation __ _ .. . 131

4.16. ASI Map .. . 133

Chapter S JTAG Serial Scan Interface 139
5.1. Overview __ ... _ _ __ .. _ 139

5.2. IT AG Requirements _ _ .. _ _ _ .. 139

5.3. ITAG Interface _ .. _ _ .. 140

5.4. IT AG Operations .. _ _ ... __ ___ . __ _ _ _ __ .. 140

5 .5. TAP Controller __ ... _ ___ ._ _ _ _ 142

5.6. Acce~ible Scan Chains inside Viking .. _ .. . 144

5.7. IR Fonnat and Encodings ___ _._ _ _ __ _ __ .. 146

5.8. System I..evel Test ... ____ ... _ _ .. 152

Chapter 6 Remote Emulation Support _ __ __ ... _ ISS
6.1. Overview ______________ . __ _ ... __:. 155
6.2. Emulation Strategy . ____ ... _. ____ _ __ .. ____ ._._ _. _____ _ 15S
6.3. Emulation Register Set ___________ . ___ ._ __ ._ ... ______ . ______ .. 156

6.4. Supponed Emulation Primitives ___ ._ ... _. ___ ________ ... __ . __ - 163

6.5. Emulation Sequences ________ ._._. __ . _______ .____ 164

6.6. Emulation Execution Details . ____ ... ______ .. _. ___________ .___ 165

6.7. Emulation Insttuction Sequences for Common Emulator
Functions ________ ____________ ... ___ ._______ 168

6.8. Approximate Latencies for Each Emulator Primitive _._. ________ ._ 177

6.9. Details about Entering Emulation __ ._ ... __ . _____ . __ . ____ ._____ 178
..

-YiU-

Contents - Continued

6.10. Emulation Exception Issues .. 178

Chapter 7 System Interlace ... 183

7.1. Multiple System Interfaces .. _ 183

7.2. Oock Operation .. _.. 184

7.3. Reset Operation .. 185

7.4. Interrupts ... 186

7.5. Memory Model Support (PEND-l ... 186

7.6. Test Support .. 187

Chapter 8 ~us Interface ... 191

8.1. Compatibility ... 191

8.2. Selecting MBUS Mode ... _..... 191

8.3. Module ID .. 192

8.4. Cache Policy ... _ ... _..... 192

8.5. Level-2 Consistency Operation .. _ _.. 192

8.6. MBUS Transactions _... 194

8.7. Store Buffer Operation in MBUS Mode .. _.. 197

8.8. Bus Arbitration __ .. _.. 198

8.9. Error and Retry Handling .. _..... 198

8.10. Port Register ... __ _ _ ___ ... _ __ .. 199

8.11. MBUS Pin Connections _ _ .. _ _........ 200

Chapter 9 Viking Bus Interlace ... _ ... ~ _ ... _ 203
9.1. Overview . _____ ... _._ __ .. __ __ ... ___ ... ___ .. 203

9.2. Systems Without External Cache ._ _ ___ __ ___ 204

9.3. External Cache Based Machines ___ _ ... _. __________ .. 218

Chapter 10 Signal Description ___ ._. __ ___ . __ ._ ... __ . __ . ____ .. 247

10.1. Electrical Issues .. ___ . ____ ._ ... _ ... __ __ .. ___ ._. ____ . ___ ._. ____ . ___ .. 247

10.2. Pinout l)escriptions . _______ __ ._ ... _._. __ ... ___ . __ . ___ __ . ____ .. 247

10.3. Pin Summary _._ ... _. ___ ._. ___ . __ ... _. __ ___ ... _________ . ___ .. 255

Chapter 11 Electrical.and Mechanical Specification _________ .___ 259

[

-ix-

Contents - Continued

11.1. Electrical Specification _.. 259

11.2. A.C. Characteristics .. .-.................. 259

11.3. Packaging Infonnation ... 259

Index ... _.. 261

..

-lL-

L:

Tables

Table 2-1 Floating Point Operation Execution Time - 3 cycle latency __ 21

Table 2-2 Floating Point Operation Execution Time -latency ____ .. 22

Table 3-1 Break After Rules ... _ ... _ _ ... __ __ 43

Table 3-2 Break Before Rules .. _ .. _ _ ___ 44

Table 4-1 State after hardware reset .. _____ 53

Table 4-2 BIST Diagnostic Registers within ASI Ox39 ... : _ _____ 56

Table 4-3 BIST status register values .. _ ____ .. 56

Table 4-4 NaN Output Representation Values _____ ._ __ ._._____ 66

Table 4-5 Floating Point Queue Fonnat _______ _ ___ "' ... _._____ 67

Table 4-6 Instruction Cache Cacheability . ___ __ . __ .. ___ .. __________ .. 69

Table 4-7 Data Cache Cacheability __________ . __ ._ ... _ _ ... _ ... __ 75

Table 4-8 Data Cache Snoop Mechanism (MBUS mode) _ _._ ___ .___ 77

Table 4-9 MMU Registers ___ . _____ ... ____ . __ . __ _ ... ____ __ ... ______ 96

Table 4-10 MFSR Overwrite Operations _. __________ . ________ .____ 102

Table 4-11 MFSR Enor Priority ___ ._. __________ . __________ . _____ .. 102
:\:::>:::;:::::':'

Table 4-12 Access Permission vs Access Type . _________ .. ~o-... \;OOO'./ -.- 104
Table 4-13 Exception Handler PC formation . ____ ... ___ ~U.,~::L ... :H 114

Table 4-14 Table of Traps supported by Viking . ___< -:.L.~:<:jj~..:t 16

Table 4-15 Unimplemented Trap Types ------.--.£:(:/i) .. :. ::··:::~./.120
Table 4-16 Breakpoints - Control and Status _____ ~J:::<: .. :::::.<~=;.{}123

~::::~ ;:[::=~~~gi~~2~ :~
'" :;:::;:::.:: .. :.

(

-ix-

Tables - Continued

r
~.

Table 4-19 ASIS supponed by Viking .. _ .. 134

Table 5-1 State afierTAP reset _ _ _ _ 144

Table 5-2 Categories of Viking IR instructions .. _ _ .. 146

Table 5-3 TOR Scan Chain selection by IR Encoding _ _ 147

Table 5-4 Viking Boundary Scan bit definition .. . 149

Table 6-1 Emulation register TOR Scan Olain selection by IR Encoding 157

Table 6-2 MDIN Scan Register Format .. __ ... _. __ _ _ _ _ 157

Table 6-3 MDOUT (Emulation Data Out) Register Format _ _ _ 159

Table 6-4 MSTAT (Emulation Status) Register Format _ ... _ 159

Table 6-5 Viking State upon entry into Emulation mode __ .. _ __ _ .. 165

Table 6-6 Valid compound emulation sequences __ _ __ _ .. 167

Table 6-7 Symbolic Constants for Emulation Sequences _ ___ ... __ .. 168

Table 7-1 PEND_ operation ______________ ... _ _ ____ . __ ... __ 187

/

Table 8-1 Store buffer copyback moop hit actions __ ._ _ ___ .. __ .. 198 "-

. Table 9-1 Broadcast ~Map Data Format . ___ _ __ . __ ._ _____ . __ 204
Table 9-2 Reply Codes __ ~ ____ . ___ . ________ . __ _._. ___ ._ ... _____ _ 207

Table 10-1 SlZE(1:0] Encoding __________ . ___ . __ . __ . _______ .. 253
Table 10-2 Viking Pin Summary ... _ _ _ ... _._ ... __ _._._._ __ ._ ... _. ____ : __ 255

..

-ll-

c

Figures

Figure 2-1 Basic Pipeline Description .. _ _................ 14

Figure 2-2 Basic load pipeline sequence ... _ .. __ 16

Figure 2-3 Store Pipeline Operation ... __ _ _... 17

Figure 2-4 Floating Point Pipeline _ _ _ _ ___ ... _...... 20

Figure 2-5 Untaken Branch Pipeline _ .. _ _ __ .. _ ... _._ 24

Figure 2-6 Taken Branch Pipeline ___ __ __ ._ _._._ _ ... ___ . __ ._.. 25

Figure 2-7 ,Exception Handling Pipeline _ _ _ __ .. _._.. 28

[I Figure 2-8 Return from Trap Pipeline _ _ : ... _ ____ _ _ 30

Figure 4-1 Generalized safe page table update algorithm _ _ ___ ... _..... 64

Figure 4-2 Example of Instruction Cache Replacement Policy _ .. ___ __ .. 70

Figure 4-3 Address Translation Utilizing Four Levels of Page Tables ._ ... _.. 82

Figure 4-4 Address Translation With Maximum Page Size .. _ _._ __ .. 85

Figure 4-5 Address Translation With 16 MB Page _._ ... _. ___ _ ... __ ... ____ .. 86

Figure 4-6 Address Translation With 256 KB Page . __ ._. _____ .. _. __ . ___ .. 87

Figure 4-7 Root Pointer Physical Address Generation .. __ .____________ 98

..... :

Figure 5-1 One Bit 1I'AG Scan Chain Datapath Element ____ .J<. __ 141

Figure 5-2 1I'AG OperaDOOS -CAPI'URE, SHIFI'. and UPDA~{:;:·:t.::; \..:.;: 141

::~~:==:-=:=~~;;
Figure 5-5 Example of System Level1I'AG Test Hie~~.:;·:·~:!::::;:·/ Ji~~: .. ::;::::ls2

-.:;; ::::{:::<~:; ::::';" ... ::

. :.,:<.
Figure 6-1 MCI (Emulation Command and Instruction) RegistC~ .. :.:.

Fonnal . ____ ':.. _______ . _______ . ___________ 2:::::::: .. _____ 157

-lli-

Figures - Continued

,~,

10
Figure 8-1 Cache consistency algorithm: Data cache on the MBUS 193

Figure 8-2 Cache consistency algorithm: Instruction cache on the
MBUS 194

Figure 9-1 Viking Non-Cached System .. . 205

Figure 9-2 Read Single Protocol _ _ _ _ ... _ 208

Figure 9-3 SCRAM Read Block - Alternate Cycle Data ___ 209

Figure 9-4 Read Block - Data on Consecutive Cycles _ 210

Figure 9-5 Read from SCRAM with Exception _ 211

Figure 9-6 Overlapped Read Blocks , _ 211

Figure 9-7 Write Single to DRAM .. . 212

Figure9-8 Write Single to DRAM with Exception 213

Figure 9-9 Burst Write to SCRAM _ _ _ ... __ _._ 214

Figure 9-10 Overlapped ReadlWrite Block _ ... _ ... __ 215

Figure 9-11 Swap with SCRAM __ ... _ _ _ ... _ _ 216

Figure 9-12 Processor Initiated Demap __ __ _ ... _ __ _ 217

Figure 9-13 Extemally Generated Demap and Reply _ _____ ... _ 218
Figure 9-14 Viking with External Cache __ _ ... __ ... _..:. ___ __ .. 219 '\:
Figure 9-15 E-Cache Processor Configuration (four system busses) .. __ ..;._ .. 220
Figure 9-16 E-Cache Read Hits .. ________ _ _ _ ... _ _ _._ 222
Figure 9-17 Overlapped Read Hits _______ _ ... _ ________ ._ .. _ .. 223
Figure 9-18 Write Single ,Hit . _______ ... _____ ... _____ ... _ ... ___ ... ___ .. 224
Figure 9-19 Shared Write Single _______ ... __ _____ _ .. _ ... _ ... _ ... _ 225
Figure 9-20 Write Burst Hit _________ ... ____ ... __ ... _ ... _ _ ... __ ..: 226
Figure 9-21 Overlapped ReadlWrite Hits .. ____________________ _ 227
Figure 9-22 Swap Hit (Shared. with inValidate) ___ ... ___________ . __ .. 228
Figure 9-23 Read Miss _________________ ... ___ .. 230
Figure 9-24 Write Miss __ _. __ . _____ . ___________________ .. 231
Figure 9-25 Write Miss with Exception ___________________ .. 232
Figure 9-26 Write Miss, Shared ,, __________________ _ 233
Figure 9-27 Overlapped Write Miss and Read Hits _________ _ 234
Figure 9-28 Overlapped Read Miss and Write Hits ______________ .. 235
Figure 9-29 Overlapped ReadlWrite Miss __________________ 236

r1 .

. ~

-xii-

Figures - ContilUted

Figure 9-30 Overlapped Write/Read Miss .. _._. __ ... 237

Figure 9-31 Noncacheable Read ... __ _ 238

Figure 9-32 Noncacheable Write ... __ 239

Figure 9-33 Viking Cache Line Invalidation ... _._ ... - 240

Figure 9-34 Invalidation During Line Read _ _ __ .. _.. 240

Figure 9-35 Slower Pipelined Reads ... ____ 241

Figure 9-36 3 Cycle Non-Pipelined Reads ... _._.. 242

Figure 9-37 2 Cycle Non-Pipelined Reads ... ___ 243

[r

-xiii-

[Blank Page]

..

L:

1
Introduction to Viking

Introduction to Viking ... 3

1.1. High Integration .. , 4

Integer Unit _.. 4

Memory Management Unit .. .

Aoating Point Unit _ _ .. __ .. _ ___ _

Instruction Cache _._ _ _

Data Cache _._ _ _ __ _ ... _

Slore Buffer .. _ _ .. _ _ _ _ _ _ ..

Exiemal Cache Support _._ __ __ ... _ _ _ _

4

4

4

4

4

5

Multi-Processor Cache Coherence support _._ _ __ ... __ 5

Hardware Breakpoints _ __ _ _. __ _ __•........ __ 5

IT AG Emulation ___ ._._._ _ ... _._._ .. ___ _. __ . __ ... ____ _ _._... 5

1.2. Full Testability . ___ ._ ... _ __ _. __ ._ _. __ ._ _.: .. __ . ____ ._._ ... _ ... _... 5

1.3. High Perfonnance ... _ _ __ . ___ . __ . ___ ._. ___ .. _ ... _ _ _._ _ 6
Oock rate/technology ._ ... _____ . _____ . _______________ . ____ .. 6

J.LArchitecture _______ . _____ ._. _______ .. _________ . __ _._........ 6

Multiple Instructions Per Cycle Execution ________ . _____ . __ .. 6

Fast LOAD and STOR.E instructions ____________ . ______ .. 6

Aoating Point Implementation . __________________ ._ .. ___ .. 7

[Blank Page]

..

•

Ci

1
Introduction to Viking

Viking is a highly integrated. high perfonnance implementation of the SPARC
RISC architecture. It is a single chip processor implemented in full custom
BiCMOS tecMology by Texas Instruments. It is intended for use in a broad
spectrum of system environments: from large scale multiprocessor systems. to
low cost single user workstations and high perfonnance embedded control
applications. A simplified functional block diagram of Viking is shown below:

Floating Point Control Floating Point Execution

FP Queue Control
Double Precision Addez' Array I--Double Precision Multiplier Array

FP Exception Control
Integer Multiply & Divide

FP Exec Control
S-Port, 32~ntry FP Register File

;
Inteffr Unit Control SuperScalar Integer Execution

Prefetch ueue . Two independent, or cascadable ALU's, One Shifter
BranchlPipeline Control LoadIStore Address Generator
Instruction Grouping & Decode 64-bit Loads and Stores
Exception Handling 8-port. 8-window (136 registers) Integer Register File
Emulation & Brealcooint Control

~ • t 1
A

"' 1

Instruction Cacbe MMU DataCacbe
4- ~

20KByte 64-Entry n..B 16KByte
S-way set associative Fully Associative 4-way set associative
Physical Cache Reference MMU Physical Cache
(l28-bit access) wI Pl'P Cache (64-bit access)

; ; ;
CC or MBUS mode Bus Interface I Store Buffer I (8 Double Words)

I . Sua Cycle Canavll and Bu_
AdcbuI(35:O] o.&ll(63:OJ PaDty(O:7)

c-avU(35) II
W(5J InU2J 0ut(l'1

~ SuwlY 1 J T bili&y A_I
I.u; C1oc:k T1'AG(5] PIPE{lO]TES'1

~ ~ ~ j

,~ ,~

kl

Revision 2.00 of November I, 1990

4 TMS390Z50 - Viking User Doc:umengtion

1.1. High Integration

1.1.1. Integer Unit

1.1.2. Memory Management
Unit

1.1.3. Floating Point Unit

1.1.4. Instruction Cache

1.1.5. Data Cache

1.1.6. Store Buffer

Integrated within the processor are most of the support functions nonnally
required to build a SPARe based system. These features total approximately three
million transistors, and include:

A fully SPARe compatible integer unit is provided on chip. This integer unit is a...
high perfonnance superscalar (multiple instructions per cycle) design. Eight
register windows are provided. Integer multiply (IMUL) and integer divide (IDlY)
instructions are implemented in hardware.

An implementation of the SPARe Reference Memory Management Unit (MMU) is
included within Viking. TheMMU provides a 64-entryTLB (franslation Looka­
side Buffer) to translate viJ'bJal to physical addresses. A second-level Page Table
Pointer (PTP) cache and a root pointer cache are included to reduce TLB miss
penalties.

A standard SPARC floating point unit and controller are included on chip. This
FPU provides high performance single and double precision floating point arith­
metic functions. Integer multiply and divide instructionS are also perfonned by
theFPU.

In order to increase perfonnance and reduce the demands on an external memory
system, a large instruction cache is included. This instruction cache is as-way
set associative cache with 200 total storage. 1be sets are independent; instruc­
tions at any physical address can be stored in any of the S set 1be cache is a
physical address cache. The instruction cac~ is DOD-writable, but is kept con­
sistent with the data cache, and external memory. through extensive cache coher­
ence support.

Fast execution of LOAD and STORE instructions is critical to high perfonnance
RlSC processors. To achieve single-cycle execution of these instructions. a data
cache is included on chip. This data cache is a 4-way set associative cache with
160 total storage. 1bese sets are independent; data at any physical address can
be stored in any of the 4 sets. This cache enforces cache coherence with other
caches in a system. The coherence mechanism is described in the System inter­
face chapter. The data cache is a physical tMldress cache. Depending on the sys­
tem environment, the data cache works in either write-through or copy-back
mode. The behavior of each mode is explained in the Programmer's Model and
the System Interface chapters.

An 8-doublewoRi entty store buffer is provided to reduce the latency on ST. This
is a FIFO queue which holds the data until resources allow data to be written out
to the extel'Dal cache and/or memory. This buffering allows the pipeline to con­
tinue execution, thereby increasing perfonnance •

..

1teYiaion2.00ofNovember 1.1990

[J

1.1.7. External Cache
Support

1.1.8. Multi-Processor Cache
Coherence support

1.1.9. Hardware Breakpoints

1.1.10. JTAG Emulation

1.2. Full Testability

Chapter 1 - Introduction to Viking 5

Viking provides a flexible external cache interface. An external cache controller
chip, such as the MXCC, can provide a complete implementation of a large, direct
mapped, physically addressed external cache. This interface is described in detail
in the System Interface chapter. The MXCC provides a single chip interface to the
SPARe MBUS standard (level-2). It also provides a general purpose packet
switched interface (the XBus) that can be used to interface to a variety of bus­
standards.

Both Viking and the MXCC are independently optimized to worX with fully pipe­
lined cache RAMS, and they both support SPARe's TSO (Total Store Ordering)
and PSO (partial Store Ordering) memory models. See SPARe Architecture
Manual for more details.

Viking provides built-in cache coherence. The protocols are described in detail
in the System Interface chapter. The protocol supports multiple cached copies of
shared data for reading and in some systems for writing.

Physical address bus snooping is used to implement the coherence algorithms.

To simplify software debugging, and reduce system development time, Viking
provides on-chip hardware breakpoints. Code and data access breakpoints are
provided. Virtual and Physical addresses can be selected.

A 16-bit instruction counter and a 16-bit cycle counter are provided for debug
and performance analysis.

These breakpoints all have programmable actions when they occur. 1bey may
generate exceptions, interrupts, or toggle an external pin to help trigger external
analysis equipment.

Viking provides the equivalent of traditional leE (In-Circuit Emulation) suppon
intemally in hardware. Through the IrAG (IEEE PI 149.1) asynchronous scan
interface, the state of the processor may be viewed or modified withQut changing
other processor state. TIle processor may be single stepped through a program,
with all processor states being observed after each cycle. This interface may be
used to view or modify system memory as well.

Emulation operates at full processor speed, without affecting any pin timings, or
loading. No test pod, nor other specialized hanlware is required (except a IrAG
control device with appropriate software).

Viking is a 100% testable device. All internal datapath and control logic can be
tested using 11" AG scan. Large intemal mays are not directly in the scan chain.,
but may still be tested through the serial IrAG interface.

An automatic power-up selftest (software) can be initiated with or without any
external scan hardware. This, along with functional test of the arrays, gives bigh
confidence that the device is correct. with minimal effort.

Boundary scan is implemented to perform system level testing .

• ~p..!! Sun Microlystems Proprieury R.evision 2.00 of November I, 1990

6 TMS390Z50 - Vitirag User Docwnentation

1.3. High Performance

1.3.1. Clock rate/technology

1.3.2. J1Architecture

.} .3;2.1 MUltiple InstrUctions
Per Cycle Execution

1.3.2.2 Fast LOAD and STORE
instructions

All tests can be performed in-circuit; only a ITAG control device is required.

Viking achieves high performance in many ways. These are broken down into
two categories: High clock rate due to technology, and low sustained cycles-per­
instruction (CPI) due to p.architecture.

A full custom BiCMOS implementation allows for a target frequency of 50MHz or
greater. Advanced process technology makes possible many of the J13fChitectural
features described below. The system interface is designed for operation at these
high speeds. An internal Phase Locked Loop is included to reduce system clock
skew.

In order to push beyond the improvement from clock rate, the J.WChitecture has
been optimized to execute multiple instructions simultaneously and critical
instructions quic1cly. These J13rchitectural features increase the average number
of instructions executed per cycle by a factor of two for integer programs. A
much greater improvement is found for floating point bound programs.

Viking typically executes programs from its cache at about 1.35 instructions per
cycle (IPC), or about 0.74 clocks per instruction (CPI). This figure derates to about
1.1 IPC for large programs not fully contained in the cache. Hoating point perfor­
mance is generally much higher.

TIle optimizations are outlined below:

Viking can issue up to three instructions simultaneously. Ceitain rules are fol­
lowed to determine how many of the available instructions may be executed in
any particular cycle. These.are fully described in section 3.4 -Instruction
Grouping Rules.

All LOAD and STORE instructions operate in a single clock cycle when the refer­
enced data is present in the on-chip data cache. This includes 64-bit transfers and
floating point transfers. When the data is not present in the on-chip data· cache, a
S cycle penalty is imposed to access the external cache. Each cache miss reads a
block (32-bytesl of data from the external cache. These bus transactions are fully
pipe1ined. The processor can use this data "on the fly", as the data arrives from
the bus.

When in cc mode, no miss penalty is incurred for normal store misses. An inter­
nal store buffer holds the store transaction and allows the pipeline to continue.

No load-use interlocks are imposed on lD instructions. The.lnstruction immedi­
ately following may use.the data wi~ incurring any delay. 1bere are some
cases of interlocks between the lD instruction and the following address calcula­
tions. (Described in section 2.3.1.1 - W (Lood operation)). TIle external bus
is capable of nearly one transfer per cycle in the steady state (A mix of data and
instruction fetches). ..

Because Viking uses fully physical caches with cache coherence, no flushing of
cached entries must be done, and no vinual address aliasing conditions exist
Eliminating flushing overi1ead can boost perfonnance significantly.

Revision 2.00 of November 1. 1990

[)

1.3.2.3 Floating Point
Implementation

Chapter 1 - Introduction 10 Viking 7

The Viking Floating Point Unit is tightly coupled to its integer execution pipe­
line, and allows one floating point operation and one memory reference to be
issued in ellery clock cycle. Viking supports single and double precision opera­
tions. but not extended nor quad precision. The FPU maintains a 4 entry FIFO
queue from which FPOPs are executed. Some operations require more execution
cycles than others, for example FDIV (Ooating point divide) and FSQRT (floating
point square root) take many more cycles than FADD. Viking FPU also handles the
integer multiply and divide. FPOP, and FPEVs are executed in the order they are
issued by the processor, allowing no out of order completion Register depen­
dencies can delay execution stream, and exceptions can interrupt the pipeline,
sometimes requiring instruction aborts. Viking handles all cases ofnormaliza­
tion, and register alignments for double precision arithmetic, directly in
hardware. No unfinished exceptions (which consume extra cycles) are required.

More details of the FPU can be found in section 2.3.2 - Floating Point Pipeline.

S1m Microsysrems Proprieaary Revision 2.00 of November I, 1990

[Blank Page]

..

2
Processor Pipeline Overview

Processor Pipeline Overview ... _ _ ... _ _ 11

2.1. Pipeline Fundamentals _ _ _ ... _ _._ 11

FOIFI (Fetch) _ _ _ 11

I>O (Grouping) _ __ _ _ 11

D I (Resource Allocation) .. _ _ _._ _ _ _ ... _ .. 12
D2 (Read Operands) _ _ _._ _ _ .. _ ... _ __ ... _ _ 12
EO (Execute first stage) _ ... __ . __ .~ ... _ ... _._ __ ... __ _ ... _ ... _._._. __ ... _._ .. 12
EI (Execute second stage) _ _ _ ... _ _ ... _._ : .. _ 12
WB (Write Back Results) _ _ ... _ _ _. __ . __ _. ___ ._ __ .. _ ... _._ .. 13

2.2. Basic Pipeline Diagram __ ._ _ ... __ _._._ ... _ _ __ __ ... _._ 13
2.3. Pipeline Exmnples _ _._ _. __ . __ .. ___ . __ _ _. ___ ~ ___ ._._._._. ___ ... _._

..

14
.. Memory References _____ ._. _____ ._ ... __ .. ______ . ______ ... _. ____ .. 15 ." .";:

LD (l..oad operation) __ ._ ___ .. ___ ._ _ .. _ ... _. __ ._ ... _. ___ _._. __ _ 15
...... -: .. :-:

ST (Store operation) ___ ._._ __ ._ ... _ _ __ ... __ _ __ 17
Aoating Point Pipeline _____ . ____ . _____ . __ ._. _______ ____ ._._ .. 18
Aoating Point Instructions ___ . _____ :_. __ ... ________ . _____ ._. __ .. 20
Aoating Point Queue ___________ . _____ . __ ._. ___ . ___ . _____ _ 20
Aoating Point Execution Times . ____ .. ______ . ____________ .. 20
Conditional Branch Pipeline ______ . ___ . ___ . ____ . ______ _ 22

Untaken Branch ________________ . _________ . _____ . __ _ 23
Taken Branch _________ . _____________________ _

24
Branch Couple ______________ . _________ .. __________ _

2S
JMPL . _______________ . __ . _____ . ______ . _______ . 26

..

Procedure Call and Return __ _ .. . 26

CALL ._ .. _ 26 i1" I,

'-/

CWP Pipeline _ .. _ _ _ _ 26
SA VE _ _ _ 26
RES'I'ORE ___ ._ _ ... _ _______ __ ... ___ __ ., 27

Exceptions _ __ __ ._ __ _ _ __ _ _._ _ _ .. 27
Exception Pipeline _ _ _ ... _ 27
InleI1UPts ... _ ___ ._. ___ _ _ ... _ ... __ _ 28

RE'rJ' (Return From Trap) Pipeline _ _ _ 29

. ~ -

(

2
Processor Pipeline Overview

The Viking J1Processor pipeline is presented in this chapter. This information is
used throughout the document to describe Viking's operation. The next chapter.
Code Generation. suggests code generation strategies to attain maximum perfor­
mance from Viking's SuperScalarpipeline.

2.1. Pipeline Fundamentals Viking's pipeline comprises eight stages. which execute in four clock cycles.

2.1.1. FOIFI (Fetch)

2.1.2. DO (Grouping)

Each stage has a unique function. which varies depending on the group of
instructions being executed. In general. they follow the standanl Fetch, Decode,
Execute, Write Back model The Viking pipeline stages are:

FO, Fl. DO, Dt, D2, EO, EI. WB

and each stage is defined in detail below.

All instructions must be fetched before they are executed. However, not all
instructions are fetched in the cycle immediately preceding their executiOlL They
may be prefetched. and placed in the instruction queue. The Fetch stages (FO/Fl)
of the pipeline manage the instruction queUe, including fetching and prefetching
required instructions,from memory. Not all instructions fetched are executed.
Some may be discarded if a control transfer instruction (branch) changes the Dow
of execution. Up to 128 bits (four insttuctions) may be read from the instruction
cache in every cycle. 1bese instructions are entered into the instruction queue,
and can be removed at a maximum rate of three instructions per cycle.

The DO stage selects from 0 to 3 instructions from the instruction queue to form
an in-order instruction group. This selection depends on the set of instruction
Ct.UUliII4tes that are available at the bead of the instruction queue prefetch buffer,
as well as the current state of the processor pipeline. The grouping rules used to
form 1bis selection are described in section 3.4 1bese instructions must be taken
in order from the queue, Viking does not execute instructions out of order.

Once a group of instructions is selected, DO identifies the first memory reference
instruction in the group, and latches the corresponding register index. DO forms
extension words based on the immediate values for memory reference and con­
trol transfer instructions' displacements. DO identifies ClJ.SctJ/le conditions
fmteger insauction data dependencies within and between instruction groups).
and insens pipeline bubbles when necessary. A bubble or pipeUne stall of dead

.!P"!! Sun Microlyltema Pmpriday Revision 2.00 of November 1. 1990

12 TMS390ZS0 - Viking User Documentation

2.1.3. Dl (Resource
Allocation)

2.1.4. D2 (Read Operands)

2.1.5. EO (Execute first stage)

2.1.6. El (Execute second
stage)

cycle is a cycle where no insttuction is executed. This cycle is necessary when
there is a pipeline hazard, or if required data is not available.

01 assigns available resources within the integer unit to individual instructions in
the group selected during DO. All cases of data forwarding (or bypass) are
resolved in this stage. All operand register index are selected and assigned to
individual register file ports. 1bese resources stay constant throughout the execu­
tion of the insttuctions.

The two address registers selected during DO are read via two dedicated register
file ports during DI. This data is used in 02 to compute a LO/ST virtual address.
The data for these may also beforwarded from currently executing insttuction
groups.

Branch target addresses are generated in 01, taken from the extension words
selected in DO and the Program Counter (PC) value of the branch instruction
within the group. Next PC values are also generated.

Stage 02's primary function is to read the operand registers selected in the
preceding 01 stage. In addition, the address operands read during 01 will be
combined in the virtual address adder. The result is a 32-bit vinual address which
will be used to reference the MMU and data cache in subsequent stages. During
D2, any bypass paths required for execution will be set up to transfer data in
cycles that follow.

Viking has two execution stages. EO is the primary execution stage. Most arith­
metic operations complete in EO. During EO, the data operands read from the
register file during D2 are passed through one of two ALUs, or the shifter. Up to
two integer results can be generated in EO. Only one may be generated by the
shifter. These results are then presented as input to the EI cascaded ALU, and
sent into many forwanting paths.

For memory references, the virtual address generated in 02 is used in EO to begin
accessing the 11.B and the data cache. Only the low-order 12 bits of the vinual
address are needed to begin cache lookup. The high order bits are supplied by the
MMU in the EI phase for tag comparison with the physically cached data. The
MMU must inform the data cache unit in EO if there is an access exception in the
current group of insUuc1ioos. The IU is·also informed in El stage about the
access exception. If it is not yet known whether an exception must be reported to
the cunent group (due to 'I'LB or cache misses), the pipeline is stalled at this stage
until aD exception sources have ~ resolved ..

floating point operations are dispatched to the FPU during EO.

The sec:ond stage of execution can generate at most one additional integer ALU
result This result is generated ill the Cl.lSt:IIIUd ALU.The computed results from
the EO AW or shifter are used as inputs to this AW. All execution results from ;<.',

the current insUuction group are available by the end of the E 1 stage. This ~-./.
includes data retumed from the data cache.

Revision 2.00 ofNowmber 1.1990

(

2.1.7. WB (Write Back
Results)

2.2. Basic Pipeline
Diagram

CbaplCr 2 - Processor Pipeline Overview 13

Results generated in E 1 are delayed a cycle before they can be used as address
operands. Address dependencies for a load from memory result in one cycle of
pipeline bubble. Condition codes generated in E 1 are delayed a cycle before they
can be used in resolving conditional branches.

When stage EI has completed, all results are guaranteed to be available. The pri­
mary action in the WB pipeline stage is to 'Write Back' these results into the
register files based on write enable signals generated earlier in the pipeline and
potentially modified due to exceptions. 1be WB stage executes at the same time
as the EO stage of the next instruction group. Forwarding paths are used to
transmit data between successive groups. The integer unit and FPU update the
register files during WB, and normally the data cache updates its contents when a
ST instruction has appeared in EO-El.

Viking can operate in either cc mode or MBUS mode. The choice of mode has a
major impact on the behavior of ST instructions. In cc mode, Viking assumes
the existence of an external cache. In this mode, the Viking data cache behaves
as a 'Write 1brough' cache, which means that all ST instructions that modify the
internal cache also write their data through to the external cache.

In MBUS mode, the Viking data cache operates as a 'Copy Back' cache, which
means that ST data is not written out to the external system until the line contain­
ing the data is replaced in the cache, or a snoop on the bus forces a copy back.
Also, in MBUS mode the cache implements a 'Write Allocate' policy, which
means that if a ST misses in the cache, the line containing that data is brought in
from memory, and then the ST is performed locally (i.e. memory does not get'
updated, consistent with the 'Copy Back' strategy). MBUS mode does not assume
the presence of an external cache.

As in cc mode, there are conditions that will force a ST in MBUS mode to be
treated as a synchronous ST.

1broughout the document, pipeline diagrams are used to represent the Bow of
insuuctions an;..; data through the processor. TIle most basic pipeline diagram is
shown in the figure below. This diagram is generic, and is intended to show the
relation of groups in the pipeline •

• §!I,.!! Revision 2.00 of November 1, 1990

14 TMS390ZS0 - ViJcing User Documentation

Figure 2-1 Basic Pipeline Description

CLOCK

Instruction Group

One

Instruction Group
Two

Instruction Group
Three

Instruction Group
Four

2.3. Pipeline Examples

FO Fl DO 01 02 EO El WB

FO Fl DO 01 02 EO El WB

FO Fl DO 01 02 EO El WB

R> Fl DO 01 02 EO El WB

All pipeline stages are identified. The bold venica1lines indicate major (rising)
clock edges. The shaded venica1lines are minor (falling) clock edges. In general,
the contents of the instruction group will be indicated in the left-side heading.
Significant operations and interactions are included in the boxes for individual
stages.

Viking's pipeline is straightforward for simple instruction sequences (e.g., integer
arithmetic). The complexity rises quickly for memory reference and control
transfer insttuctiODS. 'Ibis section describes these cases in detail. Standard LD and
ST sequences are presented first. followed by floating point operations (!POPS).
Then SAVE, RESTORE. and all fonns of control transfers are described. The final
section describes how the pipeline deals with exceptions.

This section describes only the simple cases of these sequences. In particular.
pipeline stalls caused by a variety of sources are not considered here. In general.
pipeline bubbles or idle cycles may be injected into the pipeline at any point for a
variety of reasons.

...

.!!l,.!! Revision 2.00 ofNowmber 1. 1990

"

2.3.1. Memory References

2.3.1.1 LD (Load operation)

L-

Chapcer 2 - Processor Pipeline Overview 15

LOs and STOREs are very frequent operations in SPARe code. In a typical program,
as many as 30% of the instructions are loads or stores. Since Viking executes up
to 3 instructions per cycle, it may be required to execute a memory reference
nearly every cycle. This presents significant challenges to the processor design.

To maximize performance, Viking has removed restrictions that have existed in
prior RIse designs. In particular, many sources of interlocks on load instructions
have been removed. This allows Viking to execute a LD instruction, immediately
followed by a dependent ALU instruction in the next instruction group (an ALUOP

with a register dependency with the LD).

All LD and ST instructions that hit in the internal data cache execute in a single
cycle. This includes all byte, half-word, word, and double-word references. Up to
two other instructions may be included in the instruction group with the memory
reference. Stores are generally buffered. In ee mode, they take a single cycle to
execute whether or not they hit in the cache.

The diagram below (load after ALUOP example) shows a LD instruction execut­
ing, surrounded by arithmetic operations. For simplicity, the sequence uses sin­
gle instruction groups, forced by the dependencies in the code. The code
sequence being executed demonstrates the use of many data forwarding paths for
reference. The sequence is:

add %10, %11, %12
!---Break (Can't cascade into shifter)
s11 %12,2, %12
!---Break (address dependency)
ld [%12+0x10),%13
!---Break (Load data dependency)
add U3,U4,U5

Note the use of a dependent shift instruction to force a break between the add and
shift. H the shift were replaced by an add. it would be considered a cascaded
instruction and the two would be grouped together. This would have resulted in a
pipeline bubble between the second add and the load, as shown in the example
below. TIle total execution time would have been identical. -

add UO,U1,U2
add U2,2,U2
!---Break (address dependency)
bubble
!---Break (address dependency)
ld [%12+0x10),%13
!---Break (Load data dependency)
add U3,U4,U5

TIle execution of this code sequence through the pipeline is shown below:

• §!I,.!! San MicIosywtaDI Propna.y Revision 2.00 of November 1, 1990

16 TMS390ZS0 - Viking User Documenwion

Figure 2-2 Basic load pipeline sequence

CLOCK

Group One:
add %10,%11,%12

Group Two:
shl %12,2,%12

Group Three:
Id [%12+0xl0],%13

Group Four:
add %13,%14,%15

Load after ALUOP

FO Fl DO 01 02 EO El WB
JWd Add \ Wrile
10.11 ~ 10+11 ~, 12

~

FO Fl DO 01 02\ EO El WB
Extend Read 12 Shift Wrile
2 igrKft) I2by2 12

'\to
FO Fl DO 01 ,02 EO El WB

~
Add va Rad Hill Wate

ipore)
~..oxJ(db It; route\ ~JJ ~ cache cilia

I)xtO \.
FO Fl DO Dl D2 ~ El .

Read 13
ipcn) 13+14

. ~14

The add and shift instructions execute, pass data through forwarding paths from
the add result, into the shifter. then from the shifter result into the virtual address
adder for the load. TIle "OxlO" offset is extended into a 32-bit value in the Dl
stage. TIle offset extension word, and the forwarded version of register %12 are
added, and the result passed to both the data cache and the MMU, which are
accessed in parallel. When a hit is identified in the noB, the physical page number
is extracted and passed on to the data cache. In the meant time, the cache has
completed reading all data and tags for the four possible sources of the memory
location (4-way set associative cache). TIle tags are compared with the physical
page nmnber from the MMV. Wben the proper set is identified. the data is routed
back: and forwarded into the next EO execute stage for the-last add instrudiun, it
is also written into the register file.

Had a cache or MMU miss OCCUlTed. pipeline bubbles would have been insenec1.
The EO and El stages of the load would be repeated until all the misses had been
satisfied. If any errors occuned. they would be reported to the EO Stage (which is
being repeatedly executed).

WB
Writ.

IS

SUD Miaolyslems ~ Re¥isiaIl2.00 of November 1. 1990

I

(

[\

2.3.1.2 ST (Store operation)

Chapter 2 - Processor Pipeline Overview 17

Store operations are similar to loads in many ways. The address computation.
cache lookup and MMU access are done in exactly the same manner for loads.
The primary difference is the handling of the data. The sequence below demon­
strates a store operation. The instruction sequence is more complex than the pre­
vious example to illusttate multiple instruction handling.

add %10, %11, %12
sub %01,%02,%03
!---Break (two write ports)
and %03,%04,%05
st %05,[%12+%13]
!---Break (only one memory reference)
ld [%12+0x10],%13
!---Break (load data dependency)
add %13, %14, %15

The first and last two instructions of the sequence are identical to those in the last
example (load after ALUOP). TIle shift from that example is replaced by an AND
and 51 instruction. A SUB instruction has also been added. Note that the store
requires data from the and. This is executed with no delay, as the data to be
stored is not required until the stage when it is actually written out

Figure 2-3 Store Pipeline Operation

Store after ALUOP

CLOCK

Group One: FO Fl 00 01 02 EO El WB
R.d Mel Wrile add %10,%11.%12 10,11 :1\

"\~
12,03

sub %01.%02.%03 01,02
01 02

Group Two: FO Fl DO 01 I~ if El YfI RaIl
and %03.%04.%05 12,13 12+13 ~,04 Hi&, 05,

%05.['1112+'1113] ~i,- R.d ~db ".. --. st 12) 03,04 il:cadlt wriIe
Group Three:

PO Fl DO ~ 02 EO El WB
!Add .. R.d Hid Write

Id ['II12+Oxl0].'II13 Ell i12..oaiC db A: -~ ~13 DdO -=lie dIIa \.

Group Four:
PO Fl DO 01 02 ~ El WB

ReId 13 Write
add %13,%14. 'illS I3+W IS .. ~14

Revision 2.00 of November 1.1990

18 TMS390ZS0 - Viking User Documentation

2.3.2. Floating Point Pipeline

lbis diagram is very similar to the previous example, with the addition of
another memory reference insuuction. Many of the forwarding paths used in the
previous diagram are no longer used, while others are illustrated. The store
address is computed in the D2 stage, then used to check the MMU and cache tags
in EOIEI. Assuming all protection checks pass, the write is actually performed ,
during WB. The physical write to the data cache is delayed another phase past
WB, but this is not visible to the program execution.

Operation of the data cache on a ST miss depends on whether Viking is operating
in CC or MBUS mode. In CC mode, if the store operation had missed the data
cache, the timing would be identical. The store data would be written only to the
store buffer, and not to the data cache. In this case Vildng's data cache does not
write allocate on misses. In MBUS mode, however, if the store operation had
missed the data cache, Viking's data cache would write allocate, by bringing the
data from memory, retrying the ST (which would now hit), then writing the new
data onto the cache line. lbis new data would be copied back to memory when
the cache line is to be replaced.

In some cases, a load needs to read data which has been written recently. If this
data is in the cache, it is returned immediately. In CC mode, this data may not be
in the cache, since it may still be in transit to the external cache, or to main
memory. TIle drain rate of the store buffer depends on the external system. In
such cases, the store buffer is checked for a copy of the needed data (store buffer
snooping). If it is found to be present, the processor requests that the store buffer
be drained (store buffer copy out). The processor then waits until the requested
data is no longer in the store buffer, then continue and read the data back in from
memory, as for a normal load. Viking does not forward data from the stOre buffer
to satisfy read requests. In MBUS mode, a ST guarantees that the data cache has
the new data. See section 8 -MBUS Interface f~rmore details.

Viking's on chip floating point is tightly coupled to the integer pipeline. A float­
ing point operation may be started every cycle. The latency of most floating point
instructions is three cycles. The FPU pipeline has the following stages:

PD, FRD, FE, fL, FWB
(Decode. Read, Execution. Last, WriteBack)

floaling point instructions are dispatched I4te in the processor pipeline. They are
not issued to the FPU until the EO stage of the integer pipeline. Once issued, the
floating point instruction proceed through the FPU'S pipeline. The stages in the
FPU pipeline are also fairly standard: decode, read, execute, and writeback. For­
warding paths are provided to chain the result of one floating point operation to a
source of a subsequent operation.

The floating point pipeline becomes visible to the integer pipeline in several
cases. When an FBFCC (Branch on floating point condition codes) instruction is
ismed, the processor may need to wait until a preceding FCMP instruction has
completed. When a floaling pobU store i.nsttuctiOD is executed, the pipeline also
becomes visible. The integer pipeline waits in the EOIEl stage until the requested ,~'
data is available from the FPU. In some cases, the floating point queue may ''''­
become full, typically when many IODg latency floating poiDt instructions

Revision 2.00 of November 1. 1990

()

Chapter 2 - Processor Pipeline Overview 19

(divide, square root, or highly dependent operations) are issued.

Since floating point instructions are issued late in the pipeline (EO), and the
actual arithmetic is not begun until one cycle later (WB), Viking may issue a load
and a dependent FPOP simultaneously. This is demonstrated in the following code
fragment A pipeline diagram of a simpler case is shown below.

1dd [%10],%f2
faddd %f2,%fO,%f6
add %10,Ox8,%10
!--- Break (Three instruction max)
1dd [%10],%f4
add %10,Ox4,%10
fmu1d %f4,%fO,%f8
!--- Break (Three instruction max)
ldd [%10+4],%f10
cmp %10,Ox100
be Loop
!--- Break (Branch, Three instructions)
faddd %f6,%f8,%fO

The-example above may not contain a particularly interesting sequence, but it
shows many of Viking's strengths. All but the last group contain three instruc-.
tions. The floating point operations are grouped with load instructions on which
they depend. The data returnS from Viking's data cache at the end of the El stage,
and is immediately used by the Roating Point Unit's FRD stage, and then by its
FE stage. .

The pipeline diagram below shows the following code fragment being executed:

ldd [%10+%11], %£2
faddd %f2,%fO,%f4
!--- Break

by its For simplicity, other instructions in the pipeline are not shown.

Revisian2.00 ofNovembe:r 1.1990

20 TMS390ZS0 - Viking User Documentation

Figure 2-4 Floating Point Pipeline

CLOCK

Group One:
Idd [%10+%11],%£2
faddd %£2, %fO, %f4

Group Two:
(Don't Care)

2.3.3. Floating Point
Instructions

2.3.4. Floating Point Queue

2.3.5. Floating Point
Execution Times

FO

Floating Point Pipeline

Fl DO Dl D2 EOI E1/ WB
Read Add FD FRD FE FL fwB
lOJl 10+11 ~ Read Wrile

addd ro, 12
~dt 12

Exe ~c:ac:be (ipcn ~Ie

FO Fl DO Dl D2 EO El WB

There are two types of floating point instructions:

FPOPs (floating point operations) and
FPEVs (floating point events).

The ~vs (floating point events) are executed by the FPU but they do not enter
the FPU queue, and these include:

lDF/STF Ooad and Store to floating point registers)
lDFSR/STFSR Ooad and store to floating point status register)
STDFQ

Integer Multiply and Integer Divide operations

The FPOPs include allfalus,fbfcc etc., and they specifically enter the FPU queue.

TIle FPU queue is a FIFO, holds up to 4 FPOPs, stalls the execution stream when
the it is full, and signals FSR.QNE to indicate whether/nOt it is empty. FPEVs do
not enter the FPU queue, these operations use the FPEV logical port. Recall that
JMUL IDIV are included in FPEV. TIle FPOPs use the FPOP port.

JMUL and IDIV can stan execution only when the FPU queue is empty, unless the
FPU is in exception mode (See section 4.4.1 -Integer Multiply (IMUL) and 4.4.2
-Integer Divilk (IDIV) for more details).

Different FP operations require different number of cycles to complete. TIle fol­
lowing table summarizes the performance of Viking FPU for its FP operations.
falu includes fadd, fsub, fmov, fneg. fabs. fanp, and all of the conversions
between integer. single and double precision numbers. Single is denoted "s", it
means single precision operation canied on 32 bits. Double is denoted "d", it
means double preciSion operation canied on 64 bits. Viking supports neither

Sun MicIosyItemI ProprieIIry Revision 2.00 of November 1. 1990

()

Chapter 2 - Processor Pipeline Overview 21

extended "x" precision (80 bits) nor quad "q" precision (128 bits). frnul is f­
multiply, fdiv is f-divide, fsqrt is f-square-root. each of them allowing either sin­
gle or double precision operation. fsmuld is multiply a single precision number
to a double precision number. imul is integer multiply and idiv is integer divide.
imulcc is integer multiply that affects the condition codes icc, and idivcc is .
integer divide that affects the condition codes icc. These operations as stated ear­
lier are perfonned by the FPU. Each of these FPOPs is a SPARe instruction, only
the implementation is Viking speci fico

The following table lists FPOPs with a 3 cycle latency.

Table 2-1 Floating Point Operation Execution Time - 3 cycle latency

Instruction cycles

fadds 3
faddd 3
fsubs 3
fsubel 3
fcmps 3
fcmpd 3
fcmpes 3
fcmped 3
fstoi 3
fstod 3
fdtoi 3
fdtos 3
fitos 3
fitod 3
fmovs 3
fabss 3
fnegs 3

..

Sun Mic:ro5yatems PJOprie&ary Revision 2.00 of November 1. 1990

22 TMS390ZS0 - Viking User Documentation

The following table lists other FPOPs and their latencies. The execution time of
each of these FPOP depends on the source{s) and destination data fonnats. The
notation used in this table designates:

n: floating point normal number.

s: floating point subnormal number.

ns=n Identifies source 1, source 2, and destination data fonnats
respectively.

Table 2-2 Floating Point Operation Execution Time - latency

2.3.6. Conditional Branch
Pipeline

Instruction nn=n nn=s sn=n sn=s ns=n ns=s ss=n ss=s
fdivd 7 8 10 11 11 - 11 -
fdivs 6 7 9 10 10 - 10 -
fmuld 3 4 6 7 7 8 8 -
fmuls 3 4 6 7 7 8 8 -
fsqrtd 10 - 13 - - - - -
fsqns 8 - 11 - - - - -
fsmuld 3 - 6 - 7 - 8 -
idiv 15 - - - - - - -
idivcc 15 - - - - - - -
imul 4 - - - - - - -
imulcc 4 - - - - - - -

Branches are a fundamental performance limiter in most processors. This is par­
ticularly we in RISe machines. where basic block sizes are usually small. It is a
serious problem in superscalar machines. which reduce the number of cycles
taken to execute the already small number of instructions between branches. In
normal operation, Viking could see a branch every three to five cycles.

Viking's branch implementation can execute untaken branches somewhat more
efficiendy than tDken branches. The peak performance through an untaken
branch is 3 instructions per cycle. Peak performance through a taken branch is
2.3 instructions per cycle. The difference comes from the delayed branch instruc­
tion which must be executed as a single instruction group in the taken case. .Due
to usual code scheduling resttictions. this peak performance will not generally be
attained, and the difference between taken and untaken branches will be less visi­
ble.

Viking implements branch prediction in the prefetch logic. It always attemptS to
fetch the target of the branch. However, the pipeline assumes that the branch is
untaken. This relies on the instraction queue having several sequential instruc­
tions available. The target insttuctions are fetched into the target queue. Once the
direction of the branch has been resolved, the appropriate instructions are routed
into the insttuction queue .

• §!I,.!! Revision 2.00 of November 1, 1990

[,

2.3.6.1 Untaken Branch

Chapler 2 - Processor Pipeline Overview 23

When a branch occurs, the pipeline continues to execute nonnally for one cycle.
In this additional cycle, the delay instruction is executed, possibly along with
other instructions in the untaken stream. This implies that, if the branch is taken,
some instructions have begun execution that should Mt have. Viking terminates
the execution of these instructions for a taken branch as soon as the branch
sequence has been resolved. This is called squash. The instruction must be can­
celed before any machine Stale has been modified.

Viking executes the typical branch sequence by grouping together the branch
instruction, and the previous instruction(s) that nonnally set the condition codes.
This is a fonn of branch folding. Up to two other instructions may be executed
in the group with the branch. The delay instruction is executed in the next group.
A typical instruction sequence might be:

subcc
bz
add
st
and

%lO,OxlOO,%gO
TakenTarg
%11, %12, %13
%13, [%gl+OxlOO]
%00,%01,%02

TakenTarg: st %gO, [%gl+OxlOO]

This same basic code sequence is used to demonstrate both taken and untaken
branches. The same basic control transfer mechanism is usedJor all forms of
branchC$, jumps, and calls.

The untaken branch is the simplest case. The example sequence above is grouped
as follows in the untaken case:

subcc %10,Ox100,%gO
bz UntakenTarg
!---Break (Break after CTI)
add %11,%12,%13
st %13, [%gl+0x100]
!---Break (No more write ports)
and %00,%01,%02
(others)

The instructions at UmakenTarg will not be executed, since the branch is not
taken. Notice that two instructions (add, store) are executed in the delayed
instruction group. The instructions beyond the third group are not significant
The pipeline behavior is shown below:

• §!I,.!! Sun MicrosystaDs PIOprieury Revision 2.00 of November 1. 1990

24 TMS390ZS0 - Viking User Documentation

Figure 2-5 Untaken Branch Pipeline

CLOCK

Group One: FO

subcc %lO,Oxl00, %gC
bz UntakenTarg

Group Two:(delay)
add %11,%12,%13
st %13,[%gl+Oxl00]

Group Three:
and %00,%01,%02
(Others .•..)

Group Four:
(Don't care)

2.3.6.2 Taken Branch

Untaken Conditional Branch

Fl DO 01 02 EO El WB
Read ~ Wrile
10 ~,Ioo ~

tool~ ipcIre)

FO Fl DO Dl 02 EO El WB
~eact. ReId ~cId Hitl Wrile.

.1 I 11.12 1.12 Allow 13,

fA IcId eadllb wriIe CICbc,
OT1M 21.100 l CleM buffer

FO Fl rDO 01 02 EO El WB
Felch ~ Select Read ADeI IWriIe
Tikell -1= MqeIL 00,01 00.01 102

code

rFO Fl DO 01 D2 EO El WB
I~=

fe&c:bini

TIle diagram shows the fetch that is being done because the branch is assumed to
be taken. The condition codes (from the subcc instruction) are resolved in the
branch groups EO pipeline stage. This condition code is used immediately to
determine the branch direction, in the delay groups D2 stage, the target group's
DO stage (by selecting the correct queue), and the/ollowing group's FO stage (by.
selecting the correct prefetch program counter). Thus, after one cycle ofimcer­
tainty. the branch is resolved. Fetches once again follow the correct execution
stream.

The taken brancb case is somewhat more complicated. The most significant­
change is that instructions which begin execution in the delayed instruction
group are "squashed", and never complete execution. Squashed instructions are
indicated with gray shading in the pipeline diagrams. The apparent grouping of
insuuctions in the taken case is:

Revision 2.00 or November 1. 1990

(~)

[J

Chapler 2 - Processor Pipeline Overview 25

subcc %10,Ox100,%gO
bz TakenTarg
!---Break (Break after CTI)
add %11,%12,%13
!---Break (Squash: st %13, [%gl+0x100])

TakenTarq: st %gO,[%q1+0xlOO]

!---

The instruction grouping is the same as for the untaken branch case, up to the
delay group. In the delay group, the grouping begins in the same as for an
untaken branch, but the grouping is modified (squashed) when the branch is
resolved as taken.
The taken branch pipeline is:

Figure 2-6 Taken Branch Pipeline

CLOCK

Group One:
subcc %lO,OxlOO,%
bz TakenTarg

Group Two:(delay)
add %1

Group Three:
st %gO.[%gl +Ox I
(Others)

Group Four:
(Don't care)

2.3.6.3 Branch Couple

Taken Conditional Branch

PO FI

WB

DI D2 EO El WB

SPARe allows for a limited set ofen (Control Transfer Instruction) couples.
1bese cases are quite complex to understand and implement They execute in the
same general manner as 1lOnnal. branches. Viking executes all the legal en cou­
ples conectly and, conforming to SPARe V.S, choose not to suppon the imple­
mentation dependent case ofB*CC and ocn couple (Case 6 in the SPARe V.S

.!P,.!! Revision 2.00 of November I, 1990

26 TMS390ZS0 -Viking User Documentation

2.3.6.4 JMPL

2.3.7. Procedure Call and
Return

2.3.7.1 CALL

2.3.7.2 CWP Pipeline

2.3.7.3 SA VB

Manual). The B·CC instructions areBia: and FBfcc (including BN, FBN, but
excluding B*A and FBA). ocn instructions are CALL, JMPL, REIT, B*CC taken, and
B*A (with a=O).

The JMPL instruction is an unconditional branch which uses a register as the
source for the branch targeL Other branch instructions compute the target
address from an immediate operand and the.current program counter value.
lMPL's suffer a delay since they must read the register file before issuing a branch
target fetch. The extra cycle is injected into the pipeline after the delay instruc­
tion of the lMPL. that is, before execution of the target instruction.

SPARC defines a set of instructions for procedure entry and exiL CALL is used to
branch to a subroutine. It saves the PC value in register '1007 which is used to
compute the return address. JMPL is used to do a retum, using a register to sup­
ply the target of the branch. By convention, for a return, JMPL uses the register
written by the last previous CAll...

SA VB and RESTORE instructions work as a pair to allocate and deallocate a regis­
ter window and a stack frame for a procedure. SA VB decrements the CWP, while
RESTORE increments iL Both instructions do an implicit ADD operation, which is
used to allocate/deallocate the stack frame.

CALL executes in exactly the same manner as a taken branch, including execution
of the delay instruction, except that the current PC value is written into register
rlS (%07). The value is written in the EO stage of the group containing the CALL
instruction. .

CALL is grouped with previous inStructions in the same manner as branches. It
does, however, require a register file write pon. so the grouping may be some­
what constrained by available resoun:es.

SA VB and RESTORE instructions modify the processor's CWP. This causes a regis­
ter window to be allocated, or deallocated. These instructions also perform an
ADD operation. The soun:es for this add are from the old register window, while
the destination is in the new window. For simplicity, Vildng executes both these
instructions as single instruction groups. To make instnlctions before and after
SAVE and RESTORE operations reference the COnecl windows, multiple CWP'I are
maintained in the pipeline. Depending on an instruction's position rela1ive to the
CWP cbange, the appropriate CWP value is chosen.

SAVE is always a single instnlction group. Except for changing of CWP during the
decode phases, it is identical to an ADD instruction. SAVE takes a single cycle to
execute.

..

Sun Microlystems PIaprietay ReviHon 2.00 ofNo¥ember 1, 1990

2.3.7.4 RESTORE

2.3.8. Exceptions

(~\
)

2.3.8.1 Exception Pipeline

Chapter 2 - Processor Pipeline Overview 27

RESTORE is also a single instruction group. It also behaves just as an add instruc­
tion, except for the CWP update. The RESTORE takes a single cycle to execute.

Exception handling is an extremely complicated part of Viking. The precise
exception architecture of SPARe must be maintained. The most difficult excep­
tions to handle are those which cause partial execution of a group of insttuctions,
e.g .•

!--- Break (Start of group)
add %11, %12,%13
Idd [%oO+OxlOO],%f2
and %13,Ox20,%13
!--- Break (3 instructions)

The two arithmetic instructions fonn a cascade. The load insttuction (which hap­
pens to be to floating point registers) is between the two arithmetic instructions.
Also. the destination registers of the two arithmetic instructions are identical. The
problem arises in this case if the load instruction induces an exception (say. due
to a page protection violation. or a misaligned memory address). In this case, the
first instruction (ADD) must complete and write back its result The second
instruction.(WO). however, must not complete.

If the instruction were scheduled to complete without incurring an exception, the
result of the add would not have been written to the register file - it would simply
be used as a temporary value passed on to the and. When the exception OCCUIS.

this is no longer true and the result must be written to the register file. Viking
correctly handles complex cases such as this and many others.

The case above. with some surrounding instructions, is used below to illustrate
the exception handling pipeline. The diagram assumes that an exception is
reponed for the load double instruction. The exception forces the ~te ~e of
the cwrent group to be modified. allowing only the first add instruction to write
its result. The exception handling logic then takes control of the pipeline. All
subsequent instructions in the'pipeline are squashed. The store buffer is flushed.
and the pipeline stalls until the flush is complete. In the next cycles. the PSR and
CWP are modified to reftect the exception state of the processor. An instruction
fetch to the proper intenupt handler in the ttap table is requested. The exception
PC and nPC are written into r17 and r18 (%11.%12). Fmally, the instructions in the
handler begin execution.

..

• §!I,.!! Sun Miemlystans Praprieury Ilevisicm 2.00 of November 1. 1990

28 TMS390ZS0 - Viking User Documentation

Figure 2-7

Group Two-Four
(1bree cycles to enter
exception handler)

Exception Handling Pipeline

PO Fl DO 01 02 EO
Group Five: /
'(Enter Handler)

2.3.8.2 Interrupts Interrupts are handled in the same manner as exCeptions. TIle interrupt request
pins are sampled on the ri~ing edge of the clock. In the next cycle, the highest
priority intenupt is selected. This may be from the pins, or from an intemally
generated interrupt (breakpoints). The request level of the selected inte~pt is
compared against the enable and processor interrupt level fields in the PSR
(PSILET and PSJLPIL). If the interrupt request level (IRL) is higher than PSR_PIL,
an excepdon is generated in the next cycle, to the instruction group at the EO
pipeline stage.

In order for the interrupt to be accepted, there must be a valid instruction in the
EO stage. If there is no valid instruction, the intenupt is not taken until an instruc­
tion anives at EO. 'Ibis ensures 1bat there is a valid PC to repolt as the interrupted
program counter.

TIle last valid instJUction in the EO stage is nonnally squashed. If there is only a
single instruction in EO, it is squashed, and the saved PC value points to that
instruction. All instructions in the pipeline after this squashed instruction are
also squashed. Breakpoints are reported to the instruction that caused the break­
point detection, rather than the fast valid instruction.

The interrupt pipeline is identical to the exception pipeline (see above). It
behaves just as if an exception were reported to the last valid instruction in the
EO group. See section 7.4 -Interrupts for more details •

• !!.!! SUD ~ PIaprieIIIy IleviIicm 2.00 ofNo¥ember 1. 1990

r

2.3.8.3 RE1T (Return From
Trap) Pipeline

Chapter 2 - Processor Pipeline Overview 29

The return from trap instruction executes in cooperation with a JMPL that must
immediately precede it (See the SPARC Architecture Manual). Execution of a
RE'IT is very similar to a JMPL It is required to restart instruction sequences
which were trapped on the delay insuuction of a branch. In this case, the JMPL
returns to the delay insuuction and the RE'IT returns to the target of the branch. If
there was no previous branch, NPC is set to PC+4.

A RETI executes as a single insbUction group. It incurs no additional pipeline
cycles. TIle preceding JMPL provides afree pipeline hold cycle for the RETI to
change CWP and PSR, and to issue a fetch to the saved NPC.

The typical code sequence used to return from a trap is as follows:

[jrnpl
rett

%r17,%gO
%r18 1

The insbUctions at the target of this return are don't care's. TIle insbUction at the
target of the JMPL must be executed as a single insbUction group, since it may not
be contiguous with the return address in the RE'IT. The pipeline operation for the
sequence is shown below:

Revision 2.00 or November 1. 1990

30 TMS390ZS0 - Viking User Documentation

Figure 2-8 Return/rom Trap Pipeline

CLOCK

Group One:
jmpl %rI7,%gO

Group Two:(delay)
ren %r18

Group Three:
(JMPL induced 1-
cycle bubble)

Execution at fIrst
target (from JMPL)

ExeCution at second
target (from REIT)

FO Fl

.§.P..!!

Return from Trap

El WB

WB

"',- ~

DO .Dl D2 EO·

,~"

1\~.J7

San Miaasysfema ProprieIIry Revision 2.00 of November 1. 1990

(/

3
Code Generation Principles

Code Generation Principles _ _ _ _ _ _........ 33

3.1. Perfol1llance of Existing Code _ ... _............................. 33

3.2. Areas that Hurt Perfol1llance _ ... __ 33

3.3. General Guidelines _ _ _ _ _................. 34

Reduce Branches _ __ .. __ _ _ ... _................. 35

Allocate delay instructions carefully _______ . __ ... ___ 35

Reduce floating point register dependencies __ ___ . __ ... _ ... ___ .. 35

More floating point code examples _ ______ . ____ . __ .:. 36

FP code example: Throughput ___ ... _ __ . ____ . _____ ... __ .. _ ... _ 36

FP code example: One Stall _ ... __ . ______ ._ .. _______ . ______ ... 37

FP code example: fcmp/fbfcc latency ___ . ______________ .. 37

FP code example: fcmp/fbfcc Stall __ . __ . ___ . ____ . _____ ... __ ... 38

FP code example: freg dependency +Out -> ST _________ .___ 38

FP code example: freg dependency +in -> LOin .. ___ . _______ 39

FP code example: !reg dependency +Out -> +in _________ .. 40

FP code example: freg dependency - +in -> +Out ___ .______ 40

Spread address calculation and Memory reference ________ ._._.. 40
Arithmetic dependencies __________________________ .. 41

Ports to meD10ry _________ . _______________ . ___ .__ 41

Pons to the FPU..... . . _____________ . ________ .. 41

Integer register write pons _~-----------------------... 41
Integer Arithmetic units . ____ . _____ ... ____________ . _____ .. 42

3.4. ins1nJction Grouping Rules _____________ . __ . ____________ ._ 42

Break. After Rules _... 43

Break. After First Valid Exception ... 43

Break. After Any Control Transfer Instruction 43

Break. After Condition Codes set in Cascade .. 43

Break. After MULSCC destination not equal to source of next
MULSCC _ _• _._ ... __ __ _ _ _ _ _._.. 43

Break. After first instruction after Annulled Branch 43

Break. After first instruction midway through a branch
couple _ ... _........................ 44

Break. Before __ _ _... 44

Break. Before Invalid Instruction __ ... _ _. __ _ _ _.. 45

Break. Before Out of Integer Register Pons ... 45

Break. Before Second Memory Reference ... 45

Break. Before Second Shift _._ _._ __ .. 45

Break. Before Second Cascade .. _ _ _........... 45

Break. Before Cascade into Shift _._ _. ___ .. _ _.. 45

Break. Before Cascade into JMPL _ _____ . __ ._ _..................... 46

Break. Before Cascade into Memory Reference Address ._ _... 46

Break Before Load Data Cascade Use __ . _______ _ __ 46

Break. Before Previous Group Cascade into Memory
Reference Address ______________________ ,.. ___ ... __ ._.. 46

Break. Before Sequential Instruction ___ . _______ ... _. _____ ._._ 46

Break. Before Control Register Read after Previous SetCC . ___ .. 46

Break Before MULSCC unless first one or two instructions ___ 47

Break. Before Extended Arithmetic from CC set in Current
Group.__ 47

Break. Before Delay Group CTI unless first ___ . ________ .. 47

Break. Before en in JMPL delay unless RE1T __________ 47

..
~"'\

I,~_/

3.1. Performance of
Existing Code

3.2. Areas that Hurt
Performance

3
Code Generation Principles

All J.1Pr0ce5SOrs benefit from code sequences generated with intimate knowledge
of the processor's operation.

This section describes some guidelines that can be used to construct optimal, or
nearly optimal code sequences for Viking. They can be applied to compiler code
generation, as well as manually generated code for highly performance sensitive
routines.

Viking is designed to execute code from existing SPARC compilers efficiently. In
general, Viking executes this code at about 1.35 instructions per cycle (IPC). or
0.74 cycles per instruction (CPI). This number is derated to about 1.1 IPC for (lI)er­
age large programs when cache effects are considered. Hoating point intensive
programs typically execute at a higher IPC.

This performance level can be increased significantly with code generated expli­
citly for Viking. In addition. compiler improvements not targeted explicitly at
Viking also offer substantiai improvements. This text considers only low-level
code scheduling issues.

Viking performance is sensitive to many factors. 1be significant perfOl1llance
limiters vary greatly between programs. Oasses of limiters include: branch fre­
quency and direction; memory reference patterns; floating point operation
scheduling; instruction ordering and data (register) dependencies.

In floating point programs, branch performance is rarely a limiter. This is mostly
because loops are often unrolled. In most cases, floating point programs are
mmaory reference limited, rather than arithmetic limited. Since only a single
memory reference can be executed per instruction group, interleaving memory
references with nearly anything else improves performance.

Most programs are limited by either branch perfOl1llance or loadIstore bandwidth.
In particular, taken branches can only execute a single instruction in the branch
delay group. Load and store operations are often "bunched" together. This
prevents other instructions from being executed in parallel with the memory
references. ..
Cache performance is also critical, to achieving maximum perfOl1llance. Many
routines are small enough to have their entire code and data set contained in
Viking's OIl-chip caches. Only (usually) insignificant cold-stan penalties will

Revision 2.00 of November 1. 1990

34 TMS390ZS0 - Viking User Documentation

3.3. General Guidelines

degrade the performance of such routines. Most larger programs. however. do
not fit entirely in the on-chip caches. These programs typically lose 20% to 30%
of their performance from cache miss penalties. Prefetching logic selVes to limit
the degradation in some cases. Localizing code and data references within a pro­
gram can lead to substantial performance improvements.

A general rule for Viking optimization is to interleave as many different classes
of operations as possible. A good simple measure of the minimum execution
time of any routine is:

MemoryReferences
FloalingPoinlOperalions

MIN Cycles = MAX IntegerOp!ralions

2
BranchOperalions x2

The rule holds when one. and possibly two of the terms are close to the max­
imum. As more terms get larger, the likelihood of approaching the minimum
number of cycles decreases.

In order to approach the minimum above, all of the classes of operations must be
interleaved as much as possible. In the worst case. the equation can become:

Cycles = Memory References + FloatingPoimOperations + (/ntege~rral.ions) + (BranchO~rationsx2)

Viking hardware tends to locally compensate for minor scheduling variations. As
an example. the sequence

ldd [UOJ,%9'1
!--- Break (only one memory reference)
ldd [%11], %9'4
add %9'1,Ox100,%g3
!--- Break

executes in the same number of cycles as the following sequence:

ldd [%10],%g1
!--- Break (dependent Ld-Use)
add %g1,Ox100,%g3
ldd [%11], 'g4

This is a trivial example, but it demonstrates the Self-Aligning nature of execu­
tion on Vi1cing. The pipeline tends to align itself based on the positions of the
critical operations in the code (the memory references, FPOP's, and branches).
Local variations rarely affect performance . ..
Again, the imponaDt consideration is that the critical operations do not become
additive, but rather are interleaved to increase parallel operation. Along these
lines. most codes have 11IIl1rY optimal schedules .

• §!I..!! Revision 2.00 ofNcmanber 1. 1990

3.3.1. Reduce Branches

3.3.2. Allocate delay
instructions carefully

3.3.3. Reduce floating point
register dependendes

Chapter 3 - Code Generation Principles 35

In the equation above, each branch increases the execution time of a sequence by
about two cycles. Thus, it is far more significant to remove a branch than to
remove a memory reference.

Code should be unrolled wherever possible. This is a performance boost on all
machines, and especially on Viking. The addition of as many as four other
insttuctions is generally better than a single branch. Where possible, arithmetic
logic, rather than sequences of branches will offer improved performance.

Viking will benefit from unrolling all types of code, not just floating point.

Since the delay insbUction of a taken branch is forced to be a single insbUction
grouP. it is very important to make the best use of that instruction. For example.
in the unrolled UNPACK case. optimal performance cannot be achieved unless a
memory reference is placed in the delay instruction.

The guideline. is to make cenain that the delay insbUction is used to execute one
of the critical performance limiting operations in the code.

Reorganizing code to properly fill the delay instruction may require adding
instructions to the code. This is a tradeoff that must be made carefully. Even
though adding instructions can increase Viking's performance. it is guaranteed to
decrease performance on any non-superscalar machine. In addition, it does
expand the code space. One alternative is to use Software Pipelining which often
allows the same performance levels without increasing the number of insttuc­
tions. This is accomplished by spreading the execution of each loop iteration
over several actual trips through the code. The resulting code in·the loop would
execute the final operations of the previous loop. the core of the clln'enr loop, and
the prologue of the next loop.

Annulled Branches should not be used unless there is no alternative. An annulled
branch saves only the code space used for ihe delay instruction. TIle cycle in
which the annulled branch would have been executed is still required.

This can be a very significant performance limiter in some benchmarlcs. No
floating point register can be modified until all pending operations in the floating
poim queue which either produce or simply use that register have completed.
This is often violated in an attempt to reduce temporary FP register usage. It may,
in fact, increase Viking perfonnance to use more loads and stores to move float­
ing point data back and forth between memory and registers, than to. overuse a
single register and introduce dependencies.

This is true of arithmetic operations, as well as loads and stores. TIle Floating
Point Unit has a fairly long execution pipeline. Performance suffers when there
are frequent FP data dependencies.

These guidelines do not apply to integer operations. Integer register dependencies
are handled much more effectively. 'Ibe following two code fragments show
good and bad examples oew register dependencies:

.!!IJ! Revision 2.00 oCNovember 1. 1990

36 TMS390Z50 - Viking User Documentation

3.3.4. More loating point
code examples

3.3.4.1 FP code example:
Throughput

BadExamp/e

ld [%iO],%f1
!--- Break (Only one memory reference)
ld [%iO + 4],%f2
fmuls %fO,%£1,%£0
!--- Break (Only one memory reference)
Id [%iO + 8],%f1
fadds %£0,%£1,%f2
!--- Break
!--- PIPELINE STALL FOR 4 CYCLES!

Note that the last load operation reuses register %0. This prevents the load
operation from being executed until after the FMULS has completed. Also the
FADDS uses %tn as source operand, and can only stan execution when FMULS has
produced a result for %tn. A much better schedule is:

Good Example

Id [%iO],%£1
!--- Break (Only one memory reference)
Id [%iO + 4],%f2
fmuls %fO,%f1,%fO
!--- Break (Only one memory refere~ce)
ld [%iO + 8],%f3
fadds %f3,%f1,%f2
!--- Break

By changing the register used in the last load and add operations, the four pipe­
line bubbles are removed completely. Of course, there are other optimizations
that might be applied to this code, namely, using a load double to replace the first
two memory references. Such optimizations can sometimes violate high-level
language executibn rules if not done carefully. In the example above, a load dou­
ble would only be valid when targeted to an even-odd register pair, not odd-even
pair.

'Ibe following section provide examples of floating point codes that illustrate the
many Viking FPU operation details. Each example is preceded by a brief explana­
tion about the significant details.

'Ibe following example shows how to take full advantage ofFPOP latency (for
example 3 cycle latency of fadds~, and execute each FPOP without any pipeline
stall. This amngement achieves the hi~ throughput.

Sun Microsyslems P.ropriewy Revision 2.00 ofNovembcr 1. 1990

[~

3.3.4.2 FP code example: One
Stall

3.3.4.3 FP code example:
femp/fbfcc latency

fadds %fO,%f1,%f20
!--- Break --------­
fadds %f2,%f3,%f21
!--- Break --------­
fadds %f4,%f5,%f22
!--- Break --------­
fadds %f6,%f7,%f23
st %£20, [%11]
!--- Break --------­
fadds %f8,%f9,%f24

Chapter 3 - Code Generation Principles 37

The following example is similar to the previous code (section 3.3.4.1 - FP code
example: Throughput), except that the ST is attempted a cycle earlier. Because
of the 3 cycle required latency of fadds, a bubble will be inserted to stall the
pipeline before the ST can be completed. Viking's grouping logic places wfadds
%f4, %f5, %122" together with ST in the same group, (this is done prior to the FPU

detecting any dependency), hence when ST is stalled, the group is as well Since
the pipeline will stall in either case, there is no perfonnance difference.

fadds fO,%£1,%f21
!--- Break ---------
fadds . %£2,%f3,%£22

!--- Break ---------
£~dds %£4,%£5,%£23
st %£21,[%11]
(bubble)
!--- Break ---------
fadds %£4,%f5,%£23
st %£21, [%11]
!--- Break ---------

(issued)
(issued)

(completed)
(completed)

The following example demonsttates the latency of an femp-fbfee pair. An femp
requires 3 cycles before the fee (condition codes) are resolved for an fbfee use.
An'anging the code as given in this example allows each cycle to complete
without any pipeline stall.

San Microsyltems Proprier.y

38 TMS390ZS0 - ViJcing User DocumenWion

3.3.4.4 FP code example:
fcmp/fbfce Stall

3.3.4~ FP code example: !reg
dependency +Out -> ST

!--- Break --------­
femps %f6,%f7
!--- Break ---------
fadds %fO,%f1,%f21
!--- Break ---------
fadds %f2,%f3,%f22
!--- Break ---------
fadds %f4,%f5,%£23
!--- Break ---------
fbne t1
!--- Break ---------

The FPU detects if there is a pending femp. and stalls the pipeline if it encounters
an FPOP that may need femp's resolution. In the following example, an fbfee is
issued immediately after an femp. Vilcing issues the femps, but then stalls the
pipeline for 3 cycles until the femp has completed, before executing the fbne.

!--- Break ---------
temps %£6,%£7 (issued)
(bubble)
!--- Break ---------
(bubble)
!--- Break ---------
(bubble)
!--- Break ---------
femps %£6,%£7 (completed)

!--- Break ---------
£bne t1
!--- Break ---7-----

TIle following example shows how a floating point register dependency with a ST
may stall the pipeline. TIle code issues fadds and ST, Vilcing groups them
together and Uies to execute. Because of the 3 cycle latency of fadds to compute
results. the pipeline is stalled for 3 cycles before those insttuctions can complete .

..

Sun Miaosystaal ~ Revision 2.00 of November 1. 1990

~~.

;\.ii. . ./.

3.3.4.6 FP code example: freg
dependency +in ->
LDin

!--- Break --------­
fadds %fO,%f1,%f21
st %f21, [%11]
cmp %i7,2
(bubble)
!--- Break ---------
(bubble)
!--- Break --------­
(bubble)
!--- Break --------­
fadds %fO,%f1,%f21
st %f21, [%11]
cmp %i7,2
!--- Break ---------

Chapter 3 - Code Generation Principles 39

(issued)
(issued)
(issued)

(completed)
(completed)
(completed)

Note that a floating point exception from fadds will be reported to the ST in the
above example. fp_exception is a deferred trap and is always reported to the next
FPOP or FPEV (ldf or stf).

The following example shows how a floating point register dependency before a
w may stall the pipe. 1be code issues fadds and W. Viking groups them
together and tries to execute. 1be W can not complete before the fadds com­
pletes. and the fadds takes 3 cycles to complete. hence the pipeline is stalled for
that period. This is required to avoid destroying the source registers for current
FPOPs.

~--- Break ---------
fadds %fO,%f1,%f21
Id [%11),%f21
crop %i7,2
(bubble)

!--- Break ---------
(bubble)
!--- Break ---------
(bubble)

!--- Break ---------
fadds %fO,%f1,%f21
Id [%11),%f21
crop %i7,2

!--- Break ---------

(issued)
(issued)
(issued)

(completed)
(completed)
(completed)

Note that a floating point exception from fadds will be reponed to the 1D in the
above example.

..

Sun MicrosyItemJ P!opriewy Revision 2.00 or November 1. 1990

40 TMS390ZS0 - Vildng User Documenta1ion

3.3.4.7 FP code example: freg
dependency +Out -> +in

3.3.4.8 FP code example: freg
dependency - +in ->
+Out

3.3.5. Spread address
calculation and
Memory reference

The following example demonstrates how a floating point register dependency
between 2 FPOPs activates the data forwarding, and does not cause the pipeline to
stall. The destination register of FPOPI is a source register for FPOP2, both FPOP
are able to enter the FPQ immediately, but FPOP2 will not start until FPOpl reaches
FWB stage. However, FPOP2 does not wait until FPOpl has written the data into
the register, because FPOP2 receives the data from the forwarding path.

!--- Break --------­
£adds %£0,%£1,%£21

!--- Break ---------
£adds %£21,%£2,%£22
!--- Break ---------

The following example demonstrates that a floating point register dependency
between 2 FPOPs does not cause the pipeline to stall. Both instructions are able to
complete immediately.

!--- Break ---------
£adds %£0,%£1,%£21
!--- Break ---------
£adds %£2,%£3,%£0

r--- Break ---------

In order for Viking to implement single cycle memory references, it is necessary
for the address registers to be stable by the D2 pipeline stage of the memory
reference. 1bis implies that address computation must be completed in the EO
stage of the previous instruction group. A typical example is:

all '10, Ox3, '10
!--- Break (ALUOP into Memory reference Address)
ld [%00+%10],%11

Since the result of the shift is needed for the load address calculation, they must
be executed in separate groups. If the shift were not producing data for rhDt load.
they could have been grouped together. This example is not particularly bad. In
general. the shift will be grouped with previous insttuctions. and the load will be
grouped with subsequent operations.

1be next case is less common. but can be significant in some codes. This arises
when the addJess is calculated iIt a cascaded insttuction group. 1be results of a
cascade lie not available until the end of the E 1 execution stage. Since the
memory reference requires data at the end of EO. a wasted pipeline cycle must be
insetted. Example:

Revision 2.00 ofNcwember 1. 1990

," "
\
'~

r

3.3.6. Arithmetic
dependendes

3.3.6.1 Pons to memory

3.3.6.2 Pons to the FPU

3.3.6.3 Integer register write
pons

811 %10,Ox3,%10
add %10,%00,%10

Chapter 3 - Code Generation Principles 41

!--- Break (Cascade into memory reference)
!--- PIPELINE STALL for one cycle
ld [%10], %11

Note that this example is functionally identical to the previous example. (except
for the actual content of %10). However. it requires three cycles to execute rather
than two. In the more general case. a sequence such as this will be used only
when more complex address arithmetic is required.

A third. and quite common case occurs during (for example) linked list traversal.
nus happens when the results of one load are immediately used as pan of the
address of the next load.

ld [%10], %11
!--- Break (load into memory reference)
!--- PIPELINE STALL for one cycle
ld [%11], %12

The pipeline stall is required for the same reason as the previous example- the
results of a load instruction are not available Wltil the end of the E 1 pipeline
stage.

If any of the above cases can be spread apan. by moving other instructions which
can be executed between these dependencies. performance will be increased.

Viking must group instructions according to available hardware resources. Some
of these restrictions are more severe than others. The effect of each of these res­
trictions varies greatly depending on the code being run.

The most basic hardware resource limitations is a single pon to memory. This is
what restricts Viking to one load or store per cycle. Similar to this, a single pon
to the instruction cache restricts branch performance.

Although Viking bas independent ftoating point adder and multiplier, only one
ftoating point operation per cycle can be dispatched. A load or store between a
ftoating point register and memory can be done in the same cycle as a ftoating
point operation. however.

TIle most RStrictive of these resoun:es are the write ports into the integer register
file; 2 are available. All arithmetic instructions use one of these ports. Load
instructions use one write pon, and load double instructions use both write ports.
Note that floating point load operations do not use any integer register write
ports. So, for example, tbeJoUowing code segment (which loads double floating
point registers) executes in two cycles:

Revision 2.00 of November 1. 1990

42 TMS390ZS0 - Viking Usee Documentation

3.3.6~4 Integer Arithmetic units

3.4. Instruction Grouping
Rules

add %10, %11, %12
and %12,%Oxff,%13
Idd [%oO+OxlOO],%f2
!--- Break (Three instructions)
add %14,%15,U6
and %16,Oxff,%17
Idd [%oO+Ox108],%f4
!--- Break (Three instructions)

While the next example (which is similar, but loads into integer registers), exe­
cutes in four cycles:

add UO, %11, U2
and %12,%Oxff,%13
!--- Break (No more write ports)
Idd [%oO+Ox100],%i2
!--- Break (No more write ports)
add %14, %15, %16
and %16,Oxff,%17
!--- Break (No more write ports)
Idd [%oO+Ox108],%i4

Viking has two logical integer ALU's. This is implemented intemally with three
separate ALU', and a shifter, for speed reasons. Each of these can produce one
result each cycle. One of the ALU', can use the output of either the other ALU or
the shifter as its input

The number of ALU', cannot limit the machines perfonnance, since no more than
two results can be stored by the register file. However, only a single shifter
exists. This means that a result cannot be cascaded into a shift operation.

Vilcing fonDS groups of instructions by examining the available, or candidate
instnlctions from its instnlction queue. A set of rules are applied to decide which
of the instructions will be selected for inclusion in the next group to be executed.

The group size can be limited by the number of instructions available in the
queue. The number of available iDsUuctions depends mostly on the number of
branches executed recently. and the instruction cache performance. When a pr0-
gram is executed for the first time, most of the instructions will not be present in
the cache, and performance will be dominated by the time takm to fetch insttuc-
lions from extema1 memory. .

There are several claSses of rules. The most basic classes are brealc oj'ter, and
bretlk before. This determines whether the instruction group will be tenninated
before a particular instruction, or after it These two classes are funher broken
down into rules based on the available instructions, rules based on the previous ? ".

instruction group, and rules based on exceptions. \'L/

Revisicm2.00ofNovember 1.1990

(

[

Chapter 3 - Code GeneraLion Principles 43

The following sections will provide a description of all these rules.

3.4.1. Break After Rules The following rules "Break After" an instruction based on relations among the
first three instructions in the queue. These rules will prevent any funher instruc·
tions from being included in the current group. The best example of this is a
branch instruction. Instruction groups are always terminated when a branch is
included.

Table 3·1 Break After Rules

Break After First Valid Exception
Break After Any Control Transfer Instruction
Break After Condition Codes set in Cascade
Break After MULSCC destination not equal to source of next MULSCC
Break After first instruction after Annulled Branch
Break After first instruction midway through a branch couple

3.4.1.1 Break After First Valid This rule prevents instructions from entering the pipeline after an exception
Exception (instruction access exception) has been signaled. The exception will travel

through the pipeline, and only actually occur when it reaches fanher into the
pipeline.

3.4.1.2 Break After Any
Control Transfer

. Instruction

3.4.1.3 Break After Condition
Codes set in Cascade

3.4.1.4 Break AfterMULSCc
destination not equal to
source of next MULSCC

3.4.1.5 Break After first
instJUction after
Annulled Branch

This rule breaks the current group between any branch, and the delay instruction
which follows the branch. Any instructions which are to be grouped along with a
branch must appear before it in the code.

This rule prevents any.additional instructions from. being accepted after an
instruction cascade in which the second ALU operation sets condition codes. It is
used primarily to simplify implementation. This rule also tenninates groups
when two properly formed MULSCC instructions are grouped.

This rule detects poorly fOl1lled MULSCC cascades. It prevents multiple MULSCC
instructions from being exeatted in parallel unless the second uses the result of
the first. This condition will never happen in nomal multiply sequences, but is
architecturany legal.

This instruction prevents multiple instructions from executing in the delay group
. of an annulled branch. The instruction in the delay group of an annulled branch

will nomally be executed only if the branch is taken. When this occurs, only the
first instruction after the branch is expected to be executed. If the previous branch
is untaken, the insttuction in the delay position is not executed at all. Viking will
begin executing this delay instruction, assuming the branch will be taken. and
squash it later if need be. Restricting the grouping to contain only a single
instruction in this position simplifies the implementation.

Revision 2.00 of Now:mber 1, 1990

44 TMS390ZS0 - Viking User Documentation

3.4.1.6 Break After first
instruction midway
through a branch couple

3.4.2. Break Before

This rule prevents multiple instructions from being executed when a branch cou­
ple is being processed. SPARe allows for a restricted number of branch couple
conditions. To simplify implementation, Viking will only execute single instruc­
tions during branch couples.

The following sequence demonstrates this rule:

ba destl
!--- Break after CTI
be dest2
!--- Break after CTI
(Never Executed)

dest1: aqd %10,%11,%12
!--- Break midway through branch,couple
add \13, \14, \15

dest2: add %14,%15,%16

Most rules are "Break Before" rules. They ..-e typically used ~ break a group
when one of Viking's limited resources has been completely used. For example
all instruction groups are terminated (a break is generated) before a second
memory reference.

There are many grouping rules which are required to handle pipeline hold condi­
tions. These rules will not be listed here.

All the "Break Before" rules are listed below:

Table 3-2 Brealc Be/ore Rules

...

• ~!!!! Revision 2.00 of November 1,1990

[
3.4.2.1 Break Before Invalid

Instruction

3.4.2.2 Break Before Out of
Integer Register Pons

3.4.2.3 Break Before Second
Memory Reference

3.4.2.4 Break Before Second
Shift

3.4.205 Break Before Second
Cascade

3.4.2.6 Break Before Cascade
into Shift

Chapter 3 - Code Generalion Principles 45

Break Before Invalid Instruction
Break Before Out of Integer Register Read Pons
Break Before Second Memory Reference
Break Before Second Shift
Break Before Second FPOP
Break Before Second Cascade
Break Before Cascade into Shift
Break Before Cascade into JMPL
Break Before Cascade into Memory Reference Address
Break Before Load Data Cascade Use
Break Before Previous Group Cascade into Memory Reference Address
Break Before Sequential Instruction
Break Before Control Register Read after Previous SetCC
Break Before MULSCC unless first one or two instructions
Break Before Extended Arithmetic from CC set in Current Group
Break Before Delay Group en unless first
Break Before en in JMPL delay unless RETI'

Viking uses this rule to wait for instructions from the instruction queue and
instruction cache. Even instruction access exceptions are considered valid
instructions. It is possible for fewer than three instructions to be valid from the
queue. This limits the maximum number that can be executed at a given time. .

This rule prevents a group from using too many register file pons. Four operand
read pons and two operand write pons are available. Memory address register
pons are independent, and do not affect this rule.

Viking has only a single port to memory. This rule prevents a group from
attempting to use it twice. This rule does not discriminate between floating point
or integer WIST.

Though Vildng has several ALUs, only a single shifter is provided. It must be used
in the first execute stage, so it may not be the second operation in a cascade. 1be
result is produced early enough that it may be the source of a cascaded operation.
This allows for common operations like shift&add, and shift&compare.

Only one operand may be cascaded into the E 1 of the integer pipeline. This rule
prevents using two EO results to fonn a cascaded operation.

All shift operations must execute in the EO stage. This rule enforces that restric­
tion.

..

• sun -,..... Revision 2.00 or November 1. 1990

46 TMS390ZS0 - Viking User Documentation

3.4.2.7 Break Before Cascade
into JMPL

3.4.2.8 Break Before Cascade
into Memory Reference
Address

3.4.2.9 Break Before Load Data
Cascade Use

3.4.2.10 Break Before Previous
Group Cascade into
Memory Reference
Address

3.4.2.11 Break Before
Sequential Instruction

3.4.2.12 Break. Before Control
Register Read after
Previous SetCc

JMPL reads from the register file to calculate the target of its branch. The value is
required before the EO stage. This requires that the register not be changed in the
group with the JMPL. This rule detects when such a condition exists, and forces a
break before the JMPL.

In order to perform single cycle memory references. the registers fOrming the
address for a load or store must be available before the 02 stage of the memory
reference. This requires that they be changed no later than the EO stage of the
previous instruction group. This rule, and the Break Before Previous Cascade
into Memory Reference Address rule enforce this restriction.

A full cycle is required to access the on-chip data cache. The data from a load is
available after the El stage of the load. Therefore, it may not be used before the
EO stage of the next instruction group. This rule prevents an instruction from
using that data in the group with the load instruction (during EO or EI).

This rule enforces an extension of the Break Before Cascade into Memory Refer­
ence Address rule. It requires that the address registers stabilize by the end of the
previous instruction groups EO stage.

Viking defines a set of instructions that can only be executed as single instruction
groups. In addition, Viking can be forced to execute all instructions as single
instruction groups through an ASI visible control bit,

The set of insttuctions which are always single insttuction groups is:

SAVE and RESTORE
LDO and STD operations to integer registers
All Alternate Spoce stores (STA STDA STBA STHA) .
Atomic operations: SWAP and LDSTUB
All control register accesses: Read and Write PSR ASR WIM Y
RETI'
FLUSH
All software traps (rice)
Integer M~tiply: UMUL UMULCC SMUL SMULCC
Integer Divide: UDIV UDIVCC SOIV SOIVCC
Tagged Operations that can trap (TADDCCTV TSUBccrv)
Load or Store FP status registers (LDFSR STFSR STDFQ)
FBFCC (Branch OIl 80ating point condition code)

Integer condition codes are pan of the processor status register (PSR). To prevent
them from being read while they are being modified, the processor forces an
extra cycle between RDPSR instructions and a previous arithmetic operation that
may have changed the condition codes .

..

Revision 2.00 of November 1. 1990

[

3.4.2.13 Break Before MULSCC
unless first one or two
instructions

3.4.2.14 Break Before
Extended Arithmetic
from CC set in Current
Group

3.4.2.15 Break Before Delay
Group en unless first

3.4.2.16 Break Before en in
JMPL delay unless
RE'IT

Chapter 3 - Code Generation Principles 47

Viking executes MULSCC either as a single instruction group, or it executes two
MULSCCs as a group. MULSCC is never grouped with any other instructions.

Viking cannot use condition codes calculated in EO as input to extended precision
arithmetic in the same group. This rule inserts a break between the condition
code computation, and its use in extended arithmetic (ADDX ADDXCC SUBX
SUBXCC).

This rule prevents additional branches, other than true branch couples, from
being executed in the delay group of a branch. This simplifies implementatiao by
never having to squash the later branch when the previous branch is takCIl

This rule allows an optimization of JMPI..JRE'IT pairs, and simplifies the genel2l
case of JMPL couples. A full cyde is required in the pipeline between a JMPL and
any othercn, except RETI.

.!P,.!! Sun Mic:IosyItems Pmpriea.y R.evision 2.00 of NO¥aIlber 1. 1990

[Blank Page]

..

('~,

-~

4
Viking Programmer's Model

Viking Programmer's Model ... __ SI

4.1. Viking Processor _ _ ... _ __ . ___ __ 51

4.2. CC orMBUS mode _ ___ __ 51

4.3. Reset Operation .. __ ... _ _... 51

Hardware Reset ... _ _ _ _ _..................... 52

Watchdog Reset _ _._ ... __ __ __ 54

Single Instruction Execution ___ ... __ ... _ ... _................................ 55

. Boot Mode _ _ ___ _ __ ... _ __ _ _ _.. 55

Built-In Self Test (BIST) _._ .. ___ ______ . ., __ ___ _..... 55

Internal BIST operation _ _ ... _ ... _______ ._ _____ . ___ . __ ... 55
BIST coverage _ _._. __ ______________ . __ . __ . ____ ._._.. 55

Signature _ ... _ __ _ .. ___ __________ . ___ ____ ._..... 55

Initiating BIST • __ ._ ..•. _ _____ •. _ •.. _________________ ._._..... 56

BIST ASI operation __ .. __________ . ______ . __________ .. _ ... _... 56

Warnings regarding BlST operation . __________________ .. 56

4.4. Instructions __ . ___________________________ ... _____ 57

Integer Multiply (IMUL) ____________________ .______ 57

Integer Divide (IDIV) .. ________ _ _____ .. 57

Write ,PSIt (WItPSR) _________________ 58

Flush (IFLUSH) ____ ._.____________ _ _______ ._ 58

Store Barrier (STBAR) ____________________ 59

Signal User Emulation Request (SIOM) • ___________ .. 59
4.5. Memory Model ____________ _ --_ .. '------- 60 ..

Three models of memory: Strong Ordering, TSO, PSO 60

Strong Ordering _ ... _ ~ ~.. 60

Total Store Ordering (TSO) _... 60

Partial Store Ordering (PSO) ~....................................... 60

Atomic Operations- SWAPs and LDSTUB .. 61

Atomic Operations in CC mode ... 61

Atomic Operations in MBUS mode .. 61

Alternate Space Atomics ... 61

I..oad and Store Alternates ~ ... _................................ 62.

Non-Cacheable Loads and Stores .. 62

Page Table Memory Operations .. _................................ 62

Hardware use of page' tables _ ~ __ _.............. 62

System software use of page tables ... 63

Hardware/Software page table consistency _ _.......................... 63

Memory. Exceptions and No-Fault operation _................................ 64

Prefetch Exception Handling .. _................................ 65

4.6. Floating Point Unit ______ ... __ ... ________ _ ___ _........ 65

FSR Version and Implementation Fields .. _ ... _______ 66
Special Numeric cases ______ .. __ . ______________ ... ___ 66

N~ -+ Integer Conversion ... __ ... _. __ ... ____:. _____ _ ... _..... 66

NaN Output Representation . __ . ___ _______ ___ _.. 66

Rounding Operations and Underflow Detection _. ____ ._ ... ____ ..
FxTOiR Not supponed _____________________ ____ _

Quad Precision _ ... _________________ . ____ ..

Floating Point Queue ___________________ ... __ ___ _

Floating Point Exception Details ___________________

No FAST (non-standald) Mode __________________ _

FsMULd _____ ._ .. ___ . ___ , __ .. _ .. ________ _

In1eger Multiply _" __ . ___ . ________________ ..

In1eger Divide ___ , --_._---------_._-----
4.7. Instruction Cache ____ , , __ ._ ... _ .. ' ____________

66

66

66

66

67

67

67

67

68

68
Ca:beability __________ ... __ 68

Instrucdon Cache Replacement Policy ____________ 69

Snoop Hits and Lock bits ____ ._ _________ . ___ .. 70
lnstruc1ion Prefetching _________________ __ 70

c:

,,- -

MMU Fault Status Register (MFSR) 99

Instruction access errors .. . 99
/,1/'

'L,

Data access errors 100

Store buffer errors 100

Control Space Errors 100

Error Mode and Internal Errors _ ... _ _._ 100

MFSR timing and operation .. . 101

MFSR Register l)escription _ .. . 102
Fault Address Register (MFAR) _ 105
MMU Shadow FSR Register (MSFSR) .. . 106

MMU TLB (page Descriptor Cache) direct access .. _ _ 106

4.12. Store Buffer _ _ _ .. _ 109

General Operation ... _ _ __ .. 109

Operation in CC Mode ._ _ _ 110

Operation in MBUS Mode __ _ .. _ .. 110
Non-buffered (Synchronous) Operations _ _ ... ___ _ 110
Store Buffer (Data Store) Exceptions .. ______ ____ . ______ .. 110
Store Buffer Disabled Operation- strong ordering ... _____ . __ . __ ._ .. 111
Store Buffer Tags .. _____ . ___________ ... ___ ._ ______ . ___ .. 111
Store Buffer Data _. __ . ___ . __ . __________ _ ... _ _______ ._._ 112
Store Buffer Control __ ... _._. __ .. ____ . __ . _________ ... ~._. ________ .. 113

4.13. Traps ----------.----------------.--... -.... --.------.------ 113
Exceptions and Program Counters _____ _._. ______ . ______ ._ .. 114
Error Mode ______ _ ____ . _____________ . ___ 114
Fault Status Updates _ ... ________ ._ .. ___ . ____ . ________ . ____ _ 115
Trap Details _____________________________ . __ _

115
Reset Trap ________________________ . _____ _

116
Data Store EnorTrap ____________ _ 117
Instruction Access Exception Trap _______________ _ 117
Privileged Instnlctim Trap __________________ _ 117
megal Instrucdon Trap ________________ _ 117
Floating Point Disabled Trap _____________ _ 117
Coprocessor Disabled Trap ______________ _ 117
Window Overflow Trap . ________________ _ 118
Window Underflow Trap . . •. _________ . __ ... __ _ 118

""
",-,

Memory Address Not Aligned Trap ... 118

(Floating Point Exception Trap ... 118

Data Access Exception Trap ... 118

Tagged Operation Overflow Trap .. 118

Integer Divide by Zero Trap ... 119

Trap Instructions ('flee) _ .. _.......................... 119

Intenupts _ _ _... 119

Unsupponed Trap Types _ _ _ ... _ ... _...... 120

4.14. Software Debugging Facilities . __ _ _ .. _.............. 120

Priorities of Debug Intenupt and Exception _.................... 120

Address Breakpoints - Code (Instruction) or Data 121

Counter Breakpoints - Code (Instruction) or Cycle ,.................. 121

Access to Debug Features ... 124

MMU Breakpoint control registers _ _._................. 124

Breakpoint Value Reg .. _................................... 125

Breakpoint Mask Reg _ .. _.. 125

Breakpoint Control Register ____ ... _____ ... __ . ___ ._ ... _ _........... 126

Breakpoint Status Reg ... __ ... ____ .. __ . ___ __ _._._ _ ... _.. 127

Counter Breakpoint Value (crRV) _ ... _ ... __ ... __ _ _ _... 127

Com:tter Breakpoint Control (CTRC) _._. __ . ____ ... _._. ___ , _........ 128

Counter Breakpoint Status (CTRS) ._ ... ___ ... __ . ____ ,. __ ._. ___ ... 128

Breakpoint AcrION ~gister _. __ ._ ... __ . ___ : _ _ _ ... __ .. 129

External Monitors __ ... ___ .. ____ .. _. __ .. _ _. ____ ._._._ ... _ _................. 130

PIPE[9:0] definition __ . __ ._ _____________ ... _. __ . _____ .. ___ ... _.. 130

4.15. ITAG and Emulation ____________________ ._ ... _ _ ... __ _._ .. __ ._ 131

Emulation Temporary Registers (MTMP[1-2J) ____ ._. ______ .. __ __ 131

Emulation ITAG Data Input Register (MOIN) • ______ . _______ .. _.. 132

Emulation ITAG Data Output Register (MDOtTI') ___ . ____ . ____ ._..... 132

Emulation Program Counters . ________________ . __ .______ 132

4.16. ASI Map _________________ . ______ . ____ .. ____ 133

..

[Blank Page]

..

(

4.1.· Viking Processor

4.2. CC or MBUS mode

4.3. Reset Operation

4
Viking Programmer's Model

This chapter describes the Viking programming model. It explains the Viking
processor from a programmer's point of view by discussing the processor's com­
ponents, reset modes and how it affects Viking, IT AG, In-Circuit Emulation,
Diagnostics and BIST (Built In Self Test). The processor components included in
the descriptions are the two caches (instruction and data), the memory manage­
ment unit (MMU), the store buffer, and the Aoating Point Unit. Every control
register involved in the operation of Viking is explained in the respective sec­
tions, along with comprehensive ASI descriptions which detail register bits and
fields. The same ASI Map also fonnally defines all of the ASlS that Viking sup­
ports.

Viking is a highly-integrated, super-scalar (multiple instructions per cycle) sP~c
processor for use in single- and multi- processor systems. It features physical
instruction and data caches, a Memory Management Unit (MMU), a Store Buffer,
and a Floating Point Unit (FPU), all on chip. Accesses to these and other com­
ponents within the chip are available through the use of ASI references, generally
used for control and diagnostic purposes. See the SPARC Architecture Manual for
more on ASIs.

Viking can operate in either of the two modes, CC or MBUS. In cc mode, Viking
assumes the existence of an external cache, and a cache controller (such as the
MXCC. for example). In MBUS mode, Viking makes no such assumption, and con­
fonns to level-2 MBUS protocol. TIle differences of the two modes in terms of
ViJcing operation will be compared and explained throughout this doaunent

ViJcing implements three fOlms of reset Hardware reset, sometimes called
power-up reset is initiated exterMl to the processor by asserting the RESET _ sig­
nal. TIlere is DO direct mechanism within Viking to assen hardware reset This
function is typically implemented within the system logic. It is also possible to
cause a hardware reset in emulation mode.

Built in self test (BIST) generates a second type of reset, which is nearly identical
to the hardware reset BIST operations can be requested either by software (with a
STA), or via the 1rAG interface. When BIST is initiated through software using
STA, an internal reset is automatically generated. When BIST is initiated by 1rAG.
however. the user needs to generate the reset This can be done by entering the

.§!l,.!! Sun MicmIyIt.emI PIoprietay Revision 2.00 of November 1, 1990

52 TMS390ZS0 - Viking User Documentation

4.3.1. Hardware Reset

TAP reset state by either assenion OfTMS for 5 consecutive TCK cycles or assen­
ingTRST_o

In addition to the hardware reset there is an internally-generated reset referred to
as a Watclulog Reset. 1bis reset is caused by entry into elTOr mode as described
in the SPARC Architecture Manual.

Several actions are taken following a hardware reset A detailed description of
timing requirements on the.reset signal is presented in section 10.2.2.6, in the
System Interface chapter. Once the reset has been requested, Viking spends
several hundred cycles initializing internal logic. In panicular, during this time
the cache colwnn redundancy repair circuits are configured. All chip outputs are
held inactive, or tri-stated during this time .

..

San Micmsysrans PrapriItIry Revision 2.00 of November 1, 1990

[)
Chapter 4 - Viking Programmer's Model S3

The following table show what actions are taken by hardware reset.

Table 4-1 Stale after hardware reset

Register/Bit Affected States After Reset
Floating Point Queue Invalidated
Boot Mode (MCNTI...BT) I (indicating boot mode)
MMU Enable (MCNTL.EN) o (MMU disabled)
No Fault (MCNTL.NF) o (Faults enabled)
Data Cache Enable (MCNTL.DE) o (Data cache disabled)
Instruction Cache Enable (MCNTLJE) o (Instruction Cache disabled)
Store Buffer Enable (MCNTL.SB) o (Buffer Disabled)
MBUS/CC Mode (MCNTL.MB) I/O. Depends on CCRDY _ pin
Parity Enable (MCNTL.PE) o (Even Parity Disabled)
Snoop Enable (MCNTL.SE) o (Snooping Disabled)
Partial Store Ordering (MCNTL.PSO) o (TsO/Strong Ordering)
Data Prefetcher (MCNTL.PF) o (Prefetcher Disabled)
Alternate Cacheable (MCNTL.AC) o (non-cacheable)
Table Walk Cacheable (MCNTL.TC) o (Non-cacheable)
Error Mode (MFSR.EM) o (Not an error mode. or watchdog reset)
TI.B Lock Bits o (all11.B lock bits cleared)
Multiple Instruction Mode ACIlON.MIX o (Single Instruction Execution)
Breakpoints (MDIAG) o (All breakpoints disabled)
Program Counter o (PC = OxO. NPC = Ox4)
BIST Status (BIST.STATUS.LONG) o (No BIST since reset)
Store B~ffer Tags Valid bits cleared
Store Buffer Control Pointers set to zero
Store Buffer Contents Uninitialized
Data Cache Contents Uninitialized
Instruction Cache Contents Uninitialized
Register File Contents Uninitialized
Processor Status Register (PSR) S=l, ET=O. EC=O, Ver=4, Impl=O

PSR.CWP Uninitialized
WIM (Window Invalid Mask) Uninitialized
MFSR Uninitialized (except for MFSR.EM bit)
MSFSR. (Shadow FSR.) Uninitialized
Emulation Facilities Disabled

All values shown as IUlinitilllized are just that, not set to any guaranteed state
after hanlware reset. 1bey must be initialized before use.

R.evision 2.00 of November 1. 1990

54 TMS390ZS0 - Viking User Documentation

4.3.2. Watchdog Reset

Important Note:
In order for Viking to properly reset, care must be taken in the system imple­
menWion. In particular, IrAG operation may affect Viking's ability to reset
(the IrAG TAP controller should be in the reset state when hardware reset is
asserted).

The internal phase locked loop (pu.) may take a long period of time to sta­
bilize at power on (approximately 100 miliseconds).This time must be
accounted for in the assertion of an external reset. Unpredictable operation
occurs if reset is deasserted before the Pu. has locked.

After the above state has been set, Viking initializes all internal state, and take a
reset trap. This forces execution to begin at virtual address OXO. Since boot mode
is set, physical address OxffOOOO()() is used to fetch instructions from memory.
System software may distinguish hardware reset from watch dog reset by the
MFSR.EM (Enor Mode) bit being cleared. Since the ACTION.MIX (multiple instruc­
tion execution) bit is cleared, Viking's superscalarexecution is disabled, and a
maximum of one instruction may be executed in each cycle.

None of the entries in the Store buffer, data cache, Instruction cache, orn.B
(except lock bits) change. Software is responsible for initializing each resource
before enabling them.

Important Note:
System software is expected to examine the state of the BIST.sTATUS register
after any reset to detennine whether the reset trap occulTed as a result of a
built in self test operation.

In addition to the hardware reset there is an intemally-generated reset refelTed to
as a watchdog reset. This reset is caused by entry into enor mode as deScribed in
the SPARe Architecture Manual.

To allow recovery from many enor mode conditions, as little state as possible is
. affected by.watchdog seseL 1beonly ~bit~cted.b)' awatclvlog.mset is
the MCNTL.BT (boot mode) bit. The MFSR.EM (Error Mode) bit is set to indicate
that this is a watchdog reset, as opposed to a hardware Jaet. Since the cache
redundancy logic bas already been programmed (during hardware reset), it is not
done again. Breakpoints are clean:d at watchdog reset.

In cc mode, Viking issues an error mode bus cycle causing the cache controller
(or extemal system logic) to record the occurence of enor mode. The completion
of this bus cycle causes watchdog Jaet.

Once the above actions have ~n completed, a reset trap will be generated.

ReviIioIl2.00 of November 1. 1990

C:

r"
)

4.3.3. Single Instruction
Execution

4.3.4. Boot Mode

CMpter 4 - ViJcing Programmer's Model SS

At power-on reset, Viking will execute in single instruction execution mode.
Multiple instruction per cycle execution is enabled by setting the ArnON.MIX bit.
(See section 4.14.4.5 - Breakpoint ACJ70N Register).

For a detailed description of boot mode, see section 4.11.11.1.

Boot mode is a special MMU bypass mode, where all instnlCtion accesses (and
alternate spaces references through ASIs OxOS and Ox09) pass their virtual address
in physical address bits 27 through O. and the upper eight physical address bits
(35 through 28) are set to Oxff.

Boot mode is entered after any reset (either hardware or watchdog). It may be
disabled by clearing the MCNTL.BT bit explicitly. Note that boot mode overrides
the MMU enable for instruction accesses. Boot mode does not affect data refer­
ences.

During boot mode. the MCNTL.AC bit is ignored for instruction references and
alternate space transactions through instruction space ASIS (Ox08,0x09). making
these accesses to instruction space non-cacheable when BT= 1. However, the AC
bit is still used for data references in this mode.

4.3.5. Built·In Self Test (BIST) Viking has included Built·In Self Test (BIST) logic on chip. There are two types
ofBIST, short and long versions. BIST is a quick check for device integrity, it is
not an exhaustive proof that the device is 100% conect. Many types of device
faults will be detected by an incorrect signature value after a BIST. 1be long BIST
operation is a more exhaustive check of the logic than the shortBIST. 1bis sec­
tion describes hoW.BIST operates, how to initiate BIST, how to use the results, and
warnings regarding BIST operation.

4.3.5.1 IntemalBIST operation

4.3.5.2 BIST coverage

4.3.5.3 Signature

BIST uses internal logic scan paths to write in pseudo-mndom test patterns into
the chip logic (internal swes). One cycle of execution is then run, to let the
swes assume their next swes, then state of the logic is captured through the scan
path into a signature analyzer. The signature analyzer creates a signature value
based on the results from the logic and stores this value in the BIST .sIGNATURE
register.

The BIST sequence checks allnol'Dlally scannable logic, but does not check most
internal memories. The 11.B, store buffer, prefetch buffers, cache arrays, and
register files are not checked by BIST.

The correct signature value is known but i~ device stepping dependent Correct
signarure values for the device will be published. (Not yet known for this revi­
sion of the documentation).

Dijferenl signature values are generated for the long and short BIST operations •
..

• !!I,.!! Sun MicmIyIfaDI PJopriet.y Revision 2.00 of November I, 1990

56 TMS390ZS0 - Viking User Doc:umcnr.uon

4.3.5.4 Initiating BIST

4.3.5.5 BIST ASI operation

To initiate BIST a STA to ASI Ox39 is issued. A "long BIST" is selected by writing
to vinual address Oxl00, while a store to address 0 selects a "shonBIST". An
ASI 009 access to any address other than Ox 100 or OxO will generate a
data_acce5S_exceptiolL

Intemallogic controls the BIST operation once requested. An extemal reset
abons the BIST operation. When the sequence completes, an internal reset is gen­
erated (see the hardware reset description above).

BIST may also be initiated through the rrAG interface. For details on rrAG ini­
tiated BIST, see chapter 5 -RAG Serial Scan Interface

ASI=0x39 - BIST Diagnostics.

1bere are 2 memory mapped. Viking -specific, MMU resident diagnostic registers
used to suppon built-in self test (BIST). Any Byte, Halfword and Doubleword or
Swap access into any of these diagnostic registers are explicitly illegal and will
generate a data_acce5S_exception. LDAISTA single only is allowed.

Table 4-2 BIST DiaglllJStic Registers within ASIOxJ9

Address Load/Store Data Fonnat Description
OXOOOOOOOO Store Don't care (should be zero) Start Shon BIST
OXOOOOO100 Store Dontt Care (should be zero) Start Long BIST
OXOOOOOOOO Load Signature[31 :0] Read 31-bit signature
OxOOOOOlOO Load Status[31:0] (see value below) Read 2-bit BIST Status

1be possible values of the status register are:

Table 4-3 BIST status register values

4.3.5.6 WamiDgs regarding
BIST operation

Value Meaning
OXOOOOOOOO NoBISTrun
0x00000001 Short BIST run
OxOOOOOOO2 LongBlSTnm

Hardware reset PIN wm clear BIST .STATUS. 1bese bits are not affec&ed by walCh­
dogrcset.

AfterBIST finisbest Viking generates an intemal reset. This internal reset behaves
similar 10 die banlware reseL ODe of die consequences of this reset is that
MCNn. gets initialized - in panicular tile MCNI1...PE bit gets reset so that Viking
SWts geaeratiDg inverted parity on the pins. This intemally generated reset is not
seen by a cache c:ontro11er such as the MXCCt so if the parity was enabled in the
MXCC before starting BIST - it is still enabled in the MXCC afterBIST. This results
in a mismatch between what Viking and MXCC do and expect on writes. Software
should cbect die MXCC.PE bit after BIST bas completed and adjust the Viking ts '~
MCNTLPE bit before attempting any writes. To be safe - tile following algorithm

.§.UJ! Revision 2.00 of November 1,1990

[)

4.4. Instructions

Chapter 4 - Viking Programma"s Model 57

could be used:

(Before starting BIST)

Flush the store buffer (even though STA Ox39 does it too)
Check the MXCC status register and wait until nothing is pending
StartBIST

(After BIST finishes)
Read BIST StanIS

Read BIST signature
Read laCC control register
Set Vildng's MCNTL.PE bit ifMXCC.PE bit is set
Continue

Even though the MXCC was mentioned as an example, any other system com­
ponent could have a similar problem since they do not see Viking's intemally
generated reset. Thus care has to be taken in recovering the system after BIST
finishes.

This section describes Viking instruction operation for those instructions which
require a more detailed description than is already provided in the SPARC Archi­
tecture Manual. The instructions described here include:

Insuuctions
IMUL
IDlY
WRPSR
FLUSH
STBAR
SIGM

4.4.1. Integer Multiply (IMUL) Viking implements integer multiply in all its forms conforming to the SPARC
architecture specification. It is mentioned here only because the insttuction is
new to the Version 8 SPARC architecture.

4.4.2. Integer Divide (IDIV)

Integer multiply is implemented in the floating point unit of the processor. Nor­
mally. these operations will wait until the completion of any pending 1loaling
point operations before execution (indicated by FP Queue empty). If the FPU is in
exception rtrIXk. integer multiply operations will proceed without waiting for the
floating point queue to empty. Integer multiply will not cause any deferred float­
ing J?Oint exceptions to be signalled.

For most numeric conditions, integer divide works exactly to the SPARC architec­
ture specification. Due to limitations in the hardware, there are certain numeric
cases that cannot be completed. In these cases, Vildng will signal an
iUegaCinstruction trap (trap type Ox02). The case where this occurs is when the
64-bit value comprised of {Y,l'Sl} has numerically significant bits beyond bit 51.

Revision 2.00 of November 1. 1990

58 TMS390ZS0 - Viking USCI'Documentation

4.4.3. Write PSR (WRPSR)

4.4.4. Flush (IFLUSH)

In effect, Viking only implements a 52-bit by 32-bit integer divide, compared to
the 64-bit by 32-bit specification. This holds uue for both positive and negative
numbers when the operations is a signed divide.

System software is expected to emulate these integer divide operations when
required.

Integer divide is implemented in the floating point unit of the processor. Nor­
mally, these operations will wait until the completion of any pending floating
point operations before execution. If the FPU is in exception mode, integer divide
operations will proceed without waiting for the floating point queue to empty.
Integer divide will not cause any deferred floating point exceptions to be sig­
nalled.

Viking implements the write PSR insauction according to the SPARe architecture
manual, with one qualification. Since no coprocessor pon is provided on Viking,
system software is prevented from trying to enable coprocessor operations.

If a WRPSR instruction attempts to set the PSR.EC bit, an illegatinstruction trap
will be generated immediately. Since the EC bit can never be set, all coprocessor
instructions will generate cp _disabled traps (trap type 004).

The timing requirements of PSR write operations match the SPARe Architecture
Manual exactly. A three instruction (not cycle) delay is required between chang­
ing any PSR fields, and using the contents. Note also that when a JMPURETT
instruction pair is seen, Viking will use the PSR.PS (previous supervisor) bit to
check protections for the instruction fetch of the JMPL's targeL

The PSRlMPL (implementation number) field of the PSR is always set to Ox4. The
PSR.VER (version number) field is set to OxO.

Viking implements FLUSH slightly differently than the SPARe Architecture
Manual suggests. No cached information is explicitly flushed by the instruction.
The cache consistency mechanisms are used to ensure that caches always have
correct data (both instruction and data caches). The FLUSH operations simply
causes an exact synchronization of all pending activity.

When a FLUSH instruction is executed, it will cause Viking's store buffer to be
drained. This causes all pending bus activity to complete. Any cache coherency
transactions (for instance invalidation of instIuction cache entries) will occur as
the store buffer clears. The internal processor pipeline and instIuction buffer will
also be cleared. WIlen the pipeline resumes execution after the FLUSH, it will
fetch data from the insUuction cache whiell is guaranteed to be up to date with
respect to all prior processor activity.

See also section 4.7.s -Instruction Cache Consistency for further discussion of
FLUSH instruction implementation.

..

RmsioJl2.00ofNowernber 1. 1990

c

[

(:

4.4.5. Store Barrier (STBAR)

4.4.6. Signal User Emulation
Request (SIGM)

Chapter 4 - ViJcing Programmer's Model 59

Imponant Note:
The FLUSH instruction affects only a single processor. No other processors
in a system will do a flush operation unless explicitly requested to do so (by
their own FLUSH).

This is not of concern to most applications, but is significant to certain
operations, such as dynamic linkers. 1bese programs must be written care­
fully to ensure that all processors see a consistent view of program memory
under all circumstances. This may require modifying memory in a certain
order, and/or writing intermediate values to guard against temporary incon­
sistencies. Note that cache coherence is maintained on double words.

The STBAR instruction forces store operations to be performed in order while in
PSO (partial store ordering) mode. Viking implements this functionality as
described in the SPARe Architecture Manual.

The instruction is implemented in the "RDASR" reserved instruction space. The
opcode is equivalent to RDASR OxOf, %gO, the exact encoding is Ox8143cOOO.

The STBAR instruction sets the SBTAGS.sP in the last allocated (valid) entry. Ifno
entry is allocated, the STBAR instruction is remembered in the bus unit arbitration
logi~. When the bit is set, the bus unit waits for the PEND_ input to go inactive
before issuing any stores after the one with the bit set Without the STBAR, the
SBTAGS.sP bit will not get set. and the b_unit continues issuing stores as fast as
the external cache controller ~ buffer them. This would allow stores to be per­
formed out of order in the sytem.

All this happens only in PSO mode. In TSO mode, tJ:Ie bus unit waits for PEND_ at
all times.

See section4.S.1.3 -Partial Store Ortkring (PSO) for more details.

Viking implements a special. Viking-specific instruction called SIOM (Signal
Emulation), that is used in conjunction with the on chip Ir AG based emulation
facilities provided by Viking.

The instruction is implemented in the ··RDASR" implementation.dependent
extended opcode space defined by the SPARe architecture. The opcode is
equivalent to RDASR Oxlf. %gO. which encodes to OX8147COOO.

The operation of this instruction is dependent on the state of the IrAG oontrolled
MCMD register. If the MCMD.1NlTM bit is cleared, the SIGM instruction will be exe­
cuted as a NOP. If the MCMD.1NlTM bit is set. execution of SIGM will cause
immediate entry into emulation mode (See chapter 6 - Remote Enudation Sup­
port) for details).

The MCMD.INITM is alwa)?initialized to zero at JTAG Tap controller reset In
order for the SIOM insttuction to cause entry into emulation mode, the bit must be
explicitly set by a remote emulation processor using the JT AG. It is not possible to
set the MCMD.1NlTM bit using the processor alone.

Revision 2.00 of November 1. 1990

60 TMS390Z50 - Viking User Documentation

4.5. Memory Model

4.5.1. Three models of
memory: Strong
Ordering, TSO, PSO

4.5.1.1 Strong Ordering

4.5.1.2 Total Store Ordering
(nO)

4.5.1.3 Partial Store Ordering
(PSO)

This section will describe the programmers view of memory in a Viking based
system. TIle exact view of memory is highly dependent on system implementa­
tion, some of the details below may not apply to cenain system environments.

The SPARC Architecture defines three views of memory; the differences between
these models are described in detail in the SPARC Architecture Manual.

Viking allows the use of any of the three models at any time. Each of these
models places different requirements on the system as well. Cenain systems
may be capable of implementing some or all of the models.

Strong ordering allows for maximum software compatibility, but can decrease
perfonnance and increase system complexity. In this model of memory, all tran­
sactions are seen in the exact order that they were issued by all processors,
caches, and memories in the system. It allows for a veri simple programmers
model.

If the system allows, Viking can implement strong ordering by disabling the
internal store buffer (MCNTL.SB bit). lbis will cause decreased performance in
most system environments, particularly when using cc mode, since all store
operations write through to external caches.

Total store ordering is similar to strong ordering, except that only the order of
store operations is guaranteed to be exact across the system. This memory model
allows most multi-threaded applications to operate consistently with good perfor­
mance.

TSO mode is the nominal memory model of Viking based systems. ForTSo mode,
the store buffer must be enabled (MCN1L.SB= 1), and the MCNTL.PSO (partial store
ordering) bit must be zero.

Partial store ordering is the highest perfonning of the memory models. It elim­
inates most implicit ordering requirements and expects software to explicitly
enforce ordering when needed. This model requires the most careful use of
memory by applications.

This explicit ordering may be requested by use of the STBAR instruction. The
STBAR instruction wUl guarantee the order of store operations before and after the
STBAR instruction only. To achieve the equivalent of the TSO model, an STBAR
might need to be insened prior to nery store operation.

PSO is enabled by setting both the MCN11...PSO and MCNTL.SB bits to one. Viking
implements PSO mode in cooperation with external cache and memory controll­
ers. The PEND_ signal is sampled in order to determine the completion of store
transactions.

Revision 2.00 ofNcwember 1. 1990

L

[)

4.5.2. Atomic Operations­
SWAPs and LDSTUB

4.5.2.1 Atomic Operations in
ccmode

4.5.2.2 Atomic Operations in
MBUsmode

4.5.2.3 Alternate Space
Atomics

Chapter 4 - Viking Progrll1UDer's Model 61

SWAP and lDSTUB instructions are used to implement semaphores and other
atomic operations in memory. In both uniprocessor and multiprocessor (MP) sys­
tems. it is imponant to maintain synchronization between processes which share
common memory.

Atomic operations force the store buffer to copy out before slatting.

If an exception occurs during the store buffer copy-out caused by an atomic
operation, the operation is not completed. A data_store_enor is taken. which dis­
ables the store buffer at once. TIle atomic operation may be restarted when the
CPU returns from the store buffer exception handler (see section 4.12.5 - Store
Buffer (Data Store) Exceptions).

If the atomic operation itself encounters an exception on either the write or read
access. a data_access_exception will be reported. Viking guarantees that the des­
tination register will not be updated. The system is responsible for insuring that
the destination memory location is not modified (as in any store exception).

Atomic operations have traditionally been implemented as a locked sequence of
loads and stores (Read-Modify-Write). In order to suppon higher performance
packet-switched buses. Viking implements a true swap operation. whereby it sup­
plies the new data to be written along with the request for the current memory
data. This is done to ensure that Viking receives the current value of the "old"
data. TIle system. or external cache logic must be capable of accepting this tran­
saction. This is made possible by the definition of SPARes atomic operatoIS- the
data to be written is independent of what is read.

Since MBUS mode operates with a copy-back. write allocate cache protocol. the
operation of atomic transactions is simpler than in cc mode.

For cacheable references in MBUS mode, no special bus operations are done for
atomic transactions: They are implemented as a simple sequence of reads and
writes. Viking will read, and acquire ownership of the data being referenced. and
all operations will occur within the internal cache. (If the data is sh3red, acquir­
ing ownership implies issuing a CI as necessary).

Non-cacheable references in MBUS mode operate more traditionally. TIley will
appear on the bus as a locked read-write sequence. The LOCK bit within the MBUS
address field will be set, and bus amittation will not be released between the read
and write.

TIle SWAPAJLDSTUBA are similar to the sw AP/LDSTUB operations, with some res­
trictions. Swap Alternates to ASllocations other than Ox08-OxOb, and Ox20-0x2f
will cause data_8CCeSS_exceptions. Alternate atomic operations to ASIs Ox08-
OxOb, and Ox2().()x2f are handled like ordinary atomic operations.

Revision 2.00 of November 1. 1990

62 TMS390Z50 - Viking User Documentation

4.5.3. Load and Store
Alternates

4.5.4. Non-Cacheable Loads
and Stores

4.5.5. Pale Table Memory
Opentions

40505.1 Hardware use of page
tables

Loads and stores to alternate address spaces are generally perfonned for low
level control of Viking, and the external system. A summary list of valid ASIs
can be found in section 4.16 -AS/ Map

All ASI operations are perfonned synchronously. Before starting execution of
any ASI operation, the store buffer is flushed (except for ASI Ox2().()x2F, Oxa-Oxb,
which are asynchronous and do DOt cause a store buffer copyout). 1bis action
ensures that the processor state is consistent before the access begins. As an
example, context register writes cause the store buffer to copyout preventing the
store buffer from containing operations that "belong" to contexts other than the
current one. This allows data_store_exceptions to be associated with the faulting
process more easily.

If an exception occurs during the store buffer copy-out caused by an LDAISTA. the
operation is not completed. A data_store_exception is taken, which disable the
store buffer at once. The ST A operation may be restaned when the CPU reblms
from the store buffer trap handler.

Alternate space transactions through ASIs Ox8-Oxb are treated as nonnalload and
store operations. They are ttans1ated by the MMU according to the definition of
the ASIs in the SPARC architecture manual.

Transactions through the pDSS-wough ASI space (0x20-0x2f) are treated as nor­
mal loads and stores, except that they are not ttans1ated by the MMU. For these
operations, cacheability is determined by the MCN'I'L.AC (alternate cacbeable) bit

The cacheability of memory refere~ is detennined as desCribed in the insUuc­
tion cache, data cache. and MMU sections of this manual.

Non-cacbeable loads cause the contents of the Store Buffer to be copied out to
memoty before proceeding. This is done to ensure proper memory ordering of
accesses to I/O space.

If an exception occurs on the store buffer copy-out caused by a non-cacheable
load. the load operation is not completed. A dataJtore_exception is taken,
which disables the store buffer at once. TIle load operation may be restaned
when the CPU rewms from the store buffer exception handler.

Unlike loads. noncadIeable stores do not normally force the Store Buffer to
copyout. They are simply placed in the store buffer, like cacheable stores.

As described above, DOnnal system software access to the in-memory MMU page
tables must be done carefully. Conflicts may exist between software and
Iw'dware use of these tables.

TIle MMU Iw'dware must autonomously access the page tables to perfOIDl transla­
tions. and modify the page tables to keep referenced and modified statistic bits up
to date. . ~

When the Vildng MMU table walk hardware accesses these page tables it will do /f'

so in a way that guaranteeS consistency between multiple processors. This is '- .
done primarily through the use of locked or atomic memory transactions

+!Y..!! Reviaiaa 2.00 of November 1. 1990

4.5.5.2 System software use of
page tables

4.5.5.3 HardwarelSoftware
page table consistency

ChIptel' 4 - Viking Programmer's Model 63

whenever modifying page table R&.M bits. As long as certain rules are followed in
system software. the entire table walk need not be done with a locked transaction,
only the updates.

System software must access page table to check statistics. and remap physical
memory as required.

When only system software accesses page tables in memory. consistency is
guaranteed by the normal cache consistency mechanisms. as well as by standard
critical section mutual exclusion semaphores. Unfortunately, Vilcings table walk
hardware has no way to recognize these software locking conventions. The fol­
lowing section describes how to deal with the consistency issues.

Since both hardware and software generated references to the page tables may be
in progress simultaneously, some algorithm must be used to guarantee that these
two sources (as well as multiple instances of both of them) will not interfere with
each other.

Inconsistency can occur in several ways. The most general is when software
changes (e.g. inValidates, etc.) a page mapping and the table walk hardware has
already read the table. In this situation, it is system softwares responsibility to do
a MMU flush (or DeMap) operation to force the page table to be re-read by the
MMU. In a uniprocessor environment this is sufficient In a multiprocessor
environment, the flush operation must be done on every processor in the system.

ImpottaDt Note:
Soft~are must guarantee that only a single DeMap operation is in progress aI
anyone time across the entire system. Inconsistent operation will result if
two DeMaps are received by a processor at any one time (including internal
DeMap requests).

In cc mode, and only in systems that implement broadcast DeMap oPerations,
the local flush operations is IlIItOmIIIictzlly broadcast to all processors. There is no
need to intenupt remote processors to issue local flush transactions. In MBUS
mode, and in cc mode systems which do not broadcast DeMap, all processors

. must be intenupted and told to do their own local Bush operation. 1bis can take
amsiderable time to complete, but is generally not a performance bottleneck in
smaller systems. Broadcast DeMap capability is recommended for higher perfor­
mance.large multiprocessor systems.

A more difficult problem arises when the MMU hardware must re-write a page
table entry to set or clear the referenced of modified bits. The hardware must be
prevented from O'IUWriIiIIg a modification that system software has just com­
pleted.

A general algorithm whictt prevents inconsistency in both situations is presented
in figure 4-1 below. The exact implementation of this code is system dependent
The implementation of lock and unlock operations is memory model dependent,
see the SPARe Alchitecture Mmual for proper sequences •

• §!IJ! Revilioll 2.00 of November 1.1990

64 TMS390ZS0 - ViJcing User Documentation

Figure 4-1 Generalized safe page table update algorithm

Lock 1* Acquire exclusive page table access *'
RM_Accum = 0 1* Any R+M updates will accumulate here *'

Loop: Reg = 0 1* Set PTE to zero temporarily *'
Swap(TargetPfE.Reg) 1* Write 0, read back current PTE *'
FlushAllMMUs(TargetPrE) 1* Flush AlL reference to this PTE in system *'
RM_Accum = RM_Accum OR Reg 1* Catch any late R+M Changes *'
if (TargetPrE '* 0) goto Loop 1* Continue until it's really zero *'
TargetPrE = NewPTE 1* Safe to write new value *'
Unlock 1* Release lock on page table access *'

4.5.6. Memory, Exceptions
and No-Fault operation

Operationally, the algorithm may take several iterations to complete. When used
with non-broadcast system wide DeMap, a single iteration should be sufficient.
The FlushAlLMMUs operator is a system dependent mechanism to execute a ftush
operation on all MMUs in the system. System software should use the RM _ Accum
value as the final value that was in the PTE entry before modification. This will
guarantee that no page table status information was lost.

All exceptions, including taken intenuptS, invoke the SPARC trap handling
mechanism. This mechanism includes a store buffer copy-out.

When a SPARC CPU takes a trap, it disables further traps by setting PSR.ET=O.
This makes the CPU vulnerable; if a synchronous (i.e. non-intemipt) exception
occurs here, the CPU enters an undesirable' 'Error Mode". Error mode will ini­
tiate a watchdog reset.

Several steps are taken to avoid this second exception and error mode. Before
traps are disabled (psR.ET is still 1) and before die exception handler is fetched,
the store buffer copies out,all pending writes to memory. This prevents any
user-level faults caused by these writes from occurring at unexpected or unsafe
pom within the trap handler. If an exception does occur on this copyout. a
data_store_exception is taken instead of the pending trap. The pending trap is
ignored, since its restanable. If the copy-out successfully completes, the normal
trap handling sequence continues, and PSR.ET is cleared.

Supervisor exceptions should be c:ommlled by software. Once invoked, the trap
handler can immediately sel1be MCNTL.NF bit to 1. The NF (No Fault) bit dis­
ables teporting of data..acc:ess_exceptioos to the CPU. Since the trap handler is
kernel code, most exceptions are fatal. Other errors, notably bus errors, are
always possible, and so are disabJed by the NF bit.

1be MCNTL.NF bit disables exception teporting for all operations except those to
ASIOx09 (Supervisor lnstnIction Fetdl), and actual insuuction fetches to ASI
Ox08 (User instruction fetch). Enors from LDA and STA transactions to ASI Ox08
wUl be masked by NF. ..
It is the responsibility of system software to ensure that the NF bit is never set
upon return to user code. Any load operation which receives an exception
masked by the NF bit will load indnemaiMte data to the destination register. Any

Revision 2.00 of November 1. 1990

[

4.5.7. Prefetch Exception
Handling

4.6. Floating Point Unit

ChapIer 4 - Viking ProgrammCZ"s Model 65

store which receives an exception masked by NF will have no effect on registers
(guaranteed) or memory (system dependent).

An undesirable side effect of flushing the store buffer policy is a higher max­
imum interrupt latency. This latency is system dependent. based on the max­
imum time required to empty the store buffer. Every intenupt requires a copy­
out, which in the worst case involves 8 unbuffered writes to memory. This delay
may be unacceptable for real time applications. However, the copy-out require­
ment can be avoided by rurming with the store buffer disabled; in this case, the
store buffer is always empty. Fast intenupt response is guaranteed, although
overall performance is reduced by the resulting synchronous external stores.

For most cache misses on load or instruction fetch operations, Viking performs a
block read. This will load four double-words into the cache in a bU!St transaction
from memory. Viking will always request the word that it needs as the first word
of the burst. then read the rest of the four double words addressed modulo four. A
bus error may be encountered on anyone of the double-word transfers.

Demand/etches are those required by the processor immediately. If a bus enor
occurs on a demand fetch, an exception is generally reported to the pipeline,
causing an instruction_access_exception to occur.

Non-demand fetches are the remaining words in the burst, also called prejetches.
If a bus error occurs on prefetch data, it will not be reported to the pipeline. In
this case, the entire cache line referenced by this transaction will be invalidated.
TIle demand fetch will have been satisfied, but none of the additional prefetch
data is in the processor. If that data is required by the processor in the future
(very likely), it will be fetched again. as a demand fetch. If the.error at that loca­
tion persists. it will then be reported to the pipeline as an
instruction_~_exceptioa

Information about errors of this son may be accumulated outside the processor
for repair. or gathering statistics. If desired, external controllers may raise an
intenupt to inform system software of the existence of these errors. System
software may initiate attempts to eliminate the error at this point before the data
is truly required (demapping pages, etc.).

The Viking Floating Point Unit operates in accordance with the SPARe Architec­
ture Manual. and this section describes in detail some of the operations.

All floating point operations are completed in their natural program order. No
out oj order execution is done. All register dependencies are resolved in
hanlware. causing pipeline delays wherever required. Floating point branch
operations will hold the processor pipeline until all pending floating point com­
pare operations have completed. No instruction delay is required between float­
ing point compare and floating point branch instructions. All Boating point load
double and store double operations ignore the least significant register index bil$y
and will use the naturally aligned register pair.

This section will concentrate on the Boating point queue interface. special
numeric cases. and floating point exceptions .

• §!I,.!! Revision 2.00 ofNcwember 1. 1990

66 TMS390ZS0 - VikUtg User Documentation

4.6.1. FSR Version and
Implementation Fields

Viking always sets both FSR.VER and PSR.IMPL fields to zero.

4.6.2. Special Numeric Cases Viking handles all non-exceptional numeric cases directly in hardware. No
unfinished exceptions are generated. Completing execution of many of these
categories requires additional cycles.

4.6.2.1 NaN ~ Integer When converting a number considered to be a NaN (Not A Number). Viking will
Conversion always produce the fixed represeruation of 0 in the destination register. This is

contrary to other implementations which may produce either Ox80000000 (­
NaN), or Ox7fffffff (+NaN).

4.6.2.2 NaN Output When Viking produces a NaN result. it is stored in one of the following fixed for-
Representation mats:

Table 4-4 NaN Output Representation Values

. 4.6.2.3 RoundiOg Operations
and Underflow
Detection

4.6.2.4 FxTOiR Not supponed

4.6.2.5 Quad Precision

4.6.3. Floating Point Queue

Single Precision: Ox7fcO 0000
Double Precision:

This differs from the IEEE standard. and other SPARe implementations. These
values will only be created in NaN reponing masked .

Viking detects underflow q/ter the rounding operation. The IEEE Specification
allows either method, Vikin8 '5 implementation may differ from other SPARe
implementatiOlL

Old descriptions of the SPARe Architecture described floating point conversion
with roWlding to the rounding mode bits. These instructions have been removed
from the architecture, and are not implemented on Viking.

At Viking. FxTOi is always rounded to ZERO, while other convertions adheres to
FSR.RD mode bit.

Vilcing does not support quad precision operations.

Vilcing's floating point queue is 4 emries deep. All floating point operations are
written to the queue. Floating point memory references, PSI. operations. and
queue operations are not written to the queue.

Storing the contents of the floating point queue should only be done when the
floating point UDit is in exception 1tIOde. Store Floating Point Queue operations
when not in exception mode is implDn.enuuion dependenz. In these cases. Vilcing
will hold the processor pipeline lIIIIil all floating point operations have com­
pleted. and store information the II.ISt completed floating point operation. The
floating point queue is not initialized at reset. storing queue contents before exe­
cuting floating point operations will store undefined values.

Revision 2.00 ofNoYember 1. 1990

[
Chapter 4 - Viking Programmer's Model 67

The user visible values in the floating point queue contain the virtual address of
the executing instructions, as well as the opcode being executed. A STD operation
on the floating point queue register will store these values for the operation at the
front of the queue to memory. TIle memory fonnat is:

Table 4-5 Floating Point Queue Format

4.6.4. Floating Point
Exception Details

4.6.5. No FAST (noo-standard)
Mode

4.6.6. FsMULd

4.6.7. Integer Multiply

Address+OxO: 32-bit virtual address program counter
Address+Ox4: 32-bit opcode

Each time the floating point queue is read while in exception mode, the nat
pending floating point operation in the queue will be stored. The FSR.QNE bit
should be checked before each store to identify the last valid queue entry.

Viking implements deferred floating point exceptions. Any floating point excep­
tion will remain pending until another floating point operation is requested, at
which point the pending exception will be reported.

If an exception occurs in txlJCtly the same cycle in which a new floating point
instruction is being issued, the exception will remain pending until the next float­
ing point operations is iSSUed. If the new floating point insauction created a
dependency with other instructions in the floating point queue, the exception will
be reported immediately. This situation will also add one additional cycle to the
execution time· of the previous operation.

The presence of processor pipeline hold conditions (particularly from data cache
misses) ·can cause the acceptance of a floating point exception to be delayed.

Viking will report exceptions immediately to instructions which are dependant on
the result of the instruction which created the exception. Otherwise. the excep­
tion will be reported to a later floating point operation.

A Sequence_Error win be reported, and recorded in the FSR when a new floating
point request is issued while the FPU is in exception mode. The exception wil be
reported to the instruction causing the sequence error.

Viking ignores the non-standard mode bit in the FSR. The FSR.NS bit can be read
or written. but has no effect on floating point execution.

The FsMULd (Floating point multiply single. produce double result) operation is
fully supported by Viking.

Integer multiply operation is more completely defined in section 4.4.1 -Inuger
Multiply (IMUL)

Since integer multiply usts floating point logic. execution of integer multiply
operations affects the timing of normal floating point operations. Integer multi­
ply operations will only start if the floating point queue is empty. or if the FPU is
in exception mode. Nonnal floating point operations will not resume until the

.§!l,.!! Revision 2.00 of November 1. 1990

68 TMS390ZS0 - Viking User Documentation

4.6.8. Integer Divide

4.7. Instruction Cache

4.7.1. ,Cacheability

integer multiply has completed. Functionally. integer multiply operations do not
affect floating point execution in any way.

Integer multiply operations cannot cause any exceptions.

Integer divide operation is more completely defined in section 4.4.2 - Integer
Divide (IDIV).

Since integer divide uses floating point logic. execution of integer divide opera­
tions affects the timing of normal floating point operations. Integer divide opera­
tions will only start if the floating point queue is empty. or if the FPU is in excep­
tion mode. Normal floating point operations willoot resume until the integer
divide has completed. Functionally. integer divide operations do not affect float­
ing point execution in any way.

Integer divide operations can cause divide_by _zero and illegal_instruction
exceptions, but do not cause any floating point exceptions.

The Viking internal instruction cache is a 20 K-byte physical address cache. It is
organized as a 5-way set-associative cache of 64 sets. The line size is 64 bytes,
divided in two half-lines of 32 bytes.

The Instruction Cache is physically addressed. Virtual addresses are translated by
the MMU before accessing the Instruction Cache. The requirements for a cache hit
are: bits [35:12] of the physical address must match the physical tag and the"
Valid bit of the referenced half-line must be set

The cache is enabled by the IE bit of the MMU control register (see section
4.11.11.1). The cache is disabled at power-on reset (see section 4.3.1) and
remains disabled until the IE bit is set

At power-on reset the contents of the instruction cache are undefined. It is the
responsibility of the software to initialize the Insttuction Cache by resetting the
Valid bits (See section 4.7.6.1 -Instruction Cache Flash Clear).

Most references are CIJCMoble. This implies that they will be stored in the on­
chip caches after they are read in from external memory. The instruction cache
cacbeability is determined as follows:

.!!.!! SlID Microsystems ~ Reviaian 2.00 ofNowmber 1. 1990

[\

Chapter 4 - Viking Programmer's Model 69

Table 4-6 Instruction Cache Cacheability

4.7.2. Instruction Cache
Replacement Policy

Translation Mode IE=O,AC=X IE:: 1, AC=O

Boot Mode
BT=l.EN=X Not Cached Not Cached
MMU Disabled
BT=O.EN=O Not Cached Not Cached

MMuEnabled C=l:Cached
BT=O.EN=l Not Cached

C=O:Not Cached

BT is the Boot Mode bit of the MMU control register.
EN is the MMU Enable bit of the MMU control register.

IE:: 1 , AC=l

Not Cached

Cached

C=l:Cached

C=O:Not Cached

IE is the Instruction Cache enable bit of the MMU control register.
AC is the Alternate Cacheable bit of the MMU control register.
C is the Cache able bit kept in each Page Table Entry.

A limited history LRU Oeast recently used) algorithm with minimal complexity
and fair accuracy is used to detennine which lines in the cache will be replaced
when necessary. The instruction cache maintains a history for each line in the
cache, and a lock bit for all but lineO. These bits reside ~ the set tag. Whenever
a memory reference hits in the cache, the history bit is written to one. At the time
this bit is being written, all the other history bits are checked. If all the other his­
tory bits in the set,-logically ORed with their respective lock bits are already
asserted, then they are all cleared. The result is that all five bits are never set at
the same time, and that the last used entty will always be set When this transi­
tion occurs, the accumulation of history begins again. In this way, a limited
record of the most recently used members of a set can be kept

When an instruction cache miss occurs, the required data is brought jn from
external memory and forwarded to the instruction queue and pipeline. Simultane­
ously. the new instJUctlons are placed in the cache. This requires that some old
information be displaced from the cache. Since the data cache is S-way set ass0-

ciative, there are five lines which may be chosen for replacement

The set tag is examined to evaluate the history and lock bits. The replacement
logic first examines the lock bits.

A line that is locked into the cache is never selected for replacement. Since line
o cannot be locked. if all other entries are locked it will always be selected for
replacement, regardless of the state of the-history bits.

If there is more than one unlocked line, the replacement logic uses the history
bits to determine which line should be replaced. If there is a line with a history
bit that is set to 0, it will be selected as the victim. The ordering of Viking cache
lines starts with the big-enll, hence for the instruction cache it fills starting line 4.
3, 2, I, then O .

• §!l,.!! Revision 2.00ofNovemher 1,1990

70 TMS390ZS0 - Viking User Documentation

Figure 4-2 provides two examples of the replacemeru scheme.

Figure 4-2 Example of Instruction Cache Repillcemem Policy

4.7.3. Snoop Hits and Lock
bits

4.7.4. Instruction Prefetching

MRUMask.: 1 1 0 0 1
LCKMask: 0 0 0 1
Composite Mask: 1 1 0 1 1
Line: 43210

MRUMask: 1 0 0 1 1
LCKMask.: 0 0 0 0
Composite Mask: 1 0 O· I I
Line: 43210

MRU = Most Recently Used - provides a limited history used bits. LCK = Lock
- provides locked lines infomation.

In the first example, based on the composite mask, line 2 is chosen for replace­
ment In the second case, line 3 is chosen. since it is the rightmost available line.
Note again that line 0 can never be locked. This is to ensure that cacheable data
may always be stored in the cache (when the cache is enabled).

This section describes how snoop hits and lock bits may create an unrecom­
mended scenario. It also explains what happens to a locked line in the cache that
gets snoop hit .

A snoop hit to a locked line in Vilcing bus mode will cause the line to be
invalidated, without clearing the lock bits. A CRl, CI, or CW1 in MBUS mode
will also cause the line to be invalidated, without clearing the lock l?its. This
will prevent the addressed cache line from being reused. If that line happens
to be locked. the data will not be removed from the cache.

If a locked line getS invalidated by a snoop hit, that line will never be replaced
(because it is locked). aDd it will never be a cache hit (because it has become
invalid). essentially reducing the number of active cache lines by one.

If a line is to be locked. the programmer must make sure that it will not get
snooped out.

Instruction prefetcbing supplies instIuctions to the InsUuction Queue (lQ). The IQ
provides iDstructiaas for the piJfeline to execute. 1be IQ comprises an 8 word
FIFO sequentillJ instruction queue. and a 4-word target queue. The pipeline can
consume up to 3 insttuctions per cycle from the IQ. Instruction prefetching con­
tinuously mes to fill the IQ with the instJUctions in the execution stream. either

Revision 2.00 ofNcwember 1, 1990

[

4.7.5. Instruction Cache
Consistency

4.7.6. Instruction Cache
Diagnostics" Controls

Chepcer 4 - Viking Programmer's Model 71

from the instruction cache (on a hit) or from memory (on a miss). There is no
separate instruction prefetch buffer. When a en is encountered, prefetching
immediately retrieves the target instructions and places them in the target queue.

A tkmand fetch occurs when the processor needs instructions that are not
currently available in the IQ. This can occur during exceptions, ttaps, CTIs, their
combinations that may alter the execution stream, or straight line accross previ­
ously unreferenced code. Only a tkmmIdfetch can initiate an MMU table walk, or
cause an exception. Instruction prefetching can not initiate an MMU table walk,
nor can it cause an exception. If a required translation is not present in the TLB,
the MMU will wait for a demand fetch before starting a table walk.

Instruction prefetching is always enabled when the instruction cache is on. There
is no explicit control bit Instruction prefetching works the same way in both cc
and MBUS modes. Errors may.occur during prefetching, see section 4.5.7 for
details on prefetch exceptions.

Instruction cache consistency is maintained in hardware. This means that
modifications to instructions are reftected by invalidations in the instruction
cache. 1be invalidations are executed in a finite, deterministic (but system and
state dependent) amount of time. as long as MCNTL.SE (snoop enable) bit is
asserted.

To make sure that a modification to ~ instruction has been effectively performed
and is observable by the issuing processor, a FLUSH insttuction must be executed
(See SPARC Arehitecture Manual). 1be FLUSH instruction forces the execution of
all the pending writes and will also ftush the instruction prefetcb buffer and pipe­
line.1be FLUSH instruction executes synchronously, implying that the Viking
processor is stalled until all previous memory operations are completed. The
instruction which was modified prior to the FLUSH instruction is guaranteed to
execute propedy after the FLUSH has been completed.

Cache consistency transactions use physical addresses. so the Ptags are col)SUlted
for address comparison. 1be instruction cache does not allow writes, so it never
becomes an owner of data. Since the instruction cache never becomes an owner.
it never needs to transmit its contents back to the system bus. All instruction
cache snoop hits are handled by invalidating the appropriate cache entties. This
includes snoop hits generated by t:ran,sactions generated by load and store opera­
tions on the some processor.

In MBUS mode. snoop hits caused by CR operations respond by asserting the MSH_
signal. and do not invalidate.

This section describes low level diagnostic and control interfaces to the instruc­
tioncache.

..

.§!l,.!! Revision 2.00 of November 1. 1990

72 TMS390ZS0 - Viking User Documentation

4.7.6.1 Instruction Cache Flash
Clear

4.7.6.2 Instruction Cache Tags

ASI=Ox36 - Instruction Cache Flash Clear.

The entire instruction cache can be invalidated, or all the Lock bits can be
cleared, by issuing a store alternate with the ASI value Ox36. The store must be a
word operation, all other data sizes provoke a data_access_exception. The data
issued by the store operation is ignored. The most significant bit of the address
determines the type of operation.

The Address format is:

Reserved
31 30 o

MRU = Most Recently Used bit, indicates history. IfType=O, all Valid and MRUs
bits are cleared in the Ptags and Stags respectively.IfType=l all Lock bits in the
Instruction Cache Stags are cleared. All reserved bits are ignored, but should be
set to zero. Flash clear operations should always be used before enabling the
instruction cache.

ASI=OxOc - Instruction Cache Tags

Instruction cache tags are accessible to read and write using ASI value OXOC. This
direct access capability is provided mainly for diagnostic purposes.

A physical tag (Ptag) is associated with each cache line and the set rag, Stag, is .
associated with each set The Ptags and the Stags are accessed as double-words.
All other data sizes provoke a data_access_exception. The state of the cache tags
is not affected by watchdog or hardware reset

The tags are addressed as pairs, since each instruction cache line has both a Ptag
and Set tag. The Address format is:

T Rsvd Line Rsvd Set Rsvd 000
3130 29 2826 2S 12 11 6 S3 2 0

Rsvd ReselVed. These bits are ignored.

Set Selects which oftbe instruction cache's 64 sets is referenced ..

Line Selects one of the 5 lines in a Set (04). Line 5-7 generate
data_access_exception.

T Type of tag: Stag (1'=1) and Ptag (T=2), while T=O orT=3 gen­
erate data_access_ exception. Tags may only be accessed as a dou­
ble word operation - all other data sizes will result in
data_access_exception.

The Ptag format is:

Reviaioll2.00 of November I, 1990

."l_ .

[)

4.7.6.3 Instruction Cache Data

Chapter 4 - Viking Programmer's Model 73

Rsvd Vbits Rsvd Paddr

63 58 5756 55 24 23 0

The various bit fields have the following meanings:

Paddr: Physical Address bits [35:12).

Rsvd: Reserved. Read as zero and ignored on a write.

Vbits: Valid bits for the two half-lines. Bit 56 is the valid bit for the low­
order (A[4]=O) 32-byte half-line and bit 57 is the valid bit for the
high-order 32 byte half-line. These bits indicate if the correspond­
ing half-line is valid. When these bits are cleared, the coments of
the corresponding sub-block have no meaning. If at least one of
the two bits is set, the selected Ptag is valid. When they are both
cleared. the Ptag has no meaning. At power-on reset (see section
4.3.1) both valid bits are undefined.

The Stag format is:

Rsvd MRU Rsvd I LCK I
63 13 12 8 7 5 4 0

The various bit fields have the following meanings:

Lock: Lock bits. There is.one Lock bit per line which can be used to "pin" a
block. iQ,side the cache. The position of the bit determines to which line
it is associated With. BitlO) is fixed to zero. and ignores write. Bit[1-4]
lock Line[1-4] respectively. When a Lock bit is set to one, the
corresponding line will not be displaced by the replacement algorithm.

MRU: Most Recently Used. This bit field indicates which line of the set has
been used the most recently. The position of the bit in the 'field deter­
mines to which line it is associated with. Bitl8-12] correspond to
Une[0-4] respectively. This bit field is updated by the hardware
'replacement algorithm and is used to select a victim when necessary.

Rsvd: Reserved. Read as zero and ignored on a write.

ASI=OxOd - Instruction Cache Data.

Instruction cache data is accessible in read and write mode with the ASI value
OxOd. This direct access capability is provided mainly for diagnostic purposes.
The lines are only accessed as double-words. Other data sizes provoke a
data_acces5_exception. Instruction cache data is not affected by watchdog or
hardware reset. Flash clear does not affect insUuction cache data. The Address
format is: ..

Sun Miaosystema PzopIiewy Revision 2.00 of November 1. 1990

74 TMS390ZS0 - Viking User Documentation

4.8. Data Cache

4.8.1. cc and MBUS Modes
(Write-Through and
Copy-Back)

I Rsvd Line Rsvd Set DblWrd 000
31 29 28 26 25 12 11 6 5 3 2 0

Rsvd Reserved. These bits are ignored.

Line DesignateS which of the instruction cache's 5 lines (0-4) is refer­
enced. Ifline 5-7 is requested. a data_access3xception is gen­
erated.

Set Selects one of 64 sets of the cache.

DblWrd Selects the double word within the cache line.

The Viking internal data cache is a 16 K-byte, physical address cache. It is organ­
ized as a 4-way set-associative cache of 128 sets. The line size is 32 bytes. 1bere
is no sub-blocking.

The data cache is physically addressed. Virtual addresses are translated by the
MMU before accessing the data cache. The requirements for a cache hit are: bits
[35:12] of the physical address must match the physical tag bits [23:0] and the
valid bit must be set.

The cache "is enabled by the MCNTL.DE bit (See section 4.11.11.1). The cache is
disabled at power-on reset, and remains disabled until the DE bit is set.

At reset the contents of the data cache are 1Dldefined. It is the responsibility of the
. software to initialize the. data cache by resetting the valid bits (using a flash

clear). After a Watchdog Reset the contents of the data cache are unmodified.

The MB bit inMMU Control register (MCNTL.MB) is a read-only indicator.of
whether Viking is operating in CC or MBUS mode. (See section 4.11.11.1). This
bit is determined by the state of the CCRDY_ pin at reset. When Viking is in CC
mode, the data cache operates in a write-through fashion. In MBUS mode, the data
cache operates as a copy-back cache with write allocation.

In CC mode, all stores are immediately written to the store buffer, and the store
buffer will send them out to memory (written through) as soon as resources are
available, and the data cache does not write allocate. (A write miss does not
cause a read to occur before the write is completed.)

In MBUS mode, cache lines that have been modified by the processor are written
back to memory only when ~ary (due to replacement or snoop reads). In
this mode, the data cache operates with write-allocation, when a store miss
occurs, the data cache willl110cate a line, bring in the missing data from
memory, and write that data intb the cadle line.

llevilion2.00ofNovember 1.1990

[

4.8.2. Cacheability

Chapter 4 - ViJcing Programmc:J', Model 75

Data cacheability is determined according to table 4-7 below. Data rewmed from
MMU table walk references will never be cached internally, although they may
appear in the internal cache after having been referenced by page table manipula­
tion software. In this case, the coherence protocol will invalidate the internal
copy. In MBUS mode, however, reads and writes initiated by the table walk
hardware do not snoop the data cache, hence software must never allow page
tables to be cacheable, to ensure consistency. See section 4.11.11.1 for descrip­
tion on page table cacheability, table walk access, etc.

Impottant Note:
In MBUS mode, page tables must be accessed through non-cacheable
memory space to ensure consistency. In CC mode, page tables should
be accessed using cacMoble space, to improve performance.

In MBUS mode, the MCNTL.TC bit should be set to zero. In cc mode,
the MCNTL.TC bit should be set to one.

Table 4-7 Data Cache Cacheability

4.8.3. Data Cache
Replacement PoUcy

Translation Mode DE=O,AC=X DE=I,AC=O
MMU Disabled
BT=X, EN=O Not Cached Not Cached
MMuEnabled C=I:Cached
BT=X,EN=l Not Cached

C=O:Not Cached
MMU
Transparent Not Cached Not Cached

BT is the Boot Mode 'bit of the MMU control register.
EN is the MMU Enable bit of the MMU control register.
DE is the data cache enable bit of the MMU control register.
AC is the Alternate Cacheable bit of the MMU control register.

DE=l, AC=l

Cached
C=l:Cached

C=O:Not Cached

Cached

C is the Cacheable bit kept in each Page Table Entry. X is don't care

Generally, references are non cacheable when the data cache is disabled. When
the cache is enabled, the C bit from the MMU controls cacheability. For' 'spe­
cial" accesses (like MMU passthrough/bypass transactions), which do not have a
corresponding C bit, the AC (alternate cacheable) bit is used to determine cachea­
bility. For MMU table walk references, the TC (table walk cacheable) bit will indi­
cate external cacheability, since table walk data is never cached intemally.

A limited history LRU algorithm is used to determine which lines in the data
cache will be replaced when necessary. The data cache maintains a history and
lock bit for each line in the cache. 'These bilS reside in the set tag. Whenever a
memory reference hilS in the cache, the history bit is written to one. At the time
this bit is being written, all the other history bilS are checked. If all the otMr

• !!I,.!! Revision 2.00 ofNowmber 1, 1990

76 TMS390Z50 - Viking User Documentation

history bits, logically ORed with their respective lock bits are already asserted,
then they are all cleared. 1be result is that all four bits are never set at the same
time, and that the last used entry will always be set. When this transition occurs,
the accumulation of history begins again. In this way, a limited record of the
most recently used members of a set can be kepL

When a 1D instruction demands data that is not in the data cache, that data is
brought in from external memory and forwarded to the instruction pipe. Simul­
taneously, the new data is placed in the cache. 1bis requires that any old data be
displaced from the cache. Since the data cache is 4-way set associative, there
will be four choices for which line to replace.

1be set tag is examined to evaluate the history and lock bits. 1be replacement
logic first examines the lock bits. Since line 0 cannot be locked. if all other
entries are locked it will always be selected for replacement, regardless of the
state of the history bits.

If there is more than one unlocked line, the replacement logic uses the history
bits to detennine which line should be replaced. If there is a line with a history
bit that is set to 0, it will be selected as the victim. 1be ordering of Viking cache
lines starts with the big-end. hence for the data cache it fills Slatting line 3, 2. 1,
then O.

4.8.4. Snoop Hits and Lock See section 4.7.3 - Snoop Hits and lLJck bits
biti

4.8.5. nata Cache Consistency In a multiple processor system a mechanism must exist to keep local caches COIl­

sistent with each other and with main memory. 1be Viking processor uses a pro­
tocol that is implemented largely in hardware to achieve this. Pan of this proto­
col involves snooping the Viking address bus. All addresses that are snooped are
compared with the cache tags in the instnIction cache and the data cache. A
snoop hit occurs if the addi-ess pn:sented on the bus matches the physical address
tag in the appropriate cache entries (and MCNTL.SE is enabled).

The action taken on a snoop hit depends on whether the data cache is operating in
MBUS or CC mode. 1be purpose of snooping is to make sure that the contents of
the data cache are consistent with external caches and main memory. In CC mode.
preserving this consistency is fairly simple. All that bas to be done is to invali­
date an entry in the cache if some other processor writes to this location. In MBUS
mode, the actions taken on a snoop hit are more complicated, including IeSpOnd­
ing to the bus transaction with the CUJrent cache contents. Both the data cache
aDd 1be store buffer snoop for incoming ttansactions that request data invalida­
tion. 1be data cache responses on external transactions are listed in the follow­
ingtable:

..

ReviIiaG 2.00 of November 1, 1990

Chapter 4 - Viking Programmer's Model 77

Table 4-8 Data Cache Snoop Mechanism (MBUS mode)

External Transaction Being Snooped Response in Cache Resulting Action

R,W

CR,CRI,CI,CWI

CR
CR

CR
CR

CRI,CI,CWI
CRI,CI,CWI

CRI
CWI,CI

CRI
CI,CWI

4.8.6. Data Cache Diagnostics
and Control

4.8.6.1 Data Cache flash Oear

Don't Care Noactian
Miss No action
Hi~notowned,not~ Set shared bit
Hi~ not owned, shared No action

Hi~ owned, not shared Copy out data, set shared bit
Hi~ owned, shared Copy out data

Hi~notowned,notshared Invalidate entry

Hit. not owned. shared Invalidate entry

Hi~ owned, not shared Copy out data, invalidate entry
Hi~ owned, not shared invalidate entty

Hi~owned.~ Copy out data, invalidate entty

Hi~ owned, shared invalidate entty

CR=Coherent Read; W=Write (non-coherent);
CRI=Coherent Read and Invalidate; R= Read(non coherent)
CWI=Coherenl Write and Invalidate; CI=Coherent Invalidate
(Refer to the SPARCMBUS Specification for definitions of these terms).

Table 4-8 shows the responses of the data cache to various MBUS transactions
depending on the state of the line in the cache that is accessed. This status is held
in the cache tag in the skaT~d and dirty bits (Note: the ditty bit being set indicates
ownership. dirty bit is another name for owMd bit). The skaTed bit is set in the
cache tag if the data is also present in another processor's cache. The dirty bit is
set if the data has been modified by the processor, and the changes have not yet
been written out to memory. The dirty bit will only be set if the cache is inMBUS
mode.

This section describes low-level diagnostic and control operations for the data
cache.

ASI=0x37 - Data Cache Flash Clear.

The entire data cache can be invalidated (valid bits cleared), or all the Lock bits
can be c1eaJed, by issuing a store alternate with the ASI value 007. The store
must be a wold operation. all other data sizes cause a data_access_cxception. The
data issued by the store operation is ignored. The most significant bit of the
address determines the type of operation.

The AddIess format is:

I Type I
31 30 o

Revision 2.00 of November I, 1990

78 TMS390Z50- ViJcing User Documentation

4.8.6.2 Data Cache Tags

IfType=O, all valid and MRU bits are cleared in the Ptags and Stags. HType=l all
Lock bits in the data cache Stags are cleared. All reserved bits are ignored, but
should be zero.

ASI=OxOe - Data Cache Tags.

The data cache tags are accessible in read and write modes via the ASI value
OxOe. This direct access capability is provided for diagnostic purposes.

The Ptags and Stags are accessed as double-words. Other data sizes generate a
data_access_exception. The Stale of the cache tags is not affected by watchdog or
hardware reset. Flash clear operations should always be used before enabling the
data cache.

A physical tag (Ptag) is associated with each line, and a set tag (Stag) is associ­
ated with each set The Address fonnat is:

--I T Rsvd Line
2726

Rsvd
2S 12

Set
11 S

Rsvd 1 000 I
3130 2928 43 2 0

Rsvd
63 S7

T: Type of tag: Stag=l, Ptag=2. Type 0 and 3 generate
data_access_exception. Tags may only be accessed as a double
word operation - all other data sizes will result in
data_access_exception.

Rsvd: _ Reserved. These bits are ignored.

Line: Selects which of the data cache's four lines (0-3) is referenced.

Set: Indexes into the tag array of the cache to select one of the 128 sets.

The Ptag format is:

Valid I Rsvd I Dirty Rsvd Shared Rsvd Paddr
S6 SS 49 48 47 41 40 3924230

The various bit fields have the following meanings:

Rsvd:

Valid:

Dirty:

Reserved. Read as zero and ignored on a write.

Valid bit. This bit indicates that the line and its associated tag are
valid. When this bit is cleared, the tag and the data contained in
the line have no meaning. At reset valid bits are undefined.

Dirty. This bit indicates that the line bas been modified by one or
more writes. If the cache is in write-back mode and this bit is set,
the line is copied"back into main memory (or a second-level cache)
when it is displaced.

Sun Microsysfems Proprieury Revision 2.00 of November 1.1990

'--

4.8.6.3 Data Cache Data

Chapter 4 - VWng Programmer's Model 79

Shared: Shared. This bit indicates tlW the line is "shared" by the cache.
Thus, writes to this line must be propagated to memory.

Paddr: Physical Address bits [35:12].

The Stag format is:

Rsvd MRU Rsvd LCK

63 12 11 8 7 4 3 0

The various bit fields have the following meanings:

Lock: Lock bits. 1bere is one Lock bit per line which can be used to
"pin" a block inside the cache. The position of the bit determines
the block it is associated with. Bit[O] is fixed to zero, and ignores
write. Bit[I-3] lock Linell-3] respectively. When a Lock bit is set
to one the corresponding line will not be displaced by the replace­
ment algorithm.

MRU: Most Recently Used. This bit field indicates which line of the set
has been used the most recently. The position of the bit in the
field determines the block it is associated with. Bitl8-lt]
correspond to Line[0-3] respectively. This bit field is updated by
the replacement algorithm and is used to select a victim when
necessary. In the usual mode, there is only one bit set to one.

Rsvd: Reserved. Read as zero and ignored on a write.

ASI=OxOf - Data Cache Data.

Data in the data cache are accessible in read and write modes via the ASI value
OxOf. This direct access capability is provided to assist diagnostics. flash clear
does not affect cached data. 1be lines are accessed as double-words only. Other
data sizes provoke a data access exception.

1be Address format is:

Rsvd Line Rsvd Set DblWrd ()()()
31 28 27 26 25 12 11 S 4 3 2 0

Rsvd Reserved. These bits are ignored.

Line Designates which of the daia cache's four lines (0-3) is referenced.

Set Indexes into the data may of the cache to select a set.

DbIWrd Selects the double word within the cache line . ..

• §.!I,.!! Sun MicIoIyItems Proprieury Revision 2.00 of November 1. 1990

80 TMS390ZS0 - Viking Usa'Documentation

4.9. Data Prefetching

4.10. Control Space Access

Viking supports data prefetching primarily to increase the perfonnance of nwner­
ical floating point intensive applications. Usually, these operate on large sequen­
tial data mays, which easily overflow Viking's 16 KByte on-chip data cache.
Prefetching from these arrays greatly reduces on-chip cache misses in these itera­
tive programs. This effect, when combined with store buffer block collection can
increase perfonn8IlCe of certain applications significantly.

Prefetching is enabled in software, by setting the MCNTL.PF bit The prefetcher
can be used only in CC mode. While in MBUS mode, the MCNTL.PF bit is ignored.

Once enabled, the Viking prefetcher monitors data cache load misses. Consecu­
tive load misses to two consecutive cache blocks will generate an additional read
access to prefetch the next block. TIle prefetch will not be issued until the store
buffer is empty. Prefetched data is scored in the 32-byte prefetch buffer. If subse­
quent loads hit the prefetch buffer, data is forwarded from the buffer with no
delay, and another prefetch is issued. The next prefetch is only issued when all
doublewords in the current buffer have been referenced (the order is not
significant). All prefetching is based on physical addressing .

. In general, the prefetcher is effective when data is being referenced by a series of
LD or LDD instructions (nominally 4 LDDs), followed by a series of ST operations.
TIle series of store operations allows the prefetch to complete. TIle ST operations
accumulate in the buffer and become write-buDt transactions on the bus, which
provides additional perfonnance improvement.

Although all prefetched data is cacheable, it is not cached in Viking's data cache.
This can avoid cache thrashing and also simplifies OperatiOIL As a result, the pre­
fetch buffer maintains coherence of the fetched block. To accomplish this, the
prefetch buffer snoops Viking's write misses as well as off-chip system 'Yrites. If
either hits the prefetcbed line, the line is invalidated. As a result, the prefetcher
cannot contain any modified infonnation. In addition, prefetch addresses are
matched with the store buffer before being issued, as for all read accesses. The
data cache is also checked, to avoid prefetching data that's already present on
Viking.

Prefetches cannot cross page boundaries. Although large data arrays will prob­
ably appear as large contiguous memory blocks, this cannot be guaranteed in
physical memory. Inadvertent block prefetches from non-cacheable I/O space
must be prevented. However, the prefetcher will usually encounter only one
cache miss before resuming prefetching in this case, since it will have correctly
guessed the miss address when the pages are contiguous.

Tbe prefetdl buffer is not directly accessible through diagnostic AS! space.

ASIOx02 allows access to the information in an external device, nominally an
external cache controller. The information may include cache controller (CC)
.egisters, the external cache and its directories. Tbese accesses are non­
cacbeable, regan1less of MCN11...Ac indication. Examples of address generation
and data accessed can be found in the Viking Cache Controller Specification
document.

Revision 2.00 of Nowmber 1. 1990

4.11. Memory
Management Unit
(MMU)

4.11.1. Address translation

Chaplet 4 - VUcing Programmer', Model 81

Data references to this control space access may be any size. External system
hardware is responsible for proper data alignmenL Any faults will be reponed as
data_access_exception.

1be Viking processor implements a 64~ntry fully-associative MMU compatible
with the SPARe Reference MMU (SRMMU or MMU) Specification. 1be set of 64
entries is called the Page Descriptor Cache (PIX:) or Translation Lookaside
Buffer (TI..B).

1be MMU translates 32-bit virtual addresses into 36-bit physical addresses. The
mapping is done in units of 4 K-byte page, 256 K-byte segment, 16 Mbyte region
or 4 G-byte contexL

1bis section briefly describes the software view of memory mapping using the
Viking MMU. For background, refer to the SPARe Reference MMU Specification in
the SPARe Architecture Manual.

Virtual and physical addresses are composed of an offset within the page and
respectively a Virtual Page Number (VPN) or a Physical Page Number (PPN).

The MMU translates 32-bit virtual addresses and 16-bit context numbers into 36-
bit physical addresses by accessing up to four levels of page tables in memory.
Normally, this translation is cached in the on-chip 64~ntryTLB. When the trans­
lation entry is missing from the TLB, the MMU table w~ hardware automatically
retrieves the translation from the page tables in memory. Figure 4-3 desaibes the
full structure of these page tables .

..

82 TMS390ZS0 - Viking Us« Documentation

Figure 4-3 Address Translation Utilizing Four Levels oj Page Tables

I CcmIG1 Talic I
Nnt.cr It.-,

Ic...al It.-t+

Virtual Address \ t.
utu a2e um V· al P N ber

Index I I Index 2 I Index 3 I Offset I
31 24 23 1817 12 11 0

Context Table

Root Pointer
Level 1 Table

i.....+ PTP
Level 2 Table

...... PTP
Level 3 Table

i.....+ PTE -

Physical Address

+ ,
Physical Page Number Offset

35 1211 o

Each virtual address space is identified by a context number which is kept in the
Context register. Virtual addresses kept in theTLB are "tagged" with a 16-bit
Context Number. 1be effective size of the context register is variable between 10
and 16-bits. This allows the size of the page tables to be reduced. See section
4.11.11.2- Context TlIble Pointer Register (MCTP) and Context Register (MC)
for funher details.

The page tables can contain Page Table Pointers (PJ1t) or Page Table Entries
(PTE). A PrE is distinguished from a PJ1t by the two low order bits of the table
entry (see the ET field description below). A PJ1t contains the physical address of
the next page table level while a PrE contains the physical address of the page
with its access rights.

Ileviaiaa 2.00 of November 1. 1990

[
Chapter 4 - Viking Progranune:r's Model 83

The Page Table Pointer format is:

PTP o 1

31 2 1 0

The value of I in the least significant two bits indicates that the entry type (ET) is
a page table pointer.

Important Note:
The page tables must be aligned on boundaries equal to their sizes.
Low order bits of the YJ'P field must be zero. PTPs must point to tables
aligned to their natural size.

The Page Table Entry format is:

PPN C M R ACC ET

31 87654210

The various bit fields have the following meanings:

PPN~ Physical Page Number. High order 24 bits of the 36-bit physical
address. If the PrE maps a 256 K-byte segment, 16 M-byte region, or4
G-byte context. the lower 6, 12 or 20 bits respectively of the PPN are
ignored.

C: Cacheable .. Ifthis bit is set to one, the page is cacheable in the Viking
internal (and external) caches. If it is zero, the page is not cacheable.
Vilcing asserts the CCHBL_ pin for transaCtions involving vinual
addresses with the C bit set

M: Modified. When a page is accessed for writing, and the modified bit is
not set. the MMU sets the modified bit in both the 1l..B, and the in­
memory page table entry.

R: Referenced. This bit is set to one by the hardware when the page is
accessed (on a read or a write) and the PrE is missing from the Page
Descriptor Cache. Both copies are set

Imponant Note:
See section4.11.3.1-MMURIt.M Updates and Section 4.11.3-
Referenced and Modified bits for a description of the interaction
between hardware and software access to and modification of the refer­
ence and modified bits .

..
ACC: Access Permissions. This bit field is encoded as follow:

+§!IJ! Reviaion 2.00 ofNovcmber 1.1990

84 TMS390ZS0 - Viking User Documentation

4.11.2. Linear Mapping

Permissions
ACC User Supervisor

0 Read Only Read Only
1 ReadIWrite ReadlWrite
2 ReadlExecute ReadlExecute
3 ReadlWrite/Execute Read/Write/Execute
4 Execute Only Execute Only
5 Read Only ReadlWrite
6 No Access ReadlExccute
7 No Access ReadlWrite/Execute

The MMU checks if an access is authorized according to the mode in which the
instruction is executed (i.e. user or supervisor) and the type of access (instruction
or data reference). If there is a violation of the permissions a data or instruction
access exception is incurred. For more details on ACC vs AT (Access Permis­
sion and Access Type) refer to 4-12 - Access Permission liS Access Type.

ET: Entry Type. This field is used to distinguish a PrE from a PTP and to
indicate if a table entry is valid. 1be encoding is:

ET Entry Type
0 Invalid
1 Page Table Pointer
2 Page Table Entry.
3 Reserved

1be MMU suppons mapping sizes larger than the page size. This is done by
configuring an entry in the Context Table. Level 1 Table or Level 2 Table as a
PrE (ET=2).

Jlcvision 2.00 of November 1. 1990

~.

\

Chapter 4 - ViJcing Programmer's Model 8S

If a PTE is found in the Context Table, the virtual to physical mapping is done as
indicated below for a 4 Gigabyte context

Figure 44 Address TranslaJion With Maximum Page Size

Virtual Address

I Offset I
31 0

I CcmtcU Table I Context Table
~R"""I

ICaaiaI R"'~ PTE -
,

~ 4

I PPN I Offset in 4 G-byte Context
3S 3231

Physical Address o

..

R.evision 2.00 of November 1. 1990

86 TMS390ZS0 - Viking User Documentation

If a PTE is found in a Level I Table. the virtual to physical mapping is done for a
16 Megabyte region.

Figure 4-5 Address Translation With 16 MB Page

Virtual Address

Index 1 I Offset I
31 2423 0 I CanlUl Table I Context Table

PaiJIIa' Jlegisla'

ICcInIAI Jlep-I.. IRnnt
Level 1 Table

..... PTE

t
I PPN I
35 24 23

Offset in 16 M-byte Region
Physical Address o

Revision 2.OOofNovembcr 1.1990

[

[j

Chapcer 4 - Viking Progranuner's Model 87

If a PTE is found in a Level 2 Table, the vinual to physical mapping is done for a
256 Kilobyte segment

Figure 4-6 Address Translation With 256 KB Page

I CClllteU Table I
PIIiIIIcI' Il..p_j

ICaalat 1lcp1cr~

4.11.3. Referenced and
Modified bits

..

Virtual Address

Index 1 I Index 2 I Offset J
31 24 23 1817 0

Context Table

[Root
Level 1 Table

...... PTP
Level 2 Table

--. PrE -

t
I PPN I Offset in 256 K-bytes Segment I
3S)IS H.

Physical Address 0

Whenever the MMU finds a PTE in an entry, it stops the table walk and stores the
ttanslation in the TLB. The Vilcillg MMU Page Descriptor Cache is implemented
by a CAM (content addressable memory) anay which can simultaneously match
the address tag fields corresponding to the four mapping sizes defined by the
SPARe Reference MMU.

The referenced bit (R) of a PTE is set to one whenever its page is accessed by the
MMU during miss handling or when an entire probe is initiated. If the referenced
bit is already set. it is not set again.

The Modified bit is checked when the PTE is accessed as a result of the execution
of a store instruction. If the Modified bit is dear in the MMU entry. it is set to one
and the copy of the PTE in main memory is also set to one.

,
The Referenced and Modified bit must be updated in main memory (e.g. shared
memory image) in a manner which guaranteeS their consistency in a multiproces­
sor environment For a discussion of possible algorithms see section 4.5.S -

.§!l,.!! Revision 2.00 of November 1, 1990

88 TMS390ZS0 - VaiIIg User DocumentatiQn

4.11.3.1 MMU R&M Updates

4.11.4. TLB Replacement
Policy

Page Table Memory Operations.

Occasionally. the MMU must modify a Page Table Entry (PTE) in memory. as
memory pages are referenced or modified by Viking. These writes are required
by the reference MMU architecture to be synchronous; thus. they block the execu­
tion pipeline. Also. they also force a Store Buffer copy-out. to preserve the
sequence of writes. This copy-out is initiated when the memory reference is
present at the EO stage of the execution pipeline.

If an exception occurs on the Store Buffer copy-out caused by an R&.M update.
the R&.M update operation is not completed. A data store exception is taken.
which disables the Store Buffer at once. The Load. Store. or fetch which caused
the R&M update. will be restarted when the CPU returns from the Store Buffer trap
handler; this in tum will eventually restart the R&.M update.

The table walk hardware within Viking will use a standard write operation when
setting both referenced and modified bits in memory. If only the referenced bit
must be set. atomic memory transactions will be used to ensure that another pro­
cessor is not simultaneously attempting to set both bits. If the processor did not
use this protection. it would be possible to overwrite an PTE with both R and M
bits set. with another updated PTE with only the R bit set. This is clearly illegal
and is prevented by using SWAP transactions to do R-bit only updates. Note also
that the only combinations that Viking will ever write back to the PTE are
(R=l,M=O). and (R=1,M=1).

Using SWAP forR-bit updates is essentially the only page table consistency algo­
rithm implemented in hardware. All other cases of page table consiStency must
be implemented in software as described in section 4.5.5 - Page Table Memory
Operations.

The Memory Management Unit has 64 TLB entries. The replacement logic is used
to select a TLB entry to replace when a new PTE is brought in to the MMU for a
TLB miss. If one or more of the 64 entries is invalid. then the replacemelit logic
selects this entry. starting its selection from entry '0' and progressing to entry
'63' in case of multiple invalid entries. When all the entries are valid the replace­
ment logic selects the entry to be replaced using the infolDlation available in the
used bits. The algoritlun used is a limited history LRU policy.

Each TLB entry has a used bit Initially when a demap-all operation is done to
invalidate all TLB entries all used bits get cleared. The used bit is then set for any
valid 11.8 entry which has a 11.8 hit When all entries have their used bits set.
then all used bits, except the last one to be set and those which are locked, are
cleared. This is the case where all past history is lost. To select a entry to be
replaced (when all TLB enuies are valid) the first entry starting from entry '0' for
which the used bit is not set will be chosen. This represents the least recently
used entry (based on the limited history available, since a n.B hit causes the used
bit to be set). ..

When a entry is invalidated or flushed from the n.B its corresponding used bit is
clemd. In addition to the used bits, the replacement policy also checks the

.§!!!! lteviJiDn 2.00 of November 1.1990

[/

)
/

4.11.5. Other Cached Entries
(Root and Level2 PTPl
cache)

. Chapter 4 - Viking Programmer's Model 89

corresponding lock bit (one perTLB entry). If a lock bit for an entry is set. then
regardless of the used bits that entry will never be replaced. An invalid entry with
its lock bit set can still be replaced. and the newly written entry becomes locked,
since the lock bit remains set. If all entries have their lock bits set no replacement
takes place and the newly brought in PTE is not stored in the TLB. Since a transla­
tion finishes only after a table-walk operation has completed. this causes an
infinite table-walk loop. Thus one should never lock all the entries in the TLB.

Important Notes:
Setting all lock bits in the TLB can lead to deadlock and is not recom­
mended.

Allowing the lock bit to be set for invalid entries is also not recom­
mended. It can lead to inconsistent operation. Since these entries
remain locked after a new entry is written into them by a table walk,
that entry will remain in the TLB. even after a DeMap operation which
should invalidate it.

It is recommended that lock bits be set only in conjunction with expli­
cit writes to that TLB entry by supervisor software. Note also that the
lock bits are cleared by hardware reset.

To reduce the time required for each table-walk to ac'cess the PTE's, the Viking
MMU caches two special pointers. PI"PO (PTP level 0) and PrP2 (PTP level 2).

J.7l'PO is the root-painter (level-O pointer) for the process in execution. On every
context switch this cached entry is invalidated. and the first table-walk for the
new process will be used to cache in the new root pointer. Cacheing the root
pointer saves the MMU from perfonning a level of table walk for each TLB miss
for that particular context. If a context were to execute for a long time this could
mean a considerable saving of cycles. The root-pointer entry is qualified by a
valid bit and implicitly cOlTe5ponds to the context in the Context register. The
valid bit for this entry is cleared on context register write. context table pointer
write, demap-all and demap for a context which matches the context register
value. .

To optimize MMU table-walk, the Viking MMU also caches one level-2 PTP. A TLB
miss with.this level-2 PTP would require just the new level3 PTE to be fetched
rather than the entire three level table-walk fetch operation. A second level PTP
requires a virtual tag and a valid bit for this cached entry, The context is impli­
citly assumed to be the value of the context register. This second level cached
PTP entry is used only for table-walks, R & M bit updates and probe-entire opera­
tions. Other operations still go through the three level table-walk mechanism.
The valid bit for1his entry is cleared on context register write, context table
pointer write, on a table-walk operation not using the cached PTP (in this case a
new entry will be writteil), demap-all. demap for a context which matches the
context register value. and level-l and level-2 demaps for which this PTP has a
match. The PTP entry is cached on a new table-walk operation and is not cached
if the level-2 entry is a PTE.

Sun Microsystems Proprieta'y Revision 2.00 of November 1. 1990

90 TMS390ZS0 - Viking User Documentation

4.11.6. Hit Criteria

4.11.7. MMU Probe and
DemaplFlush

4.11.7.1 MMUProbe

The criteria for a hit in the MMU are defined as follows:

MappinR Size Matching Criteria
4KB V=1 and VAddr(31:12Lequal and (Ace=6-7 or Contexcequal)
2S6KB V=l and VAddr[31:18Lequal and (ACC=6-7 or ContexCequal)
16MB V=1 and VAddr[31:24Lequal and (Ace=6-7 or Contexcequal)
4GB V=l and ACC=6-7 or Contexcequal

V Addr(31 :xxLequal indicates that the corresponding bit fields of the vinual
address issued by the processor and the virtual address contained in an MMU
Vaddr tag entry match.

ConteXCequal means th,at the contents of the Context register and the Context .
field in the MMU entry match. Note that context is not compared for any page
classified as a supervisor page, by the ACC field being either 6 or 7. In this
manner, supervisor pages are present in all contexts simultaneously.

In all cases, the entry must be valid (V=I).

The ASI value Ox03 is used to invalidate or probe entries in the MMU. An invali­
dation of an MMU entry is also commonly called a flush or a demap. These three
tenns are used indistinctly in this document.

A probe is done with a load alternate while a demap/flush is done with a store
alternate instruction. The data of the load or store alternate is ignored. The
address fonnat for both cases is:

VFPA Rsvd Type Rsvd
31 12 11 10 8 7 0

The various bit fields have the following meanings:

VFPA: Virtual flush or Probe Address. According to the type of flush or
probe not aU 20 bits are significant.

Type: This field specifies the extent of a demap (mapping size) or the level of
the entry probed.

Rsvd: Reserved. These bits are ignored. They should be zeros.

The clifferent types ofMMU probes which C3I) be perfonned and the correspond­
ing returned data are:

SW'l Mic:rosystems Proprie&ary Revision 2.00 of November 1. 1990

Chapter 4-Viking Programmer's Model 91

Type Probe Object Returned Data
o (Page 4 KB) Level 3 Entty Level 3 PTE or 0
1 (Segment 256 KB) Level 2 Entty Level 2 PTr/PTP or 0
2 (Region 16 MB) Level 1 Entty Level 1 PTr/PTP or 0
3 (Context 4 OD) Level 0 Entty Level 0 PTr/PTP or 0
4 (Entire) Level n Entty Level n PTE or 0
5-7 (Reserved)

For all the probe operations the MMU (TLB) is accessed first and if a translation
which complies with the matching criteria is found, the cached PTE is returned.
The PTE is returned in the memory formal with R= 1 and ET=2 since only PTEs
are cached in the Viking MMU. 1be matching criteria for a successful probe in the
MMU are:

Type Matching Criterion
o (page 4KB) V=I & VAddr[31:12] equal & Contexcequal & LVL=3
1 (Segment 256 KB) V=1 & VAddr[31:18Lequal& Contexcequal & LVL=2
2 (Region 16 MB) V=1 & VAddr{31:24Lequal& Contexcequal & LVL=1
3 (Context 4 OD) V=l & ContexCequal & LVL=O
4 (Entire) V=l & Context_equal & .

«V Addr[31:12Lequal & LVL=3)
I (V Addr[~1:18Lequal & LVL=2)
I (V Addr[31:24Lequal & LVL=I)
I (LVL=O»

5-7 (Reserved)

VAddr{31 :xx] _equal means that the corresponding bit fields of the virtual
address issued by the processor and the virtual address contained in an MMU
enttymatch.

Contexcequal means that the contents of the Context register and the Context
field in the MMU entty match.

H the FI'E is not found in the MMU. a table walk is initiated. In this case, the data
returned may not be a FI'E. 'The returned data can be a m or the value 0 if an
error occurs. The error cases are slightly different from the ones which may occur
during a regular table walk when the MMU is processing a miss. 'They are detailed
in the following paragraphs. H an error occurs during a probe table walk, no
exception is taken, but the AT field of the MMU status register is set to I, the Fr

.. field to 1 (Invalid Address) or 4 (Translation error) and the L field is set to the
table level where the error was detected.

For a page probe, the hardware does a table walk and returns the PTE found in the
level 3 table even if this level 3 entty is invalid (ET=O). H the table walk does not
complete correctly because the level 3 entry accessed is not a PTE (ET= I or 3). an
intermediate level entty is not a PI'P (ET = I) or a hardware error occurs the value
o is returned, and the Fr is set to 4. .

.~J! Sun Mierosystems Proprietary Revision 2.00 of November 1. 1991

92 TMS390ZS0 - Viking User Documentl1ion

4.11.7.2 Demap/Flush

•

For a segment or region probe. a PTE (ET=2) or a PTP (ET= 1) is returned from
respectively the level 2 or level I entry even if it is invalid (ET=O). If the table
walk does not complete because the entry accessed is reserved (ET=3). an inter­
mediate level is not a PTP (ET = 1) or an hardware error occurs the value 0 is
returned. and the Fl' is set to 4.

For a context probe the level 0 entry accessed is returned if it is a PTE (ET=2) a
PTP (ET=I) or is invalid (ET=O). The value 0 is returned, and the FI' is set to 4 if
the entry is reserved (ET=3) unless a hardware error occurs.

For an entire probe, the hardware does a regular table walk and returns the valid
PTE found in whichever level table. If no PTE is found because an invalid (ET=O)
or reserved entry (ET=3) is accessed in an intermediate level, the level 3 entry
accessed is a PTP (ET= 1) or an hardware error occurs, a 0 is returned. If an invalid
entry is accessed. the FT field is set to 1 in the MMU status register, in the other
cases the FT field is set to 4.

When an entire probe completes successfully. the PTE accessed is loaded in the
TLB and the R bit is updated if necessary. For all the other probe operations, the
TLB is left unchanged and the R bit is not updated.

Important
Viking generates data_access_exception on probe types OxS-Ox7, and
treats probe types Ox8~identical as types Oxo.:0x7 respectively.

The diffe~t types of demaps and the Objects flushed from the MMU are:

Type Flush Object
0(Page4KB) Level 3 I'l'E

1 (Segment 256 KB) Level 2 and 3 I'l'Es

2 (Region 16 MB) Level 1, 2, and 3 I'l'Es

3 (Context 4 OD) Level 0, 1, 2, and 3 I'l'Es

4 (Entire) AllI'l'Es
s-7 (Reserved)

The bit criteria for an MMU flush are:

..

• !!I,.!! Sun Mic:rosystans Proprietary Revision 2.00 of November 1. 1990

Chapter 4 - Viking Progranuner's Model 93

Type Matching Criteria
o (page 4 KB) LVL:::3 & VAddr[31:12Lequal &

(AcC=6-7 or Contexcequal)
1 (Segment 256 KB) LVL:::312 & VAddr[31:18Lequal &

(Acc=6-7 or Contexcequal)
2 (Region 16 MB) LVL=31211 & VAddr[31:24Lequal &

(ACC=6-7 or Contexcequal)
3 (Context 4 GB) Acc=5-0 & Contexcequal
4 (Entire) None

In a multiprocessor system, distinct processors can hold copies of the same PTE in
their MMUs. Therefore, when a ·portion of a virtual space is demapped, the flush
operation must be applied to all MMUs in the system.

Depending on the system implementation, demap operations may be broadcast
automatically to all processors, or may require explicit software intervention on
all processors to demap the required pages. Viking allows for automatic demap­
ping only when used in cc mode, whether or not this is implemented is system
dependent For example, the Viking cache controller chip (MXCC) implements
system demaps in XBUS mode, but does not in MBUS mode. In direct MBUS
mode, all processors must be interrupted and requested to flush their own TI.Bs
whenever the page table is modified.

Important Note:
Software must guarantee that only a single DeMap operation is in pro·­
gregs at anyone time across the entire system. Inconsistent operation
will result if two DeMaps are received by a processor at anyone time
(including internal DeMap requests).

When an MMU flush has been completed by all processors (either through
hardw~ or software), the following should be true:

All memory references concerning the virtual space(s) mapped by the
flushed PTE(s), that have been issued before the demap must have been
completed.

No MMU has a valid copy of the PTE(s).

All memory references to the PTE(s) itself (themselves) that were
issued before the demap have been completed.

Once the system has reached this state, page tables may safely be modified and
applications allowed to continue •

..

Revision 2.00 of November 1. 199C

94 TMS390Z50 - Viking User Documentation

4.11.8. MMU Transparent
Mode

4.11.9. Address Translation
Modes

4.11.10. No-Fault Operation

The ASI values Ox20-0x2f are used to bypass the MMU for data accesses. The
MMU does not translate the physical address through the Page Descriptor Cache.
The virtual address is translated as follow:

ASI[3:0] ~ Paddr[3S:32], Vaddr{31:0] ~ Paddr[31:0].

Cacheability of these accesses is determined by MCNTL.AC bit. Since these tran­
sactions are completely based on physical memory addresses they can have no
effect on virtual memory components, such as the MMU R&.M bits.

The following table summarizes the different translation modes used by the Vik­
ing processor.

Translation Instruction Fetch Data Access
Mode (ASI=Ox08 or Ox(9) (ASI=OxOa or OxOb)

Boot Mode PA[3S:28]=Oxff, EN=O -> Disabled Mode
BT=1,EN=X PA[27:0]=VA[27:0] . EN= 1 -> Enabled Mode
MMU Disabled PA[3S:32]=OxO, PA[3S:32]=OxO,
BT=O, EN=O PA[31:0]=VA[31:0] PA[31 :O]=vA[31 :0]
MMUEnabled PA[3S: 12] from I'I'E PA[3S:12] from I'I'E
BT=O, EN=1 PA[11:0]=VA[11:0] PA[11:0]=VA[11:0]
MMU . Not Applicable LDAandSTAwith
Transparent ASI=0x20-0x2f

PA[3S :32]=.ASIJ:3:0],
PA[31:0]=VA[31:0]

BT is the Boot Mode bit of the MMU control register.
EN is the MMU Enable bit of the MMU control register.
PA[bit range] are the bits of the physical address.
V A[bit range] are the bits of the virtual address.

The MCNTL.NF bit, when enabled. wms on no-fmdt operation In this mode, most
exceptions generally reponed to the pipeline are disabled. This mode is intended
for use by system software during the processing of exceptions. and during sys­
tem diagnostic functions. The NF bit should never be set during user code execu­
tion.

Any transaction which bas an error blocked by NF will complete. In the case of
load transactions, the destination register will be updated with indeterminate
information In the case of stores, no registers will be updated. and the system is
responsible for not modifying memory.

When operating with NF set, the success or failure of every memory transaction
should be verified by explicitly reading the MFSR fault status register.

In general, all normal memot; exceptions are disabled by NF. There are several
types of exceptions which are not disabled by NF. The exceptions types which
are not disabled are all consideredfatal errol'S which are generally not recover- '"'­
able and should induce error mode. The following exceptions are not disabled by
NF:

Sun Mic:rosysterns Propri-.y Revision 2.00 of November 1. 1990

[

4.11.11. MMU Registers

Chapter 4 - ViJcing Programmer's Model 95

Internal Error
Errors such as multiple tag matches from the caches are considered
fatal internal errors. See section 4.11.11.3.5 -E"or Mode and Inter­
nalE"ors.

Control Space Error

ASIOx09

ASIOx08

Errors reading or writing Viking ASI registers are considered fatal. See
section 4.11.11.3.4 - Control Space Errors

Supervisor instruction fetch errors cannot be disabled by NF, since the
processor effectively has received an error in the instructions it needs
to execute. 1bere is no other source for instructions, an exception must
be generated.

True instruction fetches (explicitly not alternate space read and writes)
to ASI Ox08 (User Instruction space) will cause exceptions to be
reponed. As above, without the exception no instructions could be
executed.

Important Note:
System software is responsible for properly setting and clearing the NF
bit. Improper use of no fault mode can lead to undefined processor
operation

In particular, the NF bit must never be set when returning to user "code
execution.

ASI=Ox04 - MMU Registers.

Accesses to this ASI read and write SPARe Reference MMU control registers.
1bese registers are all 32-bits wide. and are shown in the following table.
Attempts to access them with byte. Halfword, or Doubleword operations will
result in data_atcess_exception Vinual address bits [12:8] are used to select
individual registers, all other bits are ignored and should be O. Any access to
addresses other than defined in the table below causes a data_access_exception .

• sun -,,- Sun Microsystems Proprietary Revision 2.00 of November 1. 199

96 TMS390ZS0 - Viking User Docwnentation

Table 4-9

4.11.11.1 MMU Control
Register (MCNTL)

I Impl
3128

PE

12

MMU Registers

VA[12:8] Description
OXOO Control Register (MCNTL)
OxOl Context Table Pointer Register (McrP)
Ox02 Context Register (CONTEXT)
OX03 Fault Status Register (MFSR)
Ox04 Fault Address Register (MFAR)
Oxl3 read/write Fault Status Register
Oxl4 read/write Fault Address Register
OxlS Shadow Fault Status Register (MSFSR)

The control register contains the general MMU control and status flags. In addi­
tion, it also contains the control flags for the instruction and data caches. The
MMU conttol register is defined as follows:

Ver Rsvd I PF I Rsvd TC AC SE BT
2724_ 23 19 18 17 16 15 14 13

I·MB I SB IE DE PSO Rsvd I NF I ~ I
11 10 9 8 7 6 2 1 0

Impl Implementation number of the Viking chip, it is han:twired and is read­
only. Viking fixes MCNTL.Impl = OxO.

Ver Version IWDlber of the Viking chip, typically a mask number. This field
is hanlwired and is read-only. Viking fixes MCNTL.Ver= OXO. Mask
revs are reflected only in PSR.

Rsvd Reserved. These bits are ignored and read-only.

PF Data Prefetcher Enable. This bit when asserted indicates that the Data
Prefetcher is enabled. This is only meaningful in CC mode. This bit is
ignored in MBUS mode (Data Prefetcher is disabled in MBUS) mode).

Rsvd Reserved. This bit is ignored and read-only.

TC Table walk Cacheable bit When this bit is asserted, references from
MMU table walks are cached in the Viking external cache. When this bit
is deasserted. all table walk accesses are not cached in the Viking exter­
nal cache. Table walk references are never cached internally. For
MBUS mode. TC must be deasserted.

-<r­
I

AC Alternate cacbeaHle bit This bit indicates whether an access is cache­
able or not in the absence of the C bit in the Fl'E due to the MMU being~~ __ _
disabled or in a mode where the Fl'E are not needed for translation. Th\(I

only eXception to this case is the instruction fetches in boot mode -/
which are always non-cacheable. ~ this bit is clear. all memory

Sun Miaosysrems Proprie&lry Revision 2.00 of November 1. 1990

[
Chapt.er 4 - Viking ProgrlllMlel'S Model 97

accesses, except table walking accesses, for which the physical address
is not obtained through a PTE are not cached in the Viking internal
caches and the External cache. If this bit is set to one, those accesses
are cached.

SE Snoop Enable. This bit enables cache snooping on the Viking bus
when set to one. This bit must be set to enable the cache consistency
mechanisms. Assertion of this bit does not affect Store Buffer snoop­
ing nor Data Prefetcher snooping, which are always enabled.

BT

In MBUS mode, both the instruction and data caches will snoop regard­
less of whether they are enabled. This is necessary for maintaining
consistency should any of the caches be disabled after they contain real
data. 1berefore, initialization code should contain a flash clear for these
caches before enabling snoops at power-on reset, so that no garbage
data may reside in the snooping caches. Snooping is controlled by the
MCNTL.SE (snoop enable) bit

Boot Mode. When not asserted indicates normal SPARC reference MMU

operation When asserted, indicates boot mode, and the physical
address generated (for instruction fetches) is formed by adding the
address 0xff0000000 to the lower 28 bits of the virtual address; BT is
asserted high (BT=l is boot mode). Instruction accesses in ~ mode
bypass the Viking internal cache. Data accesses are unaffected by the
boot mode.

PE Parity Enable. If set, this bit enables parity checking (Even Parity) for
each byte of data brought into the chip.

MB MBUS Mode. This bit if set indicates that the data cache is in Copy
Back Mode, else the data cache is in write-through mode. This bit is
read-only, and it reflects the CCRDY_ pin.

SB Store Buffer Enable. This bit if set enables the store buffer operations.

IE Instruction Cache Enable. This bit if set enables the instruction cache.

DE Data Cache Enable. This bit if set enables the data cache.

PSO Partial Store Ordering. When asserted, the memory model is in PSO
(Partial Store Ordering) mode. When deasserted, it is in TSO (Total
Store Ordering) mode.

Rsvd Reserved. These bits are ignored.

NF No Fault Bit When this bit is asserted, faults that occur are ignored
(not reported to the processor) for ASIs Ox08, OxOa, OxOb, 0x20-0x2f,
while the remaining ASIs including ASI Ox09. Viking internals and con­
trol space (ASI Ox02) will take the fault (These latter ASIs are said to
'ignore' the NF bit). Note that regardless of whether/not the fault is
taken, the FSR is always updated.

EN MMU enable. This bit enables or disables the operations of the MMU.
TIle BT bit must be deasserted for the EN bit to indicate a MMU enable

Sun Microsystans Proprietary Revision 2.00 of November 1. 191)

98 TMS390ZS0 - ViJdng User Documenwion

4.11.11.2 Context Table
Pointer Register
(MCTP) and Context
Register (Me)

Figure 4-7

31

I
31

I
35

or disable. thus the BT bit assened over-rides the EN bit for instruction
fetches only. MMU Enable. When this bit is set to one the MMU is
enabled. When the EN=O and BT indicates normal operation the 4 most
significant bits of the physical address are forced to zero and the 32
least significant bits are the 32 bits of the viltUal address. When EN=O
and BT indicates Boot Mode. instruction fetch physical addresses are
fonned according to the rules given above for the BT bit, data fetch
physical addresses are formed as described before.

On power-on reset, all the control bits mentioned above (except BT) are cleared.

The Context Table Pointer (CI'P) is a pointer to the Context Table in physical
memory. The Context Table contains the root page table pointers for all the con­
texts. The Context Register provides the offset into the Context Table to retrieve
the root page table pointer for that context. In Viking the Context Table Pointer is
a 24 bit register and the Context Register is a 16 bit register. The Physical
address used to retrieve the root page table pointer is fonned as shown below:

Root Pointer Physical Address Generation

Context Table Poinfcr
14 13 I 8 7 I o

I Conte~ Number I
16, 15 10,9 0

".. J
~ ~ ,

CI'P[31:14] I CTP[13:8]orCTX[15: 10] crx[9:0] I 00 I
18 17 12 11 210

'Ibis address formation gives the kernel the freedom to trade-off number of con­
text bits against alignment restrictions on the context table. Note. if a context of
16 bits is desired the context table must be aligned U» a 2S6K byte boundary.

-f'

The table shown below gives the alignment requirements for the context table for (~- f

different widths for the context register .

• sun
-YIWN

Sun Microsysrems Propriec.ry Revision 2.00 of November 1. 1990

[,

"\
/

/

"­
\

4.11.11.3 MMU Fault Status
Register (MFSR)

4.11.11.3 Instruction access
errors

Chapter 4...;. Viking Programmer's Model 99

Context bits Alignment
SIO 4K
11 8K
12 16K
13 32K
14 64K
IS 128K
16 256K

The Context Table Pointer register has the following structure:

I Context Table Pointer I Rsvd
31 8 7 0

The reserved field is ignored on a write and read as zero.

The Context register contains the displacement in the context table to access the
root pointer. It defines the current virtual address space.

The Context Register has the following structure:

Rsvd Context Number
31 16 IS 0

The reserved field is ignored on a write and read as zero.

The Fault Status register provides information for Viking faults which associated
with the memory system, and other internal error sources. The MFSR, along with
the reponed trap type are used to distinguish between the various types of errors
and faults that can occur.

There are several general typeS of exceptions: instruction access faults, data
access faults, store buffer exceptions, and internal errors.

Insttuction access faults are signalled through the instruction_access_exception
trap. There are several possible sources for the exception. It may be created by
normal page faults reported by the MMU. MMU generated errors are distinguished
by the encoding of the MFSItFT field. indicating the MMU fault type. The fault
may be extemally generated, for bus timeouts, parity errors, etc. Extema1ly gen­
erated faults are indicated by various bits in the MFSR that are tied to equivalent
error responses on the extemal busses. A final source of errors is from internally
detected inconsistencies. For example. a multiple tag match in the instruction
cache. In this case, an qrormode trap (watchdog reset) is generated, the MFSR.EM
bit will be seL

Sun Mic:roIystemI PJopriewy Revisioll2.00 of November 1, 199

100 TMS390ZS0 - Viking User Documentation

4.11.11.3 Data access errors

4.11.11.3 Store buffer errors

4.11.11.3 Control Space Errors

4.It.ll.3 Error Mode and
Internal Errors

Data access faults are signalled through the data_access_exception trap. As with
instructions, there are several source for this exception. As above, page faults,
external bus errors, and internal errors may all cause exceptions. Additional
errors can be caused by erroneous accesses to internal ASI control spaces. 'These
are indicated by the MFSltCS status bit. ,

Store buffer errors are signalled as data_store_error traps. These errors are
deferred exceptions. TIley are reported after the apparent completion of the
instruction which caused them. When this type of error occurs, the MFSR.sB bit
will be asserted. The source of the error is generally a parity, timeout, or similar
error on the bus. These stores have already been successfully translated by the
MMU, or a data_access_exception would have been reported. The operation can
be recovered by reading the contents of the store buffer and explicitly completing
the transaction using transparent ~ physical address memory references or
other means. See section 4.12 - Store Buffer for a detailed description of store
buffer errors and operation.

Any ASI operations which are known to be illegal by Viking will be reported as
control space errors. 1bese errors will cause data_access_exceptions, and set the
MFSR.CS bit.

Any of three conditions can cause these errors:

References to an invalid ASI space.
References to a legal ASI space. but with an invalid data size.
An invalid viituaJ. address field within a valid ASI space.

TIle MFSR.CS bit is not asserted for the following conditions: Bus error on ASI
OX08. Ox09. OxOa, OxOb, Ox2O-Ox2f (the standard and passthroughlbypass ASIS),
or errors on MMU probes. TIle contents of the Fault Address register is valid for
control space access errors.

If the processor enters error mode for any reason (such as an exception while
PSR.ET is deasserted). the MFS~ bit will be set. This bit should be examined
by the reset handler to distinguish software induced error conditions from
hardware reset.

ViJciIIg will also enter error mode if a detected internal error occurs. An example
of this is detection of multiple tag matches within the instruction and data caches.
In these cases, the MFSR.Fl' field will be set to 6, indicating an internal error.

Important
When internal error occurs and watchdog reset is taken, only MFSR.EM
and MPSR..FI' are meaningful. TIle state of the other MFSR bits are not
guaranteed. ~

Sun Mic:mIydeau P.ropricc.y Revision 2.00 of NOYember 1. 1990

o

4.11.11.3 MFSR timing and
operation

Ch.pc. 4 - Viking Programmer' 5 Model 101

The contents of the Fault Status register can be misleading if examined at an
arbitrary time. For example. an instruction fetch which is not a" demand" fetch
(not needed immediately for execution) may cause the Fault Status register to
indicate a fault which is never signalled as an actual exception. The MFSR is
guaranteed to be valid only after instruction. data. and store buffer
(data_stare_error) exceptions.

The Fault Status register is read~nly and is cleared on a read. Writes are ignored.
The standard virtual address is OXOOOOO300 using ASI Ox04. Viking provides a
specific address (ASI=Ox04. VA=OxOOOO13(0) to allow read/write access to the
MFSR. For more on the standard features ofMFSR, consult the SPARe Architec­
ture Manual.

The MFSR.SB (Store Buffer) error bit is sticky. In other words, once it is set, it will
not be overwritten by the occurence of any other exceptions. This is to ensure
that store buffer error events can never be lost. The SB bit will be cleared on any
read of the MFSR, and can also be cleared by writing explicitly to the read/write
version of the MFSR.

Important Note:
Translation errors are considered to be high priority errors. The
occurence of a translation error can not be overwritten by any other
errors. Even if the exception associated with a translation error is not

. taken (due to other exceptions, prefetches, branches. etc.), the MFSR.FT
bit will continue .to indicate the occurence of a translation error.

This implies that under cenain circumstances, a trap may incorrectly
stated to be a translation error, when in fact it may have been caused hy
other events. System software should be able to recover from this situa­
tion by using probe operations to test the Validity of translations. and if
correct retrying the instruction which reponed the exception. If the true
source of the exception continues to exist, it will be reponed again.

Translation errors may be overwritten by other translation errors. in
which case the MFSR.OW (overwrite) bit will be set.

General rules for ov~rwriting the MFSR (and MFAR) are presented in table 4-10.
TIle MFSR.OW bit will always be set if an overwrite condition occurs.

Sun Microsystans Propriewy Revision 2.00 of November 1. 1994

102 TMS390ZS0 - Viking User Documentation

Table 4-10 . MFSR Overwrite Operations

Pending Error New Error OWStabls Action Signalled
Translation Error Translation Error Set . Translation Error
Translation Error Data Access Exception Unchanged Data access Exception
Translation Error Insttuction Access Exception Unchanged Insttuction Access Exception
Data Access Exception Translation Error Oear Translation Error
Data Access Exception Data Access Exception Set Data 'access Exception
Data Access Exception Insttuction Access Exception Unchanged Instruction access Exception
Instruction Access Exception Translation Error Oear Translation Error
Instruction Access Exception Data Access Exception Oear Data Access Exception
Instruction Access Exception Insttuction Access Exception Set Instruction Access Exception

In all cases where sitnultaneous errors occur. Viking will choose the highest
priority error and update the status accordingly. The positional priority described ~'.
above must also be taken into accOunt The priority order is listed in the follow-

'- .
ing table. where priority 1 is the highest pr:iority:

Table 4-11 MFSR Error Priority

Error Priority

4.11.11.3 MFSR Register
Description

Translation Error
Data Access Exceptions
Instruction Access Exceptions

1
2
3

I Rsvd I EM CS SB p un uc I TO I BE L AT Fr FAV OW
31 18 17 ~ ~ 14 13 12 11 10 9 8 7 S 4 2 1 0

Rsvd Reserved. These bits are read-only zeroes.

EM Error Mode Reset Taken. This bit when asserted indicates that an
Error Mode Reset has been taken.

CS Control Space Access Error. This bit is asserted on the following con­
ditions: [1] invalid ASI space. [2] invalid ASI size. [3] invalid VA. field in .
valid ASI space including external control space (Ox02) ASIS. or [4] bus:r
errors on ASI Ox02. This bit will not be asserted. however. for the fol­
lOwing conditions: [1] bus error on ASI Ox08. Ox09. OxOa. OxOb. 000-

Revision 2.00 of November 1.1990

(

r\.
L

Chapter4- Viking Programmer's Model 103

Ox2f and [2] bus error on MMU Probe. Note that MFAR holds a valid
address on conttol space access (CS) errors.

SB Store Buffer Error. This bit when asserted indicates that a Store Buffer
error (data_store_error) has occurred.

P Parity Error. This bit when asserted indicates that a Parity error has
occurred. Parity errors also set MFSR.UC bit.

un Undefined Error. This bit is set for external bus errors when the exter­
nal system signals a retry operation and asserts data ready.
UD/UC/fO/BE errors are mutually exclusive.

UC Uncorrectable Error. This bit is set for external bus errors for which an
uncorrectable error occurred. Parity errors and ECC errors are also
reported as uncorrectable errors. UD/UC/fO/BE errors are mutually
exclusive.

TO Time-Out. When this bit is set, it indicates that a time-out error
occurred for a external bus transaction. UD/UcrrO/BE errors are mutt!­
ally exclusive.

BE

L

Bus Error. When this bit is set, it indicates that a bus error occurred on
a faulting access. This includes invalid bus transactions and errors for
which system registers need to be probed. UD/UC/fO/BE errors are
mutually exclusive.

'The Level field is set to the page table lev~l of the entry which caused
the fault. H an external bus error is encountered while fetching a page
table entry (either a PTE or PTP) the Level field records the page table
level for the entry. 'The field is defined as follows:

L Level
0 Root pointer
1 Level 1 entry
2 Level 2 entry
3 Level 3 entry

AT The Access Type field define the type of access which caused the fault.
It is defined as follows:

AT Access Type
0 Load from User Data Space
1 Load from Supervisor Data Space
2 LoadlExecute from User Instruction Space
3 LoadlExecute from Supervisor Instruction Space
4 Store to User Data Space
5 Store to Supervisor Data Space
6 Store.1O User Instruction Space
7 Store to Supervisor Instruction Space

.~,.!! Sun Mic:rosystems ProprietRy Revision 2.00 of November 1,1990

104 TMS390ZS0 - Viking User Documenlation

Fr The Fault Type field defines the type of the current fault It is defined
as follows:

Fr Fault Type
0 None
1 Invalid address error
2 Protection error
3 Privilege violation
4 Translation error
5 Access bus error
6 Internal error
7 Reserved

Invalid address errors, protection errors and privilege violations are a
function of the Access Type and the ACC field of the corresponding
PTE. The errors are set as follows:

Table 4-12 Access Permission vs Access Type

FrCode
AT

PI'E[V]=O PI'E[V]=l, PI'E[ACC]=
0 1 2 3 4 5 6 7

0 1 2 2 - - - 2 3 3
1 1 2 .2 - - - 2 - -
2 1 - - - - 2 - 3 3
3 1 - - - - 2 - - -
4 'I .2 - 2 - 2 2 3 3
5 1 2 - 2 - 2 - 2 -

The invalid address error code is set when an invalid PTE or PTP is
found while fetching an entty from the page table for a regular table­
walk Ot a probe operation. A translation error code is set when an
external bus error, reserved PTE or a level-3 PTP is found while fetching
an entry from a page table for a regular table-walle or a probe operation.
The'L field records·the page table level at which the error occurred for
the above two error codes. The UD. TO. BE. and uc fields recom the type
of bus error, if any. The protection error code is set if an access is
attempted that is inconsistent with the protection attributes of the
conesponding page table entry. The privilege error code is set when a
user program attemptS to access a supervisor only page. A bus error
code is set when an external bus error occurs during memory access.
The intemal error code is set when either cache detects an internal
inconsistency, like multiple matches for a panicular request When this
happens error mode is entered, requiring a system reset using watchdog
reset See section 4.11.11.3.5 - Error Mode lI1Id InterMl Errors ..

FA V Fault Address Valid bit is asserted if the contents of the Fault Address
Register are valid. The Fault Address Register is not valid for instruc- :. __
tion access faults.

Sun Mic:rosystems Proprieury Revision 2.00 of November 1.1990

[;

)

4.11.11.4 Fault Address
Register (MFAR)

Chapter' 4 - Viking Progrlll1Ul1el"S Model 105

OW The Overwrite bit is asserted if the Fault Staws Register has been writ­
ten more tIWl once by faults of the same class since the last time it was
read. Programmer's Note: A trap handler should consult this OW bit to
find out if the information in FSR reflects the current fault or not ow
asserted indicates that the FSR has been updated since the last fault that
was/is CUJTently being taken. Multiple faults can occur before the trap
is taken by the processor and the fault status is read by the processor.
The Fault Status register records the cause of the latest and sets the ow
bit to indicate that a previous status has been lost.

The Fault Address register records the vinual address of the fault reported in the
Fault Status register. 1bis register is overwritten according to the policy defined
for the MFSR. The MFAR is read-only according the the reference MMU
specification. For diagnostic purposed, Viking has added additional read/write
access to the MFAR using vinual address OxOOOOI400 in ASI Ox04. The normal
read-only MFAR is at vinual address OxOOOOO4OO in the same space.

Important Note:
Viking will never place instruction fault addresses in the FAR. The

. information is not needed, since it is saved as the faulting PC/NPC when
.the trap occurs.

This register must be accessed as a word. Other data references provoke a'
data_access_exception. The structure of the Fault Address register is:

I Fault Virtual Address

31 0

..

Sun Mic:Iosystems Proprietary Revision 2.00 of November I, 199C

106 TMS390ZS0 - Viking User Documentation

4.11.11.5 MMU Shadow FSR
Register (MSFSR)

4.11-.12. MMU TLB (page
Desaiptor Cache)
direct access

Impottant Note:
A rare scenario can occur when Viking is operating in MBUS mode with
the store buffer off (not normal operating conditions). If a memory
reference takes place. that causes a copy-back. and the copy-back
suffers a fault (memory fault). Viking responds by sending
data_access_exception to the processor pipeline. When this occurs. the
MFAR holds the virtual address that caused the copy-out Note that this
is not the address that caused the fault to occur. In this situation. Viking
does not setMFAV because it is misleading.

If such an error occurs (MBUS. data_3CCeSs_exception, FA v deassened.
store buffer disabled). system software can recover by manually forc­
ing any modified data in the four possible cache lines (based on the vir­
tual address) out to memory using transparent MMU referencc;s. Once
this data haS been Hushed. the appropriate valid bits should be cleared.
and the original operation may be retried.

This situation is not expected to occur during normal operation.

This is identical to the FSR but is used to record memory system errors while in
Emulation mode. This is done to avoid destroying the regular MFSR bec~ of
emulation instructions. This register is not used for normal operation. Also see
section 4.15).

The MMU eritries are accessible directly with the ASI value Ox06. This direct
access capability is provided for diagnostic pwposes and also to lock TLB entries.

MMU entries are accessed as a 32-bit won!. Other data sizes provoke a data access
exception.

The Address fOlmat is:

ASI=Ox06: Reserved I TLB Entry I Rsvd

31 18 17 12 11 10 8 7 0

The various bit fields have the following meanings:

Rsvd: Reserved. All reserved bits are ignored (But should be zero).

Entry: Selects which of the 64 entries is referenced.

Sel: Select Determines what part of the referenced entry is accessed. The
Sel field allows selection of both TLB fields. as well as the values ..
cached in the root pointer and PI'P2 caches. Depending on the Sel
encoding. various registers are selected. C

Sel values 0 through 3 are used to access n.B entries. value 4 is used to access the
level-O pointer and values 5 and 6 are used to access the level-2 pointer entry.

Sun Mic:tosystemI Proprieaaoy Revision 2.00 of November 1.1990

Chlpter4- Viking Programmer's Model 107

For Sel values 4. 5 and 6 the TLB entry field is not used. Data will be accepted or
rewmed. in the following formats:

Sel=O: Vaddr Rsvd
31 12 11 0

Sel=l: Rsvd Context

31 16 15 0

Sel=2: I PrE

31 0

Sel=3: Rsvd I Lock Bit
31 1 0

Sel=4: Root Pointer

31 0

Sel=S: I Level 2 PI'P

31 0

Sel=6: 1.P1'P2 Vaddr .1 Rsvd
31 18 17 0

Vaddr: Virtual Page Number. When the entry maps a 4 K-byte page all bits are
defined. When the entty maps a 256 K-byte segment only the 14 most
significant bits [31:18] are significant. When an entty maps a 16 M­
byte region only the 8 most significant bits [31:24] are significant
When an entry maps 4 G-byte region. the entire V Addr field is not
significant

Rsvd: Reserved

Pl'P2_ Vaddr:
Level 2 PI'P virtual address.

TIle Context Number tag is accessed (Sel=l) with the following data format:

Reserved Context Number 1
31 16 15 0

TIle cached PTE is accessed (Sel=2) with the following data format: (Note that
this format is slightly different than the in-memory PTE format) ..

• ~!! R.evision 2.00 of November 1. 199

108 TMS390ZS0 - Viking User Documentation

PPN C M V ACC LVL

31 8 7 6 5 4 2 1 0

The meaning of the bit fields is identical to the definition of a PTE except for the
V and L VL fields.

V: Valid. The Referenced bit location in the PTE is used to hold the Valid
bit for the entry.

LVL: Level. When a PTE is cached the ET field is used to specify the map­
ping size. The encoding is the following:

LVL Mapping Size
0 4 GigabyteS
1 16 MegabyteS
2 256 Kilobytes
3 4 Kilobytes

The Lock bit is accessed (SeI=3) with the following data format:

Reserved Lock
31 . 1 0

The Lock bit is set to 0 by the table walking haIdware upon power-on reset. If
set to one, the entry will not be displaced by the replacement algoritJ:uil. It is the
responsibility of the software not to lock all entries. When all entties are locked,
new PTEs can not be brought into the TI..B and hence the ttanslation can not occur.

Important Note:
If all TI..B entries are locked, no replacement can take place. This will
result in the processor entering an infinite tllble walle sequence. The
processor will continue to read from the page tables forever and never
return. No enor will be reported, and the only way to exit is with reset .

The cached Root Pointer (SeI=4) with the following data format

Root Pointer V
31 2 10

The cached level 2 PTP is accessed (Sel=5) with the following data format:
..

Level 2 PTP
31 o

The virtual address of the level 2 PI'P is accessed (Sel=6) with the following data

+!!! Sun Microsyslems PIoprier.uy Rms1cm 2.00 of November 1. 1990

[".
J

4.12. Store Buffer

4.12.1. General Operation

Chapter 4 - Viking Programmer's Model 109

fonnat:

Vaddr Rsvd
31 18 17 0

Impottant Note:
It is possible to have multiple matches in the MMU if two or more
entries mapping the same vinual space area are simultaneously present
in the TLB. This cannot happen during the regular operating modes
where entries are loaded by the table walking hardware. However, with
the direct access capability it is possible to erroneously load distinct
entries mapping the same portion of a vinual space. When a vinual
address from this area is translated by the MMU, the result is undefined.
This condition is not reponed to the software. Though operation is
undefined, the hardware is internally protected and will not be damaged
should this condition occur. .

This condition may also occur under non-diagnostic situations if MMU
FLUSH transactions are not issued where required. As. an example. if a'.
normalleve13 PTE is present in the TLB, the page table is modified to
include a level2 or higher PTE mapping the same space, andareference
to a a different location within the leve12 mapping. Under these condi­
tions. the TLB will end up with two entries mapping the original page.
A FLUSH transaction is required after changing the page table IilaWing,
before any user ~ctions are generated. FLUSH operations are
required by the reference MMU Specification for these cases.

It is the software's responsibility to maintain the consistency between the MMU

and the page tables when entries are explicitly modified.

TIle Vilcing store buffer is a fully-associative cache of 8 double-woro entries. This
buffer functions to eliminate most of the performance penalties associated with
write-through cache operation, and copy-back (cache flush) operations. This
depth is sufficient to hold 16 SPARe registers, the number required to flush a
register window.

The store buffer is ajlushing type buffer. H the (doubleworo) address of a read
transaction matches the (doubleworo) address of any write transaction currently
in the buffer, the read will wait until that write has completed before continuing.
No data is returned from the store buffer to the instruction pipeline. This type of
match will force the buffer to flush to memory as quickly as possible.

In addition" the buffer ~oes not do any IJyte collection. It does, however, tum
sequences of memory references within a cache block into burst write operations
on the bus (CC mode only). Burst writes will continue for an arbitrary number of
cycles. as long as they are within a cache line .

• !!l,.!! Revision 2.00 of November 1. 1991

110 TMS390Z50 - ViJcing User Documentation

The store buffer components (tags, data, and coruml) are accessible via ASI

spaces Ox30-0x32 for diagnostic purposes.

4.12.2. Operation in CC Mode The buffer is primarily used in cc mode, where all store operations are com­
pleted immediately into the store buffer. In cc mode, a ST operation will never
wait for completion. unless the buffer is full, disabled, or a TLB miss operation
occurs (see section 4.12.4 for a more complete description). The state of the data
cache (hit, miss, or disabled) does not affect store buffer operation in CC mode.

4.12.3. Operation in MBUS In MaUS mode only non-cacheable stores and copy back data goes into the store
Mode buffer. This is primarily due to the copy-back. write allocate caching policy used

ontheMBUS.

. 4.12.4. Non-buffered
(Synchronous)
Operations

4.12.5. Store Buffer (Data
Store) Exceptions

In cc mode, there are several cases when stores cannot or should not be buffered.
These cases include atomic operations, Store Alternates (STA), MMU R&.M
Updates, and operations when the store buffer is disabled. All of these actions
block the execution pipeline until they have completed. Since external stores
must be performed in order, each of these conditions forces all entries in the store
buffer to be written out to memory before the synchronous operation begins.

When the buff~r is full, new store operations will cause the pipeline to stall until
a single entry in the buffer is available. The buffer is not forced to flush in this
a~tioa .

Data store exceptions take priority over all other exceptions, except reset When
an exception occurS on a buffered write, the resulting trap handler must be able to
inspect and attempt to restart the write which failed. In order for a data store error
to be reponed, the PSR.ET bit must be assened, and the MFSR.NF bit should be
deassened.

When an error occurs, the store buffer is automatically disabled. A Store Buffer
copyout is not initiate~: and no other writes will be issued from the Store Buffer.
All buffer entries, including the faulting one, are retained in the buffer. All sub­
sequent writes (nominally in the trap bandlCr) are synchronous, bypassing the
buffer. This MIl continue until the store buffer is re-enabled.

Once in the trap handler, the faulting write can be retried. This is accomplished
loading the faulty address and data din:ctly from the store buffer into registers
(using the diagnostic ASI access to the buffer's address and data information
directly). A store alternate through the MMU pass through ASIS can then be used
to perform an untranslated store to this physical address. In this case, the
MCNTL.Ac (Alternate Cacheable) bit will be used to determine cacheability. The
AC bit should be set to the same value as the C bit field of the store buffer tag
register (since this is was the state of the C bit in the original transaction).

·The data store error handler Code should set the MCN'I1..NF (no fault) bit before
attempting to retry the operation. After the STA to retry the operation, the MFSR ,4

enor bits should be checked explicitly to determine if the operation was success.\~
ful or not If the MCN'I1..NF bit is not set, an error on the retry of these transactions
can cause entry into error mode.

Revision 2.00 of November 1. 1990

4.12.6. Store ButTer Disabled
Operation- strong
ordering

4.12.7. Store ButTer Tags

Chap&er 4 - ViJcing PrOgrllllUllU'S Model 111

If this retry fails system software must decide how' to continue recovery effons.
Generally, the error is always guaranteed to be from a store operation in the
current context (since context changes always force a store buffer copy-out,
pending stores from another context cannot be present) Once the faulting pro­
cess is identified, the process can be interrupted or killed, rather than stop the
entire system.

Important Note:
In MBUS mode, a data store error resulting from a copy-back operation
is not guaranteed to be from the current context. In this case, isolating
faulty accesses to the process which caused them is more difficult. This
situation may still be recoverable, but is very complex.

Note that standard oldering of memory transactions can be maintained even in
the presence of store buffer errors and recovery operations. As long as the
recovery routines retry store buffer operations in the order they were requested.
no ordering is changed. Any memory operations within the trap handler can be
considered to have executed "before" these buffered writes are performed:

When a store buffer exception (data_store_error) occurs, Viking retains informa­
tion for all pending stores, including the store which encountered the exception,
in the store buffer. 'These can be accessed in several asi control spaces: store
buffer control (ASI Ox32), store buffer tag (ASI Ox30), store buffer data (ASI Ox31)

. and MMU.SB '(ASI Ox04). These store buffer entries assist recovery from a s~re
buffer exception.

. .
The SBCNTL.Dpcr is left intact after an exception to allow software recovery. In
on1er to re-enable the store buffer after a data_store_error was taken, the
SBCNTL.Dprr must be initialized to allow proper execution.

The Store Buffer is disabled when Viking is first powered up. As a result, all
stores are synchronous, and block. the execution pipeline until they complete.
During normal operation. disabling the store buffer allows applications to be run
with strong sequentiQl ordering of memory references.

ASI=Ox30 - Store Buffer Tags.

This ASI is used to perform reads and writes to the store buffer's physical tags,
mainly for diagnostic purposes. The Address format is:

I Rsvd
31 6 S 3 2 0

The bit fields are: ..
Rsvd: Reserved. These bits are ignored.

Entry: Entry Number. The eight entries of the store buffer are accessed using
the entry field. .

~.sun
-~

Revision 2.00 of November 1. 19

112 TMS390ZS0 - Viking User Documerllation

4.12.8. Store ButTer Data

Rsvd

Accessing the store buffer tags with a quantity other than a double-word will
result in a data_access_cxception.

Tags are returned (or written to the appropriate entry).

The Tag format is:

I SP·I Burst v S c Size Address

63 43 42 41 40 39 38 37 36 35 0

Rsvd These bits are read as zeros and ignored for writes.

SP Store Barrier Pointer bit This bit gets asserted by the STBAR instruc­
tion. See section 4.4.5 for more details.

Burst Burst Mode access. This bit if set indicates that the next entry in the
store buffer corresponds to the next consecutive address and can thus
be issued in burst mode.

V Valid bit If set it indicates that the entry is valid.

S

c

Supervisor Bit If set it indicates that the entry corresponds to a super­
visor process.

Cacheable bit If set it indicates that the entry is a cacheable access.

Size Size of transaction according to the table below:

Size Data Quantity

00 Byte·
01 Half-Word
10 Word
11 Double-Word

Address Address for the store buffer entry. This address must be correct
depending on the size of the ttansaction. For instance a double-word
store buffer entry must have the lower 3 bits of its address to be zero, if
not an elTOr is generated.

ASI=0x31 - Store Buffer Data.

This ASI is used to perform reads and writes to 64-bit data stored in store buffer
entries. Data entries are addressed in the same way as store buffer tags. The
Address fonnat is:

Reserved I Entry. I 000
31 6 5 3 2 0

1be store buffer data must be accessed as double-words .. Other data quantities
provoke a data_access_exception.

Revision 2.00 of November 1.1990

.'-...

(i
4.12.9. Store ButTer Control

4.13. Traps

Chapter 4 - Viking Programmer's Model 113

ASI=Ox32 - Store Buffer Control.

TIle store buffer control register containing the fill and drain pointers is accessi­
ble with the ASI value Ox32. This access is a single word access. All other size
accesses will generate a data_access_exception. 1be address field is not used for
this access.

The number of pending stores is determined by subtracting the Drain pointer
from the Fill Pointer (modulo 8). When the two pointers are equal and there are
valid entries, the store buffer is full and cannot accept any more entries. The
buffer is empty when the two pointers are equal but there are no valid entries.
The Data format is:

I Rsvd I SE EM
31 9 8 7 6 5 3 2 0

Rsvd

SE:

EM:

These bits are read as zeros and ignored for writes.

Store buffer enabled. This bit is Read-only, and indicates whether the
store buffer is enabled (1) or disabled (0). This is a shadow Copy of the
MCNTL.SB bit. and is provided for convenience.

Store buffer empty. This bit is read-only, is set at reset. and indicates
whether the store buffer is empty (1) ornon-empty (0).

ER: Store buffer error pending. This bit is Read-only, and indicates
whether an untaken store buffer error is pending. 1bis bit is set when a
store buffer exception occurs while traps are disabled (PSR.ET=O). 'J'hj f

bit is cleared by taking the store buffer exception trap, which occurs
automatically when traps are re-enabled. 1be bit is also cleared on
Reset.

Dptr. Drain Pointer. This value indicates the first entry of the store buffer
which would perform a bus transaction. See section 4.12.5 on cases
when this bit must be cleared after a data_store_error.

Fptr. Fall Pointer. 'Ibis value indicates the first entry of the store buffer
where a new store request can be written. If it is equal to the drain
pointer then the store buffer is full. .

This section gives an overall view of the types of traps which may occur during
normal or exceptional operation of Viking. In particular, this section describes the
set of standard SPARe traps. and the exact definition of Viking's implementation
of them. In many cases, the trap is implemented exactly to the definition in the
SPARe Architecture Manual. Standard architectural operations, like decrementing
CWP, and copying the PSR.S bit to PSR.PS will not be discussed in detail.

~ Some general propenies are presented first, followed by the details of various
l,,- traps. Note that Viking is fully confonnant to the SPARe architecture. and imple­

ments QlJCt traps. In some cases (floating point and store buffer), Viking uses the
de/e"ed trap model of the SPARe architecture .

• !P..!! Sun Mic:rosystems Proprietwy Revision 2.00 of November 1. 199

114 TMS390ZS0 - Viking User Documentation

4.13.1. Exceptions and
Program Counters

All exception requests propagate through the instruction pipeline and are
resolved only in the last pipe stage (WB). Viking can executes more than one
instruction in a given cycle, and each of those instructions can suffer one or more
exceptions. TIle following rule resolves exception priorities among faulting
instructions in the same group:

Important Note:
A low priority exception at an earlier instruction in a given instruction
group will have a higher priority than a high priority exception at a
later instruction in the same group.

Note that interrupts are effectively positioned at the wt valid instruction in a
particular instruction group. In addition, a valid instruction must be present in
order for the interrupt to be registered. If the execution pipeline is not progress­
ing (waiting on cache misses, for example) an interrupt will not be taken. Due to
this, maximum interrupt latency for Viking is highly system dependent.

Three program counters are involved when an exception occurs.

XPC, the exception program counter
XNPC, the exception next program counter
. XHPC, the begiming of the exception handler code

Viking recovers the XPC and XNPC values from one of the many stOred program
counters, depending on where the exception occurs. TIle values are then stored
in registers 11 and 12 in the new register window upon entry into the trap handler.
TIle new program counter (exception handler-target) is computed according to
the standard SPARe model, shown below:

Table 4-13 Exception Handler PC /oT7l'llllion

4.13.2. Error Mode

Exception Handler PC: TBR[31:12] Trap Type[7:0] I 0000 I
31 12 11 4 3 0

£"or Mode can be entered when any exception occurs while the ET bit is cleared.
In general. these are considered fatal errors, though system software may be able
to recover in cenain cases.

En'or mode generates a watchdog reset trap, which acts like any other trap, with a
few differences. For most error mode traps, the Tr (trap type) field is not set. This
is to retain the prior value ofTr, to help recovery. 1bere is one case where this
rule is not applied: If the erJ'Q.I'mode trap occurred during the execution of an
RE'IT instruction, the Tr field will be set based on the exact cause of the excep-
~ ~

In all cases, the PSR.PS bit will not be affected by a watchdog reset.

.!!!!! Sun Mic:rosystems Propriecary Revision 2.00 of November 1. 1990

(

4.13.3. Fault Status Updates

4.13.4. Trap Details

)

Chapt«4 - Viking ProgrammCZ"s Model 115

In all cases. the MCNTI..BT (Boot Mode) bit will be set by a watchdog reset.

There are many details associated with updates to the fault status register. These
are discussed in detail in section 4.11.11.3.6 - MFSR timing and operation

The following lists Viking Trap Table, which for the most part looks similar to
the SPARC Manual Trap Table (refer to the SPARC Architecture Manual) but pro·
vides a formal definition of which traps Viking does or does not take. how Viking
handles its traps, and any reasoning behind those operations.

Sun Miaosystems Proprietary Revision 2.00 of November 1. 199C

116 TMS390ZS0 - Viking User Documentation

4.13.4.1 Reset Trap

Table 4-14 Table o/Traps supported by Viking

Exception or Interrupt Request Priority Trap Type

reset 1 OXOO
data_store_error 2 Ox2b
~ction_ac~_exception 5 OxOI
privileged_~ction 6 Ox03
illegaCinstruction 7 Ox02
fp_disabled 8 Ox04
cp_disabled 8 Ox24
window_overflow 9 Ox05
window_underflow 9 Ox06
mem_address_noCaligned 10 Ox07
fp_exception 11 Ox08
data_access_exception 13 Ox09
taLoverflow 14 OxOa
division by zero 15 0x2a
trap_instruction 16 Ox80-0xff

interrupCleveC15 17 Oxlf
interrupt_IeveC14 18 Ox1e
interrupClevel_13 19 Oxld
intenupClevel_12 20 OxIc
interrupt_level_11 21 Oxlb
interrupt_level.:,10 22 Ox1a
interrupt_level_9 23 Ox19
interrupt_level_8 24 Ox18
interrupClevel_7 2S Ox 17
intenupClevel_6 26 Ox16
intenupClevel_5 27 OX1S
interrupt_Ievel_ 4 28 Ox14
interrupClevel_3 29 Oxl3
intenupt_level_2 30 Ox12
intenupClevel_l 31 Ox 11

Note: The second column describes the exception priority in the event of more
than one exception is detected at a given insttuction. The third column is the
value that TBR.'IT will be set to and also serves as an offset to a quad-word block
fetched to get at the exception handler when the exception event occurs (see table
4-13).

Trap type (IT not set). priority 1. ..
Viking recognizes two types of reset: Viking Reset and Watchdog Reset For a .
detailed description of reset operation, see section 4.3 - Reset Operation.

.!!!!! Sun Microsyst.ems Propriela'y Revision 2.00 of November 1. 1990

(f.~'

~F/

('

'" \

)

4.13.4.2 Data Store Error Trap

4.13.4.3 Instruc~on Access
Exception Trap

4.13.4.4 Privileged Instruction
Trap

Chapter 4 - VWng Programmer's Model 117

Trap type Ox2b, priority 2.

Data_store _error is caused when a store buffer copyout encounters an external
bus error (e.g. parity or ECC problem). For a detailed description see section
4.12.5 - Store Buffer (Data Store) Exceptions.

Trap type OxOl, priority 5.

lnstruction_access_uception may be caused by many events. The normal source
of this error is MMU protection errors for pages which have been swapped out of
virtual memory space. In addition, bus errors and code breakpoints can cause this
exception. See the MMU for a detailed description of error reporting for these
traps. Note that the fault address register (FAR) is never updated for these errors.

Trap type Ox03, priority 6.

Privileged _instruction trap is caused when PSR.S is cleared and a privileged
instruction is issued. There are many classes of privileged instructions, see the
SPARC Architecture Manual for a complete list

There are many details related to generating traps for the RE'IT instruction. Vik­
ing implements the rules described in the SPARC Architecture Manual.

4.13.4.5 megal Instruction Trap Trap type Ox02, priority 7.

4.13.4.6 Floating Point
Disabled Trap

4.13.4.7 Coprocessor Disabled
Trap

Illegal_instructiOn (sometimes also called unimplemented_instruction) trap is
caused when an instruction with an unassigned opcode or illegal opcode is exe­
cuted. For exainple, Viking issues an illegal instruction trap when a RETr instruc­
tion is executed with the PSR.ET bit set, and in several data dependent cases of the
WRPSR instruction (see section 4.4.3 - Write PSR (WRPSR) Integer divide instruc­
tion also generate data dependent illegal instruction traps (see section 4.4.2-
Integer Divide (IDIV)).

Trap type Ox04, priority 8.

Fp _disabled trap is caused when PSR.EF is cleared and any floating point instruc­
tion is issued. This trap is never issued for integer multiply or integer divide.

Trap type Ox24, priority 8.

Viking does not provide a coprocessor intetface. PSR.EC (enable coprocessor) bit
is zero, and non-writable. Any attempt to set the PSR.EC bit will generate an
illegaCinstruction trap. Any attempt to execute a coprocessor instruction will
generate a cp_disabled trap. Viking never generates a cp_exception trap.

• sun
-~

Revision 2.00 of November 1, 199

118 TMS390ZS0 - Viking Usa' Documentation

4.13.4.8 Window Overflow
Trap

4.13.4.9 Window Underflow
Trap

4.13.4.10 Memory Address Not
Aligned Trap

4.13.4.11 ~oating Point
Exception Trap

4.13.4.12 Data Access
Exception Trap

4.13.4.13 Tagged Operation
Overflow Trap

Trap type OXOS, priority 9.

Window _overflow trap is caused by a SAVE instruction being executed when the
next available register window (CWP-l) is marked invalid in the WIM register.
Note that this ttap is generated only in response to a SAVE instruction, no other
operations, including other traps. can cause this exception.

Trap type Ox06, priority 9.

Window underflow trap is caused by either a RESTORE or RETI instruction which
would cause the incremented value of CWP to point to an invalid register window.
In the case of RETI, this trap will immediately lead to an error mode condition,
and watchdog reset

Trap type Ox07. priority 10.

M em_address _ not_aligned trap is caused by a load, store or control ttansfer
operation which violate the correct SPARe alignment The alignment of an

. instruction is a word. Halfword references require the low bit to be zero. Word
references require the low 2 bits to be zero. Double word references require the
low 3 bits to be zero.

Trap type OXOS, priority 11.

Fp _exception traps are caused by cenain floating point arithmetic conditions
being detected. 'Ibese exceptions are deje"ed traps, and will only be reported
upon execution of another floating point operation (or floating point ~ent) at
some later time. 1be time taken to cause the exception is variable, depending on
the pipeline state. numeric conditions, and the exact sequence of instructions.
Improper floating point error recovery can also cause these exceptions, panicu­
larly sequence errors.

The exact instruction which caused the exception can be detennined by reading
the state of the floating point queue. described in section 4.6.3 - Floating Point
Queue

Trap type Ox09, priority 13.

DatIl_ occess _exception ttaps are generally caused by MMU protection errors for
load and store operations. 1bey may also be caused by bus enors, and data break­
points. See the MMU section for a detailed description of error reporting for these
exceptions. .

Trap type OxOa, priority 14.

tag_overflow ttaps are causea by execution of tagged add or subtroct and trap on
overflow (T ADoccrv and TSUBCCI'V) instructions. 1be ttap will be signalled (1f",.

when the least significant 2 bits of either source operand is non-zero, or when the \,_ .
operation produces a result which causes the overflow flag to be set

• !!I,.!! Sun Micrasystans Propria.y Revision 2.00 of November 1. 1990

)

4.13.4.14 IntegerDivideby
Zero Trap

4.13.4.15 Trap Instructions
(TICC)

4.13.4.16 Interrupts

Chapter 4 - Viking Programmer's Model 119

Trap type Ox2a. priority 15.

Division_Uy _zero trap is caused when an integer divide instruction is issued with
the value of the second operand (denominator) being zero.

Note also that an illegal instruction trap will be generated by Viking if the
numerator of a divide operation has significant digits beyond 52 bits. If both
divide by zero, and the illegal instruction conditions exist, the illegal instruction
trap will be signalled.

Trap type Ox80-0xff (instruction dependent), priority 16.

Trap_instruction traps are software initiated traps. caused by the execution of
nee instructions. Viking implements these instructions according to the SPARC
Architecture Manual.

Trap type Oxll-Oxlf (IRL pin dependent), priorities 17-31.

Interrupt_leveCn traps are by generation of hardware interrupt requests. The
normal source of these requests is from external pin asseItions on the IRL[3-O]
pins. In addition to these external requests, Viking can generate interlllJl interrupt
requests from several sources. Generation and definition of these interrupt
requests is system dependenL

Interrupt requests are compared to the current processor interrupt level (PSR.Pll.).
Requests at levels higher than the current PIL. or equal to 15 (non-l1IQS/cable) will
be taken, assuming there are no higher priority exceptions pending. The PSR.ET
(enable traps) bit must be set for any interrupt to be accepted (including non­
maskable interruptS).

TIle external interrupt requests are sampled in successive cycles to debounce
transient requests. The request must be asserted for a minimum of three cycles
before it is presented to the pipeline. A valid instruction must exist at that stage
of the pipeline before the interrupt will be taken. Interrupt requests are level sen­
sitiye at the pins of Vilcing. System hardware can control these pins in a imple­
mentation dependent manner to implement different system interrupt architec­
tures.

Once an interrupt is presented to the pipeline. it will cause the store buffer to be
flushed. will update register state according to the SPARC Architecture Manual,
and will initiate a control transfer to the begiming of the trap handler. The dura­
tion of this activity is processor state. and is system dependent. Maximum inter­
rupt latency is determined by internal and external factors. such as the maximum
length of certain floating point operations, system memory latency times. and the
maximum store buffer depth.

Internal sources for interrupt requests are from breakpoints. The breakpoint logic
can be programmed ~.cause interrupts at a software controlled level upon certain
events. 1bese may be code. data, or counter generated breakpoints. Several
registers, including MDIAG.BKC (breakpoint conttol), ACI'ION (action on break­
point event), and the counter registers determine when these interrupts are gen­
erated. TIle level generated for these interruptS is defined in the ACI'ION.BCIPL

Revision 2.00 of November 1. 199

120 TMS390ZS0- Viking User Documentation

4.13.4.17 Unsupponed Trap
Types

Table 4-15

4.14. Software Debugging
Facilities

4.14.1. Priorities of Debug
Interrupt and
Exception

(breakpoint and counter interrupt level).

Viking does not implement the following optional SPARe trap types:

Unimplemented Trap Types

Instruction_access _error
R Jegister _access_error
Cp _exception
l>~_access_error
Unimplemented_FLUSH
Unimplemented_MUL
Unimplemented_DN'
Implementation-l>ependent-Excepdon

Viking provides debugging capabilities to facilitate debugging software and
hardware prototypes. Four types of breakpoint mechanisms are provided:

Code address
Data address
Instruction count underflow
Cycle count underflow

These mechanisms can be selectively enabled to generate precise exceptions
(data_acce5s_exception or instruction_acce5S_exception). They may be pro­
grammed to generate a selectable interrupt In addition. they may be set to
activate an external pin to easily trigger external analysis equipment They are
also a fundamental part of Vildng's emulation features, described in chapter 6 -
Remote Emulation Suppon

In addition to address breakpoint facilities. programmable timers are provided for
debug. code profiling and perfolDlance analysis. They can provide a high preci­
sion, low overilead timer for small application benclunarking. Their major appli­
cation is to assist development or diagnostic teams in early hardware and
software debug.

All address breakpoint interruptS and counter underflow interruptS use a common
user programmable interrupt priority level (ACTION.BCIPL). Status bits are pro­
vided to differentiate between these interrupt sources. The following describes
the priority order that these interruptS and exceptions adhere to.

Ifmultiple breakpoint fault events (code, data) are signalled simultane­
ously, both cock and dJJta breakpoint status registers will set theirfault

'~ -

stams bits. 1'-'
(.l/ If multiple breakpoint interrupt events are signalled simultaneously.

each activity will set its interrupt StlltUS bits. _

Sun Microsystems Proprietary Revision 2.00 of November 1. 1990

o

4.14.2. Address Breakpoints -
Code (Instruction) or
Data

4.14.3. Counter Breakpoints­
Code (Instruction) or
Cyde

Chapter 4 - Viking Programmer's Model 121

Exception sources from multiple instructions are prioritized based on
instruction order. An exception reponed to an instruction will have
higher priority thm a simultaneous exception to the next instruction.

Asynchronous data_access_exceptions are honored before
instruction_access_exceptions.

Instruction_acces5_exceptions are honored before synchronous
data_acce5s_ exceptions, and all data_access_exceptions are honored
before intenupts.

A single code (instruction) or data breakpoint register is available. This break­
point can match on either 32-bit virtual or 36-bit physical addresses for code or
data. When a breakpoint is set on an insttuction. the instruction will not be exe­
cuted. This holds true for fault. interrupt, and emulation.

Important Note:
A maximum of one code space breakpoint or one data space breaJc­
point can be active at a given time, not both simultaneously.

Each bit in the bitwise address comparison can separately be masked off to force
equality on that bitwise comparison. The address equality bitmasks can be used
to find references within a particular segment. page, cache line or word lndepen-

. dent of the size of the access. Data space breakpoints can be qualified with access
type (reads-only, writes-only, read-or-write). Atomic references (e.g.
SWAP/LDSTUB) are considered both read and writes.

The action upon event conb'Ol register (ACTION) specifies whether the address
breakpoint should generate an exception, interrupt. or activate the external strobe
(ESB) pin. The action on event register is defined in 4.14.4 - Access to Debug
Features

Important Note:
A maximum of one instruction count breakpoint and one cycle count
breakpoint can be active at a given time.

A single 32-bit wide control register programs the two 16-bit counters for
insttuction and cycle C01D1ts at the same time. It is not possible to modify one
counter without the other.

The 16-bit cycle counter will count up to about 1.3 milliseconds at SOMHZ.
Longer duration counters must be simulated in software by accumulating
underflows of the 16-bit counter into a larger counter in memory . ..
The instruction counter can count either faster or slower thm the cycle counter,
depending on execution characteristics of the processor. It could theoretically
count three times faster, if Viking was ~ntinuously .executing three instruction
groups. In general, it will count slightly faster than the cycle counter .

• ~..!! Sun Microsystems Proprietary Revision 2.00 of November 1. 199C

122 TMS390ZS0 - Viking User Docwnentation

The combination of these two counter interrupts can be used to calculate the
dynamic performance (in million instructions per cycle, or MIPS) of the executing
program.

Cycle counter undertlow events are always reported to the last valid instruction
in the current instruction group. Instruction counter events occur as interrupts or
emulation requests to the instruction after the instruction which causes the
counter event. Instruction counter expiration events will be reported after the
first instruction which causes the undertlow.

Once set. the counter expiration event is persistent until served. TIle instruction
which caused the counter event will ultimately be restarted.

When a cycle counter expires, action for that event may be deferred until valid
instructions are available, and the pipeline is able to progress. If the action is
deferred, the request (interrupt or emulation) will persist until the pipeline is able
to continue. Once the initial event is signalled, the cycle counter continues
counting down through the most positive number. In this way the total number
of elapsed cycles from a given point may be calculated.

The instruction counter decrements the existing instruction count by the number
of instructions which complete execution in a given cycle. The number can vary
anywhere from 0 to 3 instructions per cycle. i The cycle counter always decre­
ments by 1.

The following table describes how to set up breakpoints using the proper control,
registers, and where to find infonnation that the actual actlon(s) has/have been
triggered after the b~int.

..
.r<

(":
\L,,-

Sun Microsystems Proprietary Revision 2.00 of November 1. 1990

[/

§

J

)

Chapter 4- Viking Programmer's Model 123

Table 4:..16 Breakpoints - Control and Status

BrtaJcpoillt

Response

s = Set BClPL to select IRL: x = don't care; E = Event dependent; u = unchanged

In table 4-16 above, the notations S, x, and u are self~xplanatory. The notation
E (which is given to an affected status bit indicates that the bit is Event depen­
dent,' which means that the bit status after a breakpoint depends if a particular
event has occurred. For example, the BKSDBKIS bit in row dIlta address break­
point ESB, which is designated the notation E, will be set if ACI'lON.IEN_OBK and
ACI'lON.BCIPL were set when the breakpoint occurred. ('The latter 2 bits are
designated don't cares).

For all the emulation request cases that are initiated by breakpoints, the
MCMDlNITM bit must be set.

When setting a breakpoint, the programmer must allow for the latency until the
breakpoint can be guaranteed active. To achieve this, the last ST A Ox38 insuuc­
lion that sets the breakpoint registers must be followed by an IFLUSH or a BA
instruction.

Also, after the breakpoint has been taken, the programmer must explicitly disable
(by disabling the appropriate control bits) that particular breakpoint, so that when
normal execution is resumed, the same breakpoint will not be taken again.

SIDl Microsystems Proprietary Revision 2.00 of November 1. 199<

124 TMS390ZS0 - Viking User Documentation

4.14.4. Access to Debug
Features·

4.14.4.1 MMU Breakpoint
control registers

The MDIAG altema1e address space contains code and data space breakpoint
register facilities (CBK/DBK). The EOIAG (Emulation DiagnostiC$) address spaces
contains the AcnON , insttuction and cycle counter facilities (CTR). ASI address­
ing for emulation registers has been distributed into multiple ASI spaces to sim­
plify the emulation interface. These registers are all shared with emulation
resources.

Imponant Note:
In systems using scan-based emulation, there may be contention for use
of the breakpoint and counter facilities between the remote emulator
and the kernel. There is no contention avoidance mechanism provided
to lockout debug software from distwbing the emulator context

Care must be taken when both emulation and software debug features are being
used at the same time.

ASI=Ox38 - MMU Diagnostics and Breakpoints.

AS! Function Access Access
Ox38 MMU Breakpoint Diagnostics LD/~ double

There are 4 memory mapped, Viking-specific, MMU breakpoint diainostic regis­
ters (see table 4-17). These registers are double-word access only, any other size
will cause a data_access_exception. All breakpoint enable and status bits are
cleared at reset. All values and masks are unchanged through reset.

A single address breakpoint is controlled by these 4 registers. The address break­
point may be set in code space or data space- but not both simultaneously.
An address breakpoint event can generate:

An insttuction or data access breakpoint exception, or
An insttuction or data address breakpoint inte"UJ1t, or
An insttuction or data address breakpoint emulation request, or
Enable the ESB pin. or
none of the above

The response selected is determined by MDIAGJ)KC ASI register, the AcnON
register, and JrAG MCMD scan register. This JrAG MCMO scan register is initial­
ized on powerup to inhibit W initiated emulation requests. A remote emulation
service processor can use Viking'sJrAG interface to:

Fon:e Viking into emulation mode,
Setup an insuuction or data address breakpoints,
Setup the breakpoint event to generate emulation mode requests,
Enable the pipeline to honor processor emulation entry requests,
Exit emulation mode

.~,.!! Sun Microsystems Propri.., Revision 2.00 of November 1. 1990

Chapter 4 - ViJcing Programmer' 5 Model 125

Instruction and data address breakpoint shares the same breakpoint register set.
The address map for these MMU diagnostic registers is:

Table 4-17 MMU diagnostic (breakpoint) registers

4.14.4.1 Breakpoint Value Reg

4.14.4.1 Breakpoint Mask Reg

Addr<9:8> Reg Name Description
0 MDIAG_BKV Breakpoint Value (Addr)
1 MDIAG_BKM Breakpoint Mask
2 MDIAG_BKC Breakpoint Control
3 MDIAG_BKS Breakpoint Status

These registers are defined as follows:

MDIAG_BKV: L-._R_sv_d..,;.(2_8,.;..) -:--'~B~K_V....:.(3_6~)~
63 36 35 0

This register defines the code (or data) breakpoint address value.

Rsvd(28)
. Reserved bits, read-only, should be zeroes.

BKV(36) Contains the 36 b~t value with which either physical or vinual address
of the code (or data) being accessed will be compared (as detennined
by MDIAG_BKC.CSPACE). When a match occurs, an event is generated
depending on the state of the MDlAG_BKC and AcnON ASI registers.
These actions are also affected by the IT AG MCMDlNITM bits (not pro­
grammer visible).

Rsvd(28) BKM(36)
63 36 35 0

This register defines a mask-off value. Useful for address matching across a
range.

Rsvd(28)
Reserved bits, read-only, should be zeroes.

BIeM(36) BIeM defines a per-bit comparison mask: for BKV. For any bit which is
set in BKM, the equivalent bit in BKV is ignored in the address com­
parison. This can be used to match on ranges of addresses.

Revision 2.00 of November 1. 19c.i

126 TMS390ZS0- Viking User Documentation

4.14.4.1 Breakpoint Control'
Register

This register controls whether the breakpoint is to be set for code or data space
address, whether to compare a physical or virtual address, and it also controls the
different types of breakpoint enable signals. All bits are cleared on both hardware
and watchdog reset.

MD~G_BKC: ~Rsv __ d~(~57~)~_CS __ P_A_CE~ __ PAM ___ D~_CB __ FEN __ ~
63 7 6 5 4

CBKEN DBFEN DBREN DBWEN
3 2 1 0

CSPACE IfCSPACE=I, the address in BKV is compared to code space address.
OBREN, OBWEN arid OBFEN are ignored. If CSPACE=O. the address in
BKV is compared to data space address. CBKEN and CBFEN are ignored.

PAMD IfPAMD=I.physical address is compared (bits 0-35 ofBKV). If
PAMD=O, virtual address is compared (bits 0-31 ofBKV, ignore bits
32-35).

CBFEN Enables code breakpoint fault generation. When this bit is set, a ~e
breakpoint match will cause an instruction_access_exception. When
this bit is cleared, an interrupt as defined in AC110N will be reponed.

CBKEN Enables code breakpoints. If disabled, no code breakpoint can occur.

DBFEN' Enables data breakpoint fault generation. When this bit is set, a data
breakpoint match will cause a data_acce5s_exception. When this bit is
cleared, (and either DBREN or DBWEN is set). an interrupt as defined in
ACTION register will be reponed.

DBREN Enables data breakpoints for read transactions (ill). This bit must be
set, along with CSPACE being cleared for data read breakpoints to
occur.

DBWEN Enables data breakpoints for write transactions (ST) .

...

Revision 2.00 of November 1. 199()

)

4.14.4.1 Breakpoint Status Reg

4.14.4.2 Counter Breakpoint
Value (CTRV)

Chapter 4 - Viking Programmer's Model 127

BKS: Rsvd(60) CBKIS CBKFS DBKIS DBKFS
63 4 3 2 1 o

TIlis register reports on the status of either code or data breakpoints.

CBKIS Indicates thaI an interrupt was generated as a result of a code break­
point.

CBKFS Indicates that a code access exception was generated as a result of a
code breakpoint.

DBKIS Indicates thaI an interrupt was generated as a result of a data break­
point.

DBKFS Indicates thaI a data_access_exception was generated as a result of a
data breakpoint

Any type of reset sequence or any load ASI from this register will clear all the bits
in this BKS register ..

ASI=Ox49 - Counter Breakpoint Values.

CI'RV: I ICNT. ICCNT
31 16· 15 0

CTRV is a register thaI holds the counter breakpoint values, and is composed of
two 16-bit fields: ICNT and CCN'l'. .

ICNT This field specifies the number of instructions left before the next
counter event. (See Note below).

CCNT This field specifies the number of cycles left before the next counter
event. (See Note below).

Neither counter is decremented when Vildng is in emulation mode. ICNT and
CCNT are read and written as a pair, and are unchanged at reset

.§!i,.!! Sm Mic:rosystcms Propriec.ry Revision 2.00 of November I, 1990

128 TMS390ZS0 - Viking User Documentation

4.14.4.3 Counter Breakpoint
Control (CI'RC)

4.14:4.4 Counter Breakpoint
Status (CI'RS)

Important Note:
'The total number of instructions remaining to execute before the next
counter event is given by the value held in CI'RV JCNT (readable by LDA
Ox49) plus the number of instructions in the group prior to the group
containing the LDA Ox49 instruction. If the group prior to the group
containing the LDA Ox49 instruction has zero instructions. then the
value held by CI'RV JCNT reflects the UIlCt number of instructions
remaining to execute before the next counter event An example is to
use jmpl and ba branching to the LDA Ox49. which will force a bubble
(hence zero instruction group) between the ba and the LDA. Another
example might be using a sequential instruction before the LDA Ox49 01

other methods that guarantee a group with a known number of instruc­
tions. allowing the programmer to get an exact instruction count until
the counter event Similarly. the number of cycles remaining before
the next counter event is always one more than the value held in
CI'RV.CCNT (readable by LDA Ox49).

ASI=Ox4a - Counter Breakpoint Controls.

CfRC: I Rsvd(30) I ICNTEN
31 2 1

CCNTEN
o

ICNTEN Enables the instruction counter. 1bis bit is cleared on either a power­
on reset or watchdog reset.

CCNTEN Enable the cycle counter. This bit is cleared on either a power-on reset
or watchd9g reset

ASI=Ox4b - Counter Breakpoint Status.

erRS: Rsvd(30) ZlCIS ZCCIS

31 2 1 0

ZlClS Records the status of whether an instruction counter interrupt was gen­
erated. This bit is not set when an emulation requat is induced by this
event, and is cleared on either a power-on reset or watchdog reset

ZCClS Records the status of whether a cycle counter interrupt was generated.
1bis bit is not set wilen an emulation request is induced by this event,
and is cleared on either a power-on reset or watchdog reset

Viking can read and write the ASI memory mapped emulation counter status
register. It will implicitly be· written (set) by action register enabled counter

Revision 2.00 of November 1. 1990

)

4.14.4.5 BreakpointAcnON
Register

Chapter4- Viking Programmer's Model 129

events.

ASI=Ox4c - ACTION (on event) Register.

Reserved MIX BCIPL
31 13 12 11 8

7 6 5 4

[lEN CBK lEN DBK lEN ZCC

3 2 1 o

MIX Enables multiple instruction per cy<:le execution mode. When cleared,
Viking will issue no more than one instruction every cycle. TIlis bit is
cleared at reset

BCIPL DetelDlines the IRL to be used for all breakpoint or counter intenupts.
When generated, these intenupts behave just as external intenupts­
they must meet SPARC criteria for pn. and IRL to be seen in the execu­
tion stream. TIlis field is cleared at reset.

STEN_CBK
Enables the ESB pin action on a code address breakpoint

STEN.-ZIC
Enables the ESB pin action on a zero instruction count expiration.

STEN_DBK .
Enables the ESB pm action on a data address breakpoint.

STEN,.ZCC
Enables the ESB pin action on a zero cycle count expiration. These bits
are cleared at reset

IEN_CBK Generates an intelTUpt in response to code breakpoint.

IEN_ZIC Generates an intelTUpt in response to zero instruction count

IEN_DBK Generates an interrupt in response to data breakpoint

IEN..zcc Generates an interrupt in response to zero cycle count event

If the selected event is to generate an emulation request, the associated lEN bit
must be cleared. When an intenupt on these events is desired, the associated lEN
bit must be set. These bits are all cleared at reset.

• sun
-~

Revision 2.00 of November 1. 1990

130 TMS390Z50 - Viking User Documentation

4.14.5. External Monitors

4.14.6. PIPE[9:0] definition

Viking is a highly integrated processor. It is possible for Viking to execute code
continuously from its internal cache with no external indications!orever. This
can make system debug very difficult

Several features are provided to reduce these problems. Scan based emulation
provides access to the internal state of the machine. Additional pins have been
defined to provide cycle by cycle observation of key internal states (the PIPE[O·9]
pins). These pins are defined in detail in the System Interface chapter, and are
mentioned here completeness.

These pins provide information on activity within a clock cycle, including: The
number of instructions which complete execution. When branches (including a
ttlUn indication), and memory operations occur. When floating point instructions
are issued. When the pipeline is being held by either floating point operations or
memory operations. Interrupts and exceptions are also' indicated.

In addition, the breakpoint registers may be programmed to activate the ESB pin
when a breakpoint is detected. This allows an external device to be triggered
(oscilloscope, logic analyzer, etc.).

If no interrupt or exception actions are enable for the breakpoint requests, these
breakpoints will not alter the flow of execution in any way. They simply provide
some clues as to the internal state of the machine.

Ten signals are provided to monitor the internal state of the processor. The
definition of these signals is provided below:

..

Sun Micrasystems Proprier.y Revision 200 of November 1. 1990

[;

\

Chapter 4 - Viking Programmer's Model 131

Table 4-18 PIPE[9:0] definitions

Signal Definition
PIPE[9] Active when any valid memory reference occurred in

the EO stage of the previous clock cycle.
PIPE[S] Active when any valid floating point operation occurred

in the EO stage of the previous clock cycle.
PIPE[7] Active when any valid control transfer instruction was

executed in the EO stage of the previous clock cycle.
PIPE[6] Indicates that no instructions were available when

the group currently at the WB stage was decode (DO).

PIPE[S] Active when the pipeline is being held by the Data
Cache. (Generally processing a cache miss)

PIPE[4] Active when the pipeline is being held by the Floating
Point Unit (Either queue is full, or dependencies)

PIPE[3] Indicates that the branch in EO stage of the previous
cycle was taken (1) or not (0).

PIPE[2:1] Indicates the number of insuuctions in the EO stage

PIPE[O]

4.15. JT AG and Emulation

4.15.1. Emulation Temporary
Registers (MTMP[I.2])

of the current cycle: OO=None, 01=1,10=2, 11=3.
Indicates that there is an exception or interrupt
being signalled in the current cycle

A brief description on these features is presented in this section for completeness.
See chapter S (IrAG Serial Scan Interface) and chapter 6 (Remote Emulation) for
more details.

ASI=Ox4O-Ox41- Emulation Temporaries (MTMP[l-2])

MTMp{1.2] are useful for temporarily keeping non-emulation context while Viking
enters emulation. These registers are not intended for nonnal (non-emulation)
use. MTMPI is accessed by ASI Ox40, and MTMP2 is accessed by ASI Ox41. The
address is ignored, the size is word, any other size will generate a
data_acce5S_exceptiolL These registers are R/W, and are unchanged at reset.

MTMPl:
MTMP2:

MTMPI
MTMP2
31 0
..

Sun Miaosystems Propricury Revision 2.00 of November 1. 19

132 TMS390ZS0 - Viking User Documentation

4.15.2. Emulation JT AG Data
Input Register (MDIN)

4.15.3. Emulation JT AG Data
Output Register
(MDOUT)

4.15.4. Emulation Program
Counters

ASI=Ox44 - Emulation Data In (MOIN).

A LDA from this ASI space will access the specified MDIN register. Address is
ignored. Size is word, any other will generate a data_access_exception. MOIN is
read-only, a STA has no effect and will be ignored. The register is unchanged at
reset

MDIN: MDIN
31 0

MDIN is a uni~irectional port from the emulalOr to Viking. It is used to transfer
data from the emulalOr (viaITAG) into processor visible ASI space. IrAG is the
only available mechanism to modify this register.

ASI=Ox46 - Emulation Data Out (MOOur).

MOOur is allocated ASI encoding Ox46. The address is ignored. The size is
word, any other will generate a data_access_exception. MOOur is a unidirectional
port from Viking back to the emulator. Viking can read and write this memory
mapped resource. 1be register is unciwlged at reset

MDOUT: MDOUT
31 0

ASI=Ox47,Ox48 - Emulation Exit PC and NPC.

MPC and MNPC reside in different ASI encodings. Any address within their respec­
tive ASI will access that register. Byte, Halfword and Double word accesses to
any MPCJMNPC register is explicitly illegal and will generate a
data_access_exception.

MPC:
MNPC:

MPC and MNPC are written by Vildng upon successful entry to Viking emulation
mode. 1bey define the PC pair needed upon exit from Viking emulation mode to
resume execution of the nonnal instruction stream. Any data written into these
register outside of emulation mode is not guaranteed in the presence of emulation
activity. 1bey are uncbmged at reset

..

Revision 2.00 of November 1. 1990

()
4.16. ASI Map

D

)

Chapter 4- ViJcing Progranuner's Model 133

This section provides an overview of the Viking ASI assignments, which are con­
sistent with the SPARC Reference MMU (SRMMU), and the • • Suggested ASI assign­
ments" from the SPARC v8 architecture manual.

Since Viking does not generally transmit ASI accesses external to the chip, system
visible ASI accesses are limited to: transparent MMU mode, normal data reference.
and control space accesses (ASIS Ox20-0x2f, Ox08-OxOa. and Ox02 respectively).

All 8 bits of the ASI are decoded. an error occurs on all access to reserved values.
Each supponed ASI specifies the types (U>IST) and size of accesses which are
allowed. violations cause errors.

The following table lists all of the ASI values supponed by Viking. Each has been
explained in detail throughout this chapter. A reference to the manual section
which describes the ASI is also provide.

..

Sun Mic:rosystems Proprietlry Revision 2.00 of November 1.1990

134 TMS390ZS0 - Viking User Documentation

Table 4-19 ASIs supported I1y Viking

ASI Function Access Size Section
OxOO-OxOI ReselVed - - (None)

Ox02 Control Space Access WIn all 4.10
Ox03 RefMMU FlushlProbe WIn single 4.11.7
Ox04 RefMMU Registers WIn single 4.11.11
Ox05 ReselVed - - (None)
Ox06 RefMMU TLB Diagnostics LD/ST single 4.11.12
OX07 ReselVed - - (None)
OxOS User Instruction W/ST all 4.5.3
Ox09 SupelVisor Instruction W/ST all 4.5.3
OxOa User Data wIn all 4.5.3
OxOb SupelVisor Data wIn all 4.S.3
OxOc Instruction Cache Tags wIn double 4.7.6
OxOd Instruction Cache Data wIn double 4.7.6
OxOe Data Cache Tags wIn double 4.S.6
OxOf Data Cache Data WIn double 4.8.6

Ox 1 O-Oxlf ReselVed - - (None)
Ox20-0x2f RefMMU Bypass LD/ST all 4.5.3

Ox30 Store Buffer Tags WIn double 4.12
Ox31 Stpre Buffer Data WIn double 4.12
Ox32 Store Buffer Control WIn single 4.12

Ox33~x35 ReselVed - - (None)
Ox36 Instruction Cache Flash Oear n single 4.7.6
Ox37 Data Cache Flash Oear n single 4.8.6
Ox38 MMu Breakpoint Diagnostics WIn double 4.14.4
Ox39 BIST Diagnostics WIn single 4.3.S

Ox3a~3f ReselVed - - (None)
Ox4O-Ox41 Emulation Temps[1-2] wIn single 4.1S
Ox42~43 ReselVed - - (None)

Ox44 Emulation Data Inl W single 4.1S
Ox4S Reserved - - (None)
Ox46 Emulation Data Out WIn single 4.1S
Ox47 Emulation Exit PC Win single 4.1S
Ox48 Emulation Exit NPC LD/ST single 4.1S
Ox49 Emulation Counter Value lD/Sr single 4.14
Ox4a Emulation Counter Mode lD/Sr single 4.14
Ox4b Emulation Counter status WIn 'single 4.14
Ox4c AcnON register WIn single 4.14

Ox4d-Oxff Unassigned - - (None)

.~,.!! Revision 2.00 oCNovember 1.1990

c

Ci

Chaptcl'4-VikingProgrammer'sModel . 135

Notes:

The instructions LDSTUBA and SWAPA generate data_access_exception on ASI

values other than Ox08-OxOb or Ox20-0x2f.

Any ASI access with a size other than indicated on table 4-19 will generate
data_access_exception.

.~!! Smt Microsyswns Proprietary Revision 2.00 of November 1, 1990

[Blank Page]

5
JTAG Serial Scan Interface

IT AG Serial Scan Interface .. ___ ._ _ _ _ _ _........... 139

5.1. OveIView . __ .. __ ._._ ... _ ___ ._ __ _ __ _ _ ... _._ ... _ __ _......... 139

To implement manufacttlling fault coverage _ _ 139

To permit periphery and intercormect testing _ _ ... _.................. 139

To permit built-in self test . __ ._._ ____ __ ._ _ .. , 139

To support a remote debugging environment _. __ ... _ _ ... _ .. _ ... _.__ 139

5.2. IT AG Requirements . __ ... ___ =-__ ._._. __ . ___ . _________ ._. __ __ ._._.__ 139

5.3. ITAG.Interface _____ __ ... _. ___ __ ... _ ____ ._ ... ___ . .;_ ____ .. 140
5.4. ITAG Operations ________________ ... __________ ... _____ __ .. 140

IT AG CAPTURE operation _________ _.:.._ .. -: __ ... __ . __ ___ __ .. 141

ITAG SHIFI' operation . _____________________ ._ ___ ... _.. 142

ITAG UPDATE operation . ________ ... _. _____________ .. __ . __ ... _.. 142

5.5. TAP Controller ______________________ . __ .. _____ _______ 142

IT AG Reset Requirements __________ . ____ ... _ .. ______________ 144

Effects Of TAP Reset _____ .____________________________ 144

5.6. Accessible Scan Chains inside Viking _____________ . ____ . ____ .. 144

5.7. IR Format and Encodings _________ ._._._ _______ ._. ____ ._ ... ____ 146

Public ITAG instructions and scan rings __________ . ___ . ___ .. 147

BYPASS __________ • ____ . __ . _________ • _______ .. 148

CID • _____________ . ________________ ____ . __ . __ . ___ •.. _ 148

BSCAN _______ ... _. __ . _____________ . __ __ . ___ . ______ . __ ._ 148

SHORT_BIST.LDNG_BIST ______ . ____ . _____ . __ .. ___ ______ ... 150

Signature ________ _____ _._. ____ .. _ ... __ . ___ __ .. ___ . ___ .. 151
. ~

)

Emulation ._ _._ ... _ _ 151

Private ITAG instructions and scan rings _ _ ..
t'C~"

151 (j
"'-

SEE_PLL __ ._ __ _._ _ _ __ _ _ 151
INTERNAL_SCAN __ ._. ___ ._._._ _ _._._. __ .. _ _ 152

5.8. System Level Test _____ . __ . _______________ ._ ... ___ ._. __ _ .. 152

..

5.1. Overview

5.1.1. To implement
manufacturing fault
coverage

5.1.2. To pennit periphery
and interconnect testing

. 5.1.3. To permit built-in self
test

5.1.4. To support a remote
debugging environment

5.2. JT AG Requirements

5
JT AG Serial Scan Interface

Viking provides the IEEE P1149.1 IT AG serial scan interface mechanism to allow
observation and control for different applications:

ITAG allows test software access to internal scan logic to detennine device
manufacturing correcmess.

IrAG allows software controlled boundary scan, to test the periphery and inter­
connect between chips on boards which use Viking. Boundary scan testing
requires software that uses IrAG to scan-in, apply, scan-out and compare vectors .

Using internal scan. Viking provides BIST. In addition to software initiation using
ASI Ox39, Viking BIST can be initiated by software that uses the IrAG mechanism.
(See section 4.3.5, - Built-In Self Test (BIST) for more details on ~IST).

Remote emulation debug software can use ITAG to halt an application program,
examine or alter register and memory state (including the program counters), set
breakpoints or counters (to specify conditions where control should leave the
application code and return back to the emulator), and to resume control within
the application code. Such software can download SPARe assembly language for
the intended emulation function, inspect device specific IrAG status and provide
a recovery mechanism when emulation instructions fault See section 6, -
Remote Emulation Support for more details on emulation.

Viking requires that the internal TrAG TAP (Test Access Port) controller be reset
before normal system operation begins. Also, systems which do not provide a
TCK input to Viking during nonnal system operation must assert TRST _ during
power-on reset. Viking requires that the external ITAG busmasterTAP controller
remain in synchronization with Viking's internal ITAG TAP controller. See section
4-1, - State after hardware reset for more details on Viking haIdware reset

.~,.!! Sun Microsylt.ems Propriewy • Revision 2.00 of November 1. 199C

140 TMS390Z50 - Vilcing User Documentation

. 5.3. JT AG Interface

5.4. JT AG Operations

Imponant Note:
All systems (with TCK active) which uses the TRST_ assertion to reset
Viking's internal IrAG TAP comroller must

Keep TMS assened during TRST_ assertion.
Hold TMS assened for a minimum of 3 TCK cycles (as seen by

ViJcing) after negating TRST_.

After the three TCK cycles have elapsed, the external Ir AG busmaster is allowed
to negate TMS.

The IEEE PI 149.1 IrAG serial scan interface mechanism is composed of a set of
pins and TAP controller state machine that responds to those pins. The design is
partitioned into several serially scanned 'rings' which are independently
accessed. Ring access selection is detennined by the IR (Instruction Register).
Access into the IR scan chain is in accordance with the Ir AG protocol.

The Viking IrAG interface is composed of 5 wires:

Test Oock (TCK)
Test MQ<1e Select (TMS)
Test Logic Reset (TRsTJ
Test Data In (TOI)
Test Data Out (TOO)

IrAG defines three basic scan chain operations:

CAPTURE
SHIFT
UPDATE

Each of the serially scanned rings internal to Viking is composed of a
reconfigurable shift register chain. Each stage of the scan chain has two register
chains of equal length:

The primlJry scan chain register
The update scan chain register

The primlJry scan chain register is configurable as a shift register, while the
update register is not. (See the IEEE Pl149.1 IrAG Specification for more
details). The functionality of a single bit IrAG scan chain register is:

Sun MicrosysumIs Propriec.y Revision 2.00 of November I, 1990

r~'
~j

Chapter 5 - TrAG Serial Scan Interface 141

(:

Figure 5-1 One Bit nAG Scan Chain Datapath Element

~ ~ Primary
Update -- Scan Chain ~ ScanCbain

Register Register Q TOI • . . --.

..--..
!\ r+

V V A
ITCK ITCK

D

TOO

The diagram below illustrates the three operations in a simplified functional
"') view.

Figure 5-2 nAG operations - CAPTURE. SHIFT. and UPDATE

5.4.1. JT AG CAFI'URE
operation

SHIFT UPDATE

roI
Primary Rea PrimaryRq

TCK
1DO TCK. TCK. TCK.

During a CAYI'URE operation, the 11' AG Scan Chain elemem captures selected data
into the primary register. Differem data is captured for different instructions.

Sun Mic:rosystems Propriebry Revision 2.00 of November 1. 199C

142 . TMS390ZS0 - Vilcing User Documentation

BYPASS - captures I-bit zero
em - captures component ID OxOOOO402f
BSCAN_INTEST - captures values at output buffers
BSCAN_EXTEST - captures values at output pins
BSCAN_SAMPLE - captures values at all pins
Signature - captures the signature register
MSTAT - captures MSTAT register
MDOUI' - captures MOOUI' register
others - either captures the update register or has no effect

After one TeK, those captured values are ready to be shifted out (using SHIFT
operation) to the Viking level TOO at the end of the scan chain ring. In some
specific cases, DRCAPl'URE captures the value of a particular register into the pri­
mary register. This capability allows capturing of internal logic states, and the
information is then shifted out to be read. The MDOUI' register provides this
capability.

5.4.2. JT AG SHIFI' operation During a SHIFT operation, the IT AG Scan Chain element operates as a shift regis­
ter. Each primary register stores its TOI value and shifts forward its TOO in the
next TCK cycle, as input to the next primary register in the scan chain. For a ring
of size N, the TAP controller must shift N times to completely fill the scan chain.
During this operation, the update register is unused, and retains its value.

5.4.3. JTAG UPDATE operation During an UPDATE operation, the'ITAG Scan OWn element delivers the value
~ntained in the primary register into the update register. Except for this
overwrite period, the update register retains its previous value. Viking internal
logic only sees the the value contained in the update register. A Single UPDATE

cycle will deliver the intended values to the update register scan chain. The
UPDATE is performed after all the values have been shifted into the primary scan
chain registers. During this operation, the primary register retains its value.
UPDATE is ignored by non-writable registers.

5.5. TAP Controller The Test Access Point (TAP) controller is a Viking internal sequencer which
manages access to all ITAG scan register rings. It ignores TDIIl'DO. The TAP con­
troller examines TRS'I'_ and TMS sequences each cycle for ITAG state transitions.
The state of the TAP controls assertion of CAPTURE. SHIFT, and UPDATE opera­
tions. See the IEEE Pl149.1 If AG Specification for more details.

Sun Miaosystems Propriet.y Revision 2.00 of November 1. 1990

\
)

Chapter 5 - rrAG Serial Scan Interface 143

The TAP controller state transition diagram is:

Figure 5-3 nAG TAP Controller State Transition Diagram

IRSCAN

o

IRCAPTURE

Two things guarantee that the TAP controller enters the TEST LOGIC RESET state,
assertion ofTMS for five consecutive TCK cycles, or a single assenion ofTRST_.
Both TMS and TRST_ must be negated to exit the TEST LOGIC RESET state, into the
WAIT state. There are 2 basic TAP Controller state groups: those related to the IR.
(Instruction Register) scan chain related to a TDR (Test Data Register) scan
chain. Each state group is composed of 7 member states (see diagram):

Three states implement CAPI'URE. SInFI'. UPDATE operations within the
selected scan chain.

One state is used to stop midway through a SInFI' sequence into the
selected scan chain.

Three states make transitions into other states.

Reading noAG registers requires aCAPI'URE followed by SHlFI'. Writing noAG

registers requires SHIFT followed by UPDATE. After a complete (write in) SHIfT

Sun Mic:rosysfems Proprietary Revision 2.00 of November 1. 199

144 TMS390ZS0 - Viking User Documentation

5.5.1. JT AG Reset
Requirements

sequence, an UPDATE is caused to occur by two consecutive TCK cycles with TMS
= 1. Before a readout SHIFT sequence, a CAPTURE should take place. Recall that
UPDATE will be ignored for any non-writable registers.

The 11' AG TAP controller must be reset at power-up to guarantee correct Viking
operation. IfTCK is not present, TRST_ must be assened at power-up, to properly
reset the TAP controller. Otherwise, the IrAG IR will be in an indeterminant state
which could result in undefined operations.

Recommendation:
If IrAG is not used in a system, TRST_ should be assened to
avoid unintended Ir AG operation.

5.5.2. EtTects Of TAP Reset The following table show what internal states will be selected when TAP reset
(TEST LOOIC RESET) state is entered

Table 5-1 State after TAP reset

5.6. Accessible Scan Chains
inside Viking

Register/lntemal state Affected State After TAP Reset
The IR register OxIO (CIDTDR selected)
SHIFT. UPDATE, CAI'I'URE negated
seleccir signal negated
enable_tdo signal negated
IrAG UPDATE register outpuce~le bit JlCgated
MCMD register cleared
MSTAT register cleared

There are 5 scan chains inside Viking that are accessible through IrAG, they are:

The lR register domain
The standard 1l'AG register domains (BYPASS. em, BSCAN)
An intemalhaIdware test domain (mtemal use only)
The BIST register domains (SHORTJUST.LDNG..BIST, SIGNATURE)
The emulation register domains (MOIN, MCI, MSTAT. MDOur)

Sun Mic:Iosystems PIopriecIry Revision 2.00 of November 1. 1990

I

I
I

\
I

Chapter 5 - IT AG Serial Scan Interface 145

The block diagram of all TrAG accessible serial scan chains is:

Figure 5-4 Block Diagram of nAG Scan Chains inside Viking

./ select ir
TRST_ TAP CONTROLLER enable_tdo

TCK

TDI

> •

t IR. ~ I I

J
DECODER

~aDture shift undate

+ + + - BSCAN
cm
BYP

~ • • + r--- MDIN
.1-- MCI
r--- MSTAT
r--- MDOUI'

~ ~
f--
f-- INTERNAL

I---- SCAN RING

~ +
RUN_BIST V SIGNATURE

The 1R. register consists of one S-bit scan chain, and its value selects the TOR scan
chain for subsequent SHIFT, UPDATE, and CAYl'URE operations.

The emulation register domain consists of 4 scan chains: MDIN, MCI, MSTAT and
MOOUT. Two are input, and the other two output. MDIN and MCI provide infor­
mation from the remote emulation processor to Viking internals, while MST AT

and MOOUT brings information from Viking to the remote emulation processo~
See chapter 6, - Remote Emulation Support for more details.

Hardware test domains-are for manufacturing use only, other usage will provide
undefined results.

The BIST register domain permits a BIST sequencer to intemally generate, scan-in
apply, scan-out and obtain a signature for state vectors.

Sun Mic:rosysrems Proprietary Revision 2.00 of November 1. 19(

146 TMS390ZS0 - Viking User Documentation

5.7. IR Format and
Encodings

The Viking 5-bit lR (Instruction Register) selects TOR scan chains for the SHIfT.

UPDATE, and CAPTURE operations. The lR scan ring is selected when the If AG

TAP controller is in the lRCAPl'URE.lR.SHIFT and lRUPDATE states. AnIRCAPTURE

does not capture the current value of the lR update register. Instead it returns a
fixed binary encoding of 00001. The low 2 bits of this encoding is required by
the IEEE P1149.1 IrAG Specification (under IR rule D).

I£EE 1149.1 identifies public and private instructions for IR encodings. Viking
offers 18 lR instructions, selected by a 5-bit IR. Most instructions select which
serial TDR ring to operate on during a If AG "test data register" access, and two
instructions initiate BIST Oong and short).
The 18 IR instructions are categorized into 7 categories:

Table 5-2 Categories of Viking IR instructions

Cate20rv Number of instructions
Basic scan rings 2 instructions: ClD, BYPASS
Boundary scan rings 3 instructions: Extest, Sample, Intest
Examine PLL clock 1 instruction: SeePLL
Internal manufacturing scan rings 5 instructions
Initiate BIST 2 instructions: start long/short BIST
BIST signature ring 1 instruction: Signature
Emulation scan rings 4 instructions: MCI. MSTAT. MDIN. MOOtrr

..
..

• ~!! Sun MicrosyslCmS Proprietary Revision 2.00 of November 1. 1990

()

5.7.1. PublicJTAG
instructions and scan
rings

Chaplet' 5 :- rr AG Serial Scan Interface 147

The IR encoding to select access to a particular Viking TDR scan chain is:

Table 5-3 TDR Scan Chain selection I1y IR Encoding

TDR Ring Selected IR Value 4# bits
BSCAN_EXTEST OXOO 290
BSCAN_SAMPLE OxOl 290
BSCAN_INTEST Ox02 290
Internal Scan_ Capture_ Clock_Mode Ox03 n/a
Internal Scan Domain 0 Ox04 n/a
Internal Scan Domain 1 OXOS n/a
Internal Scan Domain 2 Ox06 n/a
Internal Scan Domain 3 OX07 n/a
MCI Ox08 37
MDIN Ox09 32
MOOlIT' OxOa 32
MSTAT OxOb 13
SIGNATURE OXOC 32
RUN_SHORTJIST OxOd nla
RUN_LONG_BIST OxOe nla
SeePLL OxOf nla
CID OxlO-Oxle 32
BYPASS Oxlf 1

Three are standard ITAG TOR scan chains (BYPASS,CID.BSCAN). The rest are Vik·
ing specific scan chains.

Viking provides 12 public ITAG instructions, which belong to the following
categories:

Public IT AG instruction
BYPASS
aD
BSCAN
BIST
Sigilature
Emulation

A brief description of actions that occur during CAPTURE. SHIfT. and UPDATE
operations at the different. scan chains are given below. For IT AG more details,
see the IEEE PI 149.1 ITAG Specification.

Revision 2.00 of November I, 199<

148 TMS390ZS0 - Viking User Docwnentation

5.7.1.1 BYPASS

5.7.1.2 CID

5.7.1.3 BSCAN

The BYPASS scan chain comprises a I-bit primary scan register, with no update
register. When IR selects BYPASS, the chip's TOI and TOO are essentially con­
nected to this primary register, and DRSHIFI' only requires one TCK cycle to for­
ward data. And DRCAP'IVRE loads a I-bit zero into the primary register. DRUP­
DATE has no effect

The CID scan chain comprises a 32-bit ring of primary registers, where bit[O] is
always I, bit[1I-I] the manufacturerID, bit[27-12] the part number, and bit[31-
28] the version number. DRCAPTURE loads the value OxOOOO402f into the eID
primary registers scan chain. Subsequent DRSHIFT cycles shift (bit[O]) out and
scan newTOI data in (bit[3I]). 1bere is no update register, and DRUPDA1'£ has no
effect

[Note:
Viking em value is OxOOOO402f. 1

Viking BSCAN is a 290-bit ring of TrAG scan chain register elements. DRCAP'IVRE
reads data from the chip pins into the primary register. DRSHIFI' forwards data
through the scan chain, where bit[O] is outpUt to TOO. For the entire chain to be
completely written in or read out, 290TCK cycles are needed. DRUPDA1'£ copies
data from the primary register into the update register, taking only I TCK cycle.
The following is Vilcing boundary scan map:

..

Sun Microsystems Propriewy Revision 2.00 of November I, 1990

Chapter 5 - ITAG Serial Scan Interface 149

T~ble 5-4 Viking Boundary Scan bit definition

Bit Signal Bit Si2DaI Bit Signal Bit siiiiil
0 resecin 1 tesCin 2 snntscin 3 ccn1y_in
4 data63_in 5 data63_out 6 data62_in 7 data62_out
8 data61_in 9 data61_out 10 data60_in 11 data60_out
12 data59_in 13 data59_out 14 data58_in 15 data58_out
16 data57_in 17 data57_out 18 data56_in 19 dataS6_out
20 dataS5_in 21 dataS5_out 22 dataS4_in 23 dataS4_out
24 dataS3_in 2S dataS3_out 26 data52_in 27 dataS2_out
28 data51_in 29 dataSCout 30 dataSO_in 31 dataSO_out
32 data49_in 33 data49_out 34 data48_in 35 data48_out
36 data47_in 37 data47_out 38 data46_in 39 ' data46_out
40 data45_in 41 data45_out 42 data44_in 43 data44_out
44 vck_in 45 pllbyp_in 46 data43_in 47 data43_out
48 data42_in 49 data42_out 50 data4Cin 51 data41_out
52 data40_in 53 data4O_out 54 data39_in 55 data39_out
56 data38_in 57 data38_out 58 data37_in 59 data37_out
60 data36_in 61 data36_out 62 data35_in 63 data35_out
64 data34_in 65 data34_out 66 data33_in 67 data33_out
68 data32_in 69 data32_out 70 we3_out 71 we2_out
72 wet_out 73 weO_out 74 dpar3_in 75 dpar3_out
76 dpar2jn 77 dpar2_out· 78 dparCin 79 dpar1..,.out
80 dparO_in 81 dparO_out 82 pend_in 83 sizeCout
84 sizeO_out 85 owner_in 86 owner_out 87 shared_in
88 shared_out 89 enor_out 90 cchbCout' 91 su_out
92 'addr23_in 93 addr23_out 94 addr22_in 95 addr22_out
96 addr2Cin 97 addr2Cout 98 addr20":'in 99 addr20_out
100 addr19_in 101 addrI9_f)ut 102 addr18_in 103 addrl8_out
104 addrl7_in 105 addrl7_out 106 addrl6_in 107 addrl6_out
108 addr1 5_in 109 addrl5_out 110 addrl4_in 111 addr14_out
112 addr13_in 113 addrl3_out 114 addrl2_in 115 addrl2_out
116 daboe_out 117 addrlCin 118 addrlCout 119 addrl0_in
120 addrl0_out 121 adboe_oUl 122 addI09_in 123 addI09_out
124 addr08_in 125 addr08_out 126 dpboe_out 127 addI07_in
128 addr07_out 129 slboe_out 130 addr06_in 131 addr06_out
132 allboe_out 133 elboe_out 134 addrOS_in 135 addr05_out
136 addr04_in 137 addr04_out 138 snboe_out 139 addr03_in
140 addr03_out 141 mbboe_out 142 addr02_in 143 addr02_out
144 mlboe_out 145 stboe_out 146 addrOCin 147 addrOCout
148 addrOO_in 149 addrOO_out 150 oe_in 151 oe_out
152 wr_in 153 wr_out. 154 oeboe_out 155 nein
156 M_out 157 burst_out 158 retJy_in 159 wee_in
160 wee_out 161 mexc_in 162 ardy_in 163 ardy_out
164 busreQ...out 165 wrdy_in 166 wrdy_out 167 rnly_in
168 wgICin 169 rgrcin 170 cmds_in 171 cmds_out
172 demap_in 173 demap out 174 csa out 175 Idst out

.~!! Revision 2.00 of November 1. 199

150 TMS390ZS0 - Viking USa' Documentation

(continued)

Bit Signal Bit Signal Bit Signal Bit . Signal

176 dpar4_in 177 dpar4_out 178 dparS_in 179 dparS_out
180 dpar6_in 181 dpar6_out 182 dpar7_in 183 dpar7_out
184 we4_out 185 we5_out 186 we6_out 187 we7_out
188 dataO_in 189 dataO_out 190 dataCin 191 datal_out
192 data2_in 193 data2_out 194 data3_in 195 data3_out
196 data4_in 197 data4_out 198 dataS_in 199 dataS_out
200 data6_in 201 data6_out 202 data7_in 203 data7_out
204 data8_in 205 data8_out 206 data9_in 2rJ7 data9_out
208 data 1 O_in 209 data 1 O_out 210 datalCin 211 datalCout
212 data 12_in 213 data 12_out 214 datal3_in 215 datal3_out
216 data 14_in 217 data 14_out 218 data IS_in 219 data IS_out
220 data 16_in 221 data 16_out 222 datal7_in 223 data 17_out
224 datal8_in 225 datal8_out 226 data 19_in 227 data 19_out
228 data20_in 229 . data20_out 230 data2Cin 231 data2Cout
232 data22_in 233 data22_out 234 data23_in 235 data23_out
236 data24_in 237 data24_out 238 data25_in 239 data25_out
240 data26_in 241 data26_out 242 data27jn 243 data27_out
244 data28_in 245 data28_out 246 data29jn 247 data29_out
248 data30_in 249 data30_out 250 data31_in 251 data3Cout
252 pipeOO_out 253 pipeOCout 254 p~pe02_eut 255 pipe03_out
256 pipe04_out 257 pipeOS_out 258 pipe06_out 259 pipe07_out
260 pipe08_out 261 pipe09_out 262 irlO_in 263 irlCin
264 ir12_in 265 irl3_in 266 adda4_in 267 addl24_out
268 addr25_in 269 addr25_out 270 addl26_in 271 addl26_out
272 addr27_in 273 addr27_out 274 addl28_in 275 addl28_out
276 addr29_in 277 addr29_out 278 addr30_in 279 addr30_out
280 addr31_in 281 addr31_out 282 addr32_in 283 addr32_out
284 addr33_in 285 addr33_out 286 addr34_in 287 addr34_out
288 addr35_in 289 addr35 out

5.7.1.4 SHORT _BIST. LONG_BIST The Vilcing BIST mechanism is initiated by or examined through either IT AG or
ASI memory references. When BIST is initiated. any pre-BIST Vilcing state will be
destroyed. At the completion of a ITAG initiated BIST. the III« needs to generate the

zaet. Tbis CD be done by entain& the TAP naellt.re by eilber usenion ofNS for S consecu­
tive TCK ~1ea or IIICt1in& TRST_. Inta'IIalIiming sequeaciD& will ~ PIJ. restabilization.
Once initiated, BIST will be under the control of Viking. Il1d therrAGTAP CIOIlIl'Oll« need not remain

in WAlTJlWNJIST swe. See section 4.305. - BMill-ln SclfT Ul ('/no) for more details. When IR

se1ee1S Bpr, CAPnJllE will reaun BJST.J)ONE stalUS. UPDATE his no effect. AI the completion of
BJST, • CAPI'UllE of the SIGNA11JRI!1DR should be done.

..

Sun Mic:rosystems Propria.ry Revision 2.00 of November 1. 1990

5.7.1.5 Signature

5.7.1.6 Emulation

5.7.2. PrivateJTAG
instructions and scan
rings

5.7.2.1 SEEYU.

Chapter 5 -IrAO Serial Scan Interface 151

Signature scan chain is a 32-bit ring. Both long and shon BIST operations cause
the BIST sequencer to generate, scan-in. apply, and scan-out a signatUre for one of
two pre-defined pseudo-random test vectors. The Viking response to these vectors
is collected and compressed into the signawre register. The correct value of the
signature register will be different for these two cases. See section 4.3.5, -
Built-In Self Test (BIST) for more details.

There are four independent scan rings associated with remote emulation: MOIN.
MCI. MSTAT, and MOOUT. See section 6.3.1.3, -Mel (ETfUlJation Command and
Instruction) for more details.

The MDIN scan chain is a 32-bit ring. DRSHIfT shifts data from a primary register
into the next primary register. Bit[O] goes out to TOO, while bit[31] reads in TOI.
DRUPDATE copies data from the primary register into the update register. DRCAP­
TURE has no effect See section 6.3.1.2, -MDIN (Emulation Data In) for more
details.

The MCI scan chain is a 37-bit ring, covering both subfields MCMO and MlNST.
DRSHIFT shifts the primary register to the next primary register in the chain,
where bit[36] reads in TOI, and bit[O] outputS TOO. DRUPDATE copies data from
the primary register into the update register. DRCAPTURE has no effect.

The MSTAT scan chain is a 13-bit ring. DRCAPl'URE captures data from the
MSTAT register into the primary register. DRSHIFr shifts the primary register to
the next primary register in the chain, where bit[12] reads in TOI, and bit[O] out­
puts TOO. DRUPDA TE copies data from the primary register into the update regis­
ter.

The MDOUT scan chain is a 32-bit ring. DRCAmJRE captures data from the
MOOUT register into the primary register. DRSHIFr shifts the primary register to
the next primary register in the chain, where bit[31] reads in TOI, and bit[O] out­
puts TOO. DRUPDATE copies data from the primary register into the update regis­
ter.

Viking provides 6 private IrAG instructions, which belong to the follOwing
categories:

Private rr AG instruction

SEE_PU.
INTERNAL_SCAN_CAPrt1RE_Q.OCK_MODE
INTERNAL SCAN DOMAIN[0-3]

This scan chain is used to verify the integrity of the on-chip pu. with respect to
clock jitter and VCO behavior. WbeD selected (refer to table 5-3, - TDR Scan
Chain selection by IR Encoding). the scan chain will output Pll.. clock on TOO.
This sCan should not be Used when Viking is plugged into a board.

Sun Microsysrems PIopriela'y Revision 2.00 of November 1. 1990

152 TMS390Z50 - Viking UseI'Documentation

5.8. System Level Test

This scan chain is used for hardware manufacturing tests. details are not provided
in this manual

The IEEE PI 149.1 IrAG Specification (chapter Legal Interconnections Of Com­
ponents Compatible With PI 149.1) provides guidelines on how to connect Tel(,
TMS. TOI and TOO for making serial. parallel and hierarchical configurations for
ITAG board level su~systems. lbis allows a hierarchical ITAG test technique.
and Viking supports it. Similar in ways with how Viking selects TOR scan chains.
a second level ITAG controller (e.g. board level IrAG busmaster) may connect
multiple chips on a board to fonn parallel and serial paths. Furthermore. a third
level ITAG conttoller (e.g. backplane level ITAG busmaster) may connect multiple
second level Ir AG controllers to fonn a chain.

Figure 5-5 Example of System Level nAG Test Hierarchy

11 12 13 --. tdi tdi tlnStd tdi Ido
tms tms

L2TMSI

21 ·VTDI.
VIKING

VTDO
23

tdi tdo t.di tdo t.di Ido -+
tInS tInS

j

22
tInS

L2TMS2

L2TMSI
L2JTAG

L2TDI BUSMASTER L2TDO

(t . ~
L3TDI L3TMS L3TDO

The example shows one ~ levd 1rAG busmaster controlling 6 IrAG com-
ponents configured into 2 pu;,aJ1el daisy chains. Each componem in the chain
connects its TOI to the preceding chip's TOO. The first Chip in each oCthe parallel
daisy chains is tied to a common level-2 TOI, and the last chip in each chain is'~
wire-ORed to a common level-2 TOO. Each of the parallel chains receives a '~-
unique TMS from the second level TAP controller.

+§Y,.!! Sun Miczosystems Proprieary Revision 2.00 of November 1. 1990

6

Remote Emulation Support

Remote Emulation Support _.. ISS

6.1. Overview ... _ _ _ ... _... 155

6.2. Emulation Strategy ... 155

6.3. Emulation Register Set _ _... 156

ITAGTDRs emulation registers __ _ _ ... _ ___ ... ____ 156

IR (lnsttuction Register) ._. ___ . __ __ _._ .. __ _ _ 156

[
MOIN (Emulation Data In) .. _._. __ ._._ ... __ ._._ ... ___ ... __ ... __ 157

MCI (Emulation Command and Instruction) __ ... __ _........ 157

MOOUf (Emulation Data Out) _____ ... _ ... ____ __ ._ ... _................. 158

MSTAT (Emulation Status) .. _________ . _________ ._ ... _.................. 159

Emulation Registers in ASI Space . __ . ___ ._. ___ ... ___ . _____ ... _........ 161

Emulation exit PC/NPC Registers ... __ . _________ . __ ___ 162

MTMP[1-2] Registers ______ . _____________ ... _ ... _ _........ 162

MOIN Register . _______ ____ ... _ _. __ . __ ._. ___ . __ ._. ___ 162

MDOlIT Register ______ . _______ . ___ . ___ . __________ ._.. 162

6.4. Supported Emulation Primitives ________________ . __ . ____ . __ .. 163

Force Emulation Mode ________ . ____ . _____________ . __ _ .. __ .. 163

RIW Integer Registers . __________________________ .___ 163

RIW Integer Register Flle ______________ . ____ . __ . ___ ... _. __ .. 163

RIW FP Registers ____ . ________ ._ ... _ .. ____ . ____ ... __ . ___ . __ _.. 163

RIW FP Register File . __________ . ____ . ___ ... _____ _. ___ ._........... 163

Read/lJpdate Memory _. ________ .. _ ... _. ___ ._. __ ... ____ __ _........ 164

RIW Emulation Exit PC and NPC ___ _ __ ... _ __ 164

Observe Emulation Status _ .. . 164 ,-

-Resume Nonnal Operation 164
..... - y

Hardware Reset Vildng _ 164

Watchdog Reset Vildng __ .. _ _ _ .. . 164

Allow user emulation request _ ... _._ _ ... _ _ 164

6.5. Emulation Sequences _ _ _ _ _ _ _ 164

6.6. Emulation Execution])etails 165

State during Emulation mode .. _.: 165

Faults during Emulation Execution 165

Legal and megal Emulation Insttuctions ... _ _ _ 166

Compound Emulation Protocol Commands 166

6.7. Emulation Insttuction Sequences for Common Emulator
Functions __ _ _ ... _ _ _ _ .. __ _ _ 168

Integer Register File Read .. _ .. _ __ _ .. __ _ 169

Integer Register File Write .. _ _ .. 169

Integer State Register Read _ _: _ 169

Integer State Register Write __ ... __ ... _ __ _ ... _ __ 169
Memory Read . _______________ ... _ _ _ _ 170

Write Memory .. ___ ... ~-------------.----." - ... - ... - - ... - 171
/'

Floating Point Register Read . _____ ... _______ . ___ ... ___ _ _ ... 171
Floating Point Register Write ________ ... __ ______ ... ___ _ 172

Floating Point State Register Read . __ __ ... ___ ... __ __ ... _ ... _ ... _ .. 173
Floating Point State Register Write _________ ... __ . _____ ... ____ .. 174
Setting Code and Data Address Breakpoints ._' _ ... ________ ... _ 174
Run for "N" Instructions/Cycles . ________ ... _ ... __ . ________ .. 176

6.8. Approximate Latencies for Each Emulator Primitive _________ .. In
6.9. Details about Entering Emulation _______________ _ 178
6.10. Emulation Exception Issues ________________________ .. 178 .

..
I~

6.1. Overview

6.2. Emulation Strategy

6
Remote Emulation Support

Viking provides facilities to observe and control processor execution from a
remote device using the IEEE P1149.1 IrAG se~al scan interface, called in circuit
emulation. Their use is described in this chapter, and the IrAG interface is
described in chapter 5.

Traditionally, systems debugging methods required very expensive dedicated
add-on hardware, cormected using ribbon cables and fragile cormectors, and are
not generally available when the first processor prototypes are delivered (which
is when they would have been most useful). Furthermore, the length of the cable
was limiting the processor system clock rate when the emulator is being used,
and also introduced extra electrical-loading which affected pin timings.

As a solution to that problem, Viking provides in circuit emulation to suppon a
remote environment for debugging Systems, done entirely over the serial Ir AG
bus. TIle features are useful for both hordware and software development. It is
completely non-intrusive into the system design. Neither the pin timings nor the
processor speed are affected. Nearly all features of traditional emulators are pro­
vided, except for real-time trace and memory emulation.

All programmer visible state is accessible, and changeable using the IrAQ inter­
face. Software must be provided to control the emulation from a remote com­
puter with a IrAG interface. During emulation, the caches and store buffer con­
tinue to operate; these resources will snoop incoming system bus requests. Many
emulation resources are shared with standard software debugging features.

Viking provides virtual in-circuit emulation (VICE), or also known as remote
emulation. TIle remote emulator's interface to Viking uses the IrAG IR (instruc­
tion register) to select one of four emulation Ir AG TORs. The remote emulator
provides Viking with emulation protocol commands, emulation instructions,
addresses and data for updating Viking's state through two IrAG TOR registers:
MCI (eMulation Command and Instruction), and MDIN (eMulation Data In). Vik­
ing returns existing Viking system state data and emulation protocol status
through two other IrAQ TOR registers: MDOUT (eMulation Data Out) and MSTAT
(eMulation STATus).

Through these registers, the remote emulator can command the processor to tem­
porarily halt execution of the nonnal SPARe instruction stream. Once halted, the

Sun Mic:rosysrems Proprieury Revision 2.00 of November 1. 199

156 TMS390Z50 - Viking User Docmnentation

processor can be directed to execute any normal SPARC instruction. No processor
state information which is not explicitly modified by this emulation instruction
will be altered.

An example of the simplest emulation sequence is to allow the remote emulator
to observe an internal Viking register. To achieve this, the emulator halts the pro­
cessor, scam in a SPARC instruction to write the desired register into the MOOUT
register, then scans out the MDOUT TrAG TOR. Other sequences can be
significantly more complex.

6.3. Emulation Register Set The control registers for emulation exist in two register sets:

6.3.1. JT AQ TDRs emulation
registers

6.3.1.1 JR (Instruction Register)

Type Emulation registers
TrAG TOR JR. MOIN, MCI, MDOUT. MSTAT
ASI space PC/NPC. MTMP[l-21. MOIN (ASI Ox44), MDOUT (ASI Ox46)

Note that the TrAG TOR MDIN and MDOUT are accessible through ASI space as
well. 1bese registers are briefly described below, but for more details on the
TrAG TOR operations, see section S. For more details on the ASI visible emulation
registers, see section 4.16.

,There are five TrAG TORs that are important for emulation, they are'listed on the
table below:

IrAGTDR Name
JR (Instruction Register)
MCI (eMulation Command and Instruction)
MOIN (eMulation Data In)
MDOUT (eMulation Data OU1)
MSTAT (eMulation ST A Tos)

See chapter S for details on TrAG TOR scan operation.

..

Sun Mierosysrems Proprietary Revision 2.00 of November 1. 1990

["

/

)

6.3.1.2 MOIN (Emulation Data
In)

Chapter 6 - Remoce Emulation Support 157

The IR register selects which Ir AG TOR scan chain to access. The following table
only lists IR encoding that select emulation register Ir AG TOR scan chains. For a
complete listing see table 5-3 and section 5.7.

Table 6-1 Emulation register TDR Scan Chain selection by IR Encoding

TOR Ring Selected IR Value # bits
MCI OX08 37
MDIN Ox09 32
MDOtrr OxOa 32
MSTAT OxOb 13

This 32-bit register allows information passing from the remote emulator to Vik­
ing. For example, the remote emulator scans in data to the MOIN register. and
Viking retrieve the data using LDA ASI Ox44. It is particularly useful to set
pointers to memory references, to update register or memory values. Refer to
sections 5.7.1.6 -Emulation and 4.15.2 -EmulationfI'AG Data Input Register
(MDIN) for more details.

Table 6-2 MDIN Scan Register ForrMt

6.3.1.3 MCI (Emulation
Command and
Instruction)

Figure 6-1

MCI: INITM(1)

36

MDIN: I MDIN(32) I
31 0

The MCI scan chain is 37 bits and comprises 2 subfields: a 5-bit MCMO register
and a 32-bit MINST register. MCMO qualifies MINST and sends configuration and
command information to Viking. All bits inMCMO are cleared upon IrAG TAP
controller reset. (Refer to table 5-1 - State after TAP reset). Also see section
5.7.1.6 for details onJTAG operation. The fonnat of the IrAG MCI scan register
{MCMD.MINST} is shown below:

Mel (Emulation Comnuuul and Instruction) Register ForrMt

MENTER(I) MEXEC(1) MEXIT(1) MRESET(I) MINST(32)
35 34 33 32 31 0

MCMDJNrI'M
The primary function of this bit is to enable Viking to enter emulation
mode as a res'Ult of a breakpoint, assuming ACTION register is properly
programmed. In addition. this bit affects the operation of SIGM (Signal
Emulation, a Viking-specific instruction). IfINITM=O, SIGM will exe­
cute as a NOP. If INITM= 1 , SIGM initiates a user level emulation entry.

Sun Mic:rosys&ems Proprietary Revision 2.00 of November 1. 199<

158 TMS390ZS0 - Viking User Documentation

..

6.3.1.4 MDOUT (Emulation
Data Out)

(Refer to section 4.4.6 - Signal User El1IUlation Request (SIGM) and
4.14.4.5 -Brea/cpointACTION Register). This bit is cleared onITAG
TAP controller reset

MCMD.MRESET
When set, this bit forces a full Viking baniware reset (rather than a
watch dog reset). This bit is cleared on IT AG TAP controller reset.

MCMD.MENTER
When set, Viking is forced to enter emulation mode. TIle program
counter (PC/NPC pair) is captured to resume post-emulation execution.
In emulation mode, the Viking prefetch controller stops accessing the
instruction cache, starts passing NOPs into the IU pipeline and examines
the state of MEXEC to wait for an instruction to execute. This bit is
cleared on IT AG TAP controller reset

MCMD.MEXEC
When set, a single instance of the MlNST instlUction will be forced into
the processor pipeline. nus will cause it to be executed as a normal
SPARC instruction. Once launched, the prefetch controller will clear
MEXEC. resume passing NOPs into the IU pipeline and monitor valid bits
at the last stage of the IU pipeline. Once the prefetch controller deter­
mines that no remaining emulation instructions are in the processor
pipeline, it examines MEXlT to determine whether to remain in emula­
tion mode or to resume normal execution. A floating point related emu­
lation instruction (LOF, STF, LOFSR. STFSR) may ·only be issued when the .
FP queue is empty (signalled by the MSTAT.FQE bit). This MEXEC bit is
cleared on IT AG TAP controller reset

MCMD.MEXlT
When set, Viking will exit emulation mode (to resume normal execu­
tion) as soon as all execution in the pipeline is complete. The execu­
tion stream branches to the PCINPC values stored upon entry to emula­
tion (and possibly intentionally modified during emulation). The pre­
fetch controller continues to pass NOPs into the pipeline until either an
MEXEC or MEXlT is assened. This bit is cleared on lI'AG TAP controller
reset.

MINST This register contains a single SPARC instruction which is emitted as
the emulation instruction (qualified by MEXEC). Several emulation
instructions are typically required to completely execute the semantics
of an emulator primitive.

This register stores data to be passed back to the remote emulator. It can be used
to pass Viking state infoIDlation to ~ remote emulator. This register is accessi­
ble Ibrough ASI space Ox46 (refer to section 4.1S.3). TIle format of the MDOUT
register is: '

Sun MicIosyst.cma Propri-.y Revision 2.00 or November 1. 1990

...
\

Chapler 6 - Remote Emulation Support 159

Table 6-3 MOOl.n' (Emulation Data Out) Register Format

6.3.1.5 MSTAT (Emulation
Status)

Table 6-4

MDOUT: MDOUT(32)
31 0

The MSTAT scan chain is 13 bits long, and it contains information about Viking
emulation status. The only way to retrieve this information is through IT AG scan
operation. The MST AT register is cleared upon TAP Controller reset The MSTA T
format is:

MSTAT (Emulation Status) Register Format

MSTAT: ECHOTMR MACK TMRM CBKM ZICM DBKM
12 11 10' 9 8 7

ZCCM IPND ERRMODE MIFLTD PFPX

6 5 4 3 2

MIDONE FQE
1 0

MSTAT .ECHOTMR
ECHOTMR is an echoed version of MCMD.MENTER after it has passed
through TCK-VCK-TCK synchronization. (TCK is test clock, VCK is Vik­
ing clock). ECHOTMR is asserted asynchronously to emulation instruc­
tion execution. The purpose of this signal is to signal that Viking has
seen the request to enter emulation mode. Assertion of this signal does
not indicate that Viking has actually entered emulation mode. This bit
is cleared upon the IrAG TAP Controller reset

MSTAT.MACK
MACK is an indication that Viking is in emulation mode. It is asserted as
soon as Viking enters emulation mode and stays active until Viking
leaves emulation mode. It is synchronized to TCK (refer to chapter 5.
This bit is cleared upon the TAP Controller reset

Note:
TMRM, CBKM, ZICM. DBKM and ZCCM qualify MACK to identify to the
remote emulation service processor software the cause for Viking's
entry into emulation mode. It is possible that more than one is
asserted, indiAting that there were more than one cause.

MSTAT.TMRM
TMRM indicates that Viking entered emulation due to an MCMD.MENTER

Sun Mic:rosystems Propri-.y Revision 2.00 of November 1. 199()

160 TMS390ZS0 - Viking User Documentation

1"­
i - \,~-

requestfrom the emulator. This bit is cleared on TrAG TAP Controller
reset, Viking hardware reset, or by updating the MCI register.

MSTAT.CBKM
CBKM indicates that Viking entered emulation due to a code address
breaJc:point. Oeared on TrAG TAP Controller reset, Viking hardware
reset, or by updating the MCI register.

MSTATZICM
ZlCM indicates that Viking entered emulation due to a zero instruction
count breakpoint. This bit is cleared on TrAG TAP Controller reset, Vik­
ing reset, or by updating the MCI register.

MSTAT.DBKM
DBKM indicates that Viking entered emulation due to a data address
breaJc:point. This bit is cleared on TrAG TAP' Controller reset, Viking
reset, or by updating the MCI register.

MSTATZCCM
ZCCM indicates that Viking entered emulation due to a zero cycle count
breakpoint. This bit is cleared upon a TrAG TAP Controller reset, Viking
reset, or by updating the MCI register.

MSTAT.IPND
IPND assertion indicates the processor has a pending interrupt request
that is higher than the current Viking PSRJPL or at level lS.1PND is used
to inform the remote emulation processor that an interrupt is pending
and that Viking should be released to service it This bit is cleared
upon the TrAG TAP Controller re,set

MSTAT.ERRMODE
ERRMODE indicates Viking has entered e"or mode as a result of a fault
generated while in emulation mode. Any exception occuning during
an emulation instruction sequence will force Viking into error mode.
Entering error mode will induce the watch dog reset sequence, set .
MSTAT.ERRMODE, and exit emulation mode. 1be ERRMODE bit will
stay asserted until the next MSTAT update operation (or cleared by the
TrAG TAP Controller reset).

Impottant Note:
When enor mode occurs while in emulation mode, no assertion of
MEXlT or MRESET is needed for Viking to leave emulation and restart
execution at the reset vector.

MSTAT .MIFLTD
MlFLTD·indicates that an emulation instruction with a data memory
reference created a. data access fault It does not indicate whether other
sources of exceptions (e.g. pending FP exceptions) occurred during
emulation instruction execution. MIFLTD is only meaningful when
qualified by the assertion of MIDONE status bit No emulation instruc­
tion exception update MFSR orMFAR. Only MSFSR (the shadow FSR)

,r
\" j

Sun M~ ProprietIry Revision 2.00 of November 1. 1990

[!

.
6.3.2. Emulation Registers in

ASI Space

Chapter 6 - Remote Emulation Support 161

will be updated. MSFSR is cleared upon entrance to emulation mode.
TIle emulation service processor must check the MIFLTD status bit after
every emulation instruction which references memory, and if that bit is
set, it is the responsibility of the remote emulator software to clear it
with an explicit STA emulation instruction to the MSFSR. This MIFLTD
bit is cleared by nAG TAP Controller reset, updating MCI, or Viking
reset

MSTAT.PFPX
PFPX indicates that a pending floating point exception exists.
This exception can be caused by two ways:

Note:

Prior non-emulation FPOPs (which were already in the FQ and
continued to execute while the processor has entered
emulation mode) generate an FP exception.

Emulation FPOPs can also generate an FP exception.

Before issuing an FP related emulation instruction, the remote emulator
must make sure that: All FPOPs have cleared from the FQ (MSTAT.FQE =
1). There is no pending FP exception generated (PFPX = 0).

Any taken FP exception in emulation mode will cause error mode. This PFPX bit
is cleared by clearing out the FQ, by a ViJcing hardware reset, or a nAG TAP Con­
troller reset

MSTAT .MIDONE
MIOONE is asserted when an emulation instruction completes execu­
tion. No additional emulation instructions should be issued until the
current emulation instruction has completed, as indicated by MIOONE.
If an emulation instruction is an FPOP, MIOONE assertion only means
that the FPOP was successfully issued to the FPU. Therefore, for floating
point related emulation instructions, the requirements to satisfy before
issuing another FP related emulation instruction is error-free execution
of the previOUS FPOP which is indicated when FQE = 1 and PFPX = O.
1bis MIDONE bit is cleared by nAG TAP Controller reset, an MSTAT
register read, subsequent entry into emulation mode, or Viking
hardware reset.

MSTAT.FQE
FQE indicates that the FQ is empty, and is asserted when all FPOPs have
finished error-free execution .

There following 4 ASI mapped registers directly suppon emulation: MPC/MNPC.
MTMP[1-2], MDIN, and MDOUI'. 1be follOwing sections briefly describe each of
those registers. Other ASI mapped registers are also accessible through SP ARC AS]
instructions .

• ~!! Sun MicmsystemS Proprietary Revision 2.00 of November 1. 199

162 TMS390Z50 - Viking User Documentation

6.3.2.1 Emulation exit PC/NPC
Registers ASI

Ox47
Ox48

6.3.2.2 MTMP[I-2] Registers
ASI

Ox40-0x41

6.3.2.3 MDIN Register'
ASI
Ox44

6.3.2.4 MDOtrr Register
ASI
Ox46

Function AcceSs Size Section
Emulation Exit PC wIn single 4.15
Emulation Exit NPC wIn single 4.15

The program counter of the instruction executing just prior to emulation entry is
written to PC/NPC registers. 1bese values are the targets of the branch when Vik­
ing resumes normal execution upon exit from emulation. These registers can be
examined or altered by the emulator, and are accessible through LDNSTA Ox47-
Ox48 (refer to section 4.15.4 - Emulation Program Counters).

Function Access Size Section
Emulation Temps[1-2] WIn single 4.15

These two registers are useful for temporarily storing information while in emu­
lation. If more than two words of information are to be temporarily stored, the
remote emulator must use its TrAG MDOUf scan capability, and later restore it
through TrAG MDIN. These M'J'MP(l-2J registers are accessible through ASI Ox4O­
Ox41 (refer to 4.15.1, -Emultuioll Temporary Registers (MTMP{J-2J).

Function Access Size Section
Emulation Data Inl LD single 4.15

An emulation instruction sequence can move incoming emulation data (address
poinlers and data for Viking system SJate updates) from the TrAG MDIN register
into the IU register file using WA instructions. Subsequent emulation instructions
can use this data to update memory or ViJcing state. This MDIN is a reDd only
register through an AS! Ox44 access.

Function Access Size Section
Emulation Data Out I.D/n single 4.15

An emulation instruction sequence can move outgoing ViJcilig state data from the
IU register file to the emulation MDOUf polt using a STA. Emulation control
software can then use this infonnation to display processor state or check status.
This register is accessible through ASI Ox46.

c

Sun Microsysra'ns PIopricury Revision 2.00 of November 1. 1990

[,

" ,

6.4. Supported Emulation
Primitives

Chapter 6 - Ranote Emulation Support 163

TIle table below identifies the emulation primitives or functions that Viking sup­
ports.

Emulation primitive Description/Method
Force Emulation Mode Assen MCMD.MENTER
R/W integer register PS~ WIM. TBR. Y
R/W integer register file SPARC LDIST instructions
R/W floating point register FSR.FQ
R/W floating point register file SPARC LDIST %fO..%t31
R/Wmemory SPARC LDIST. LDAISTA to memory
R/W emulation exit PCINPC lDAISTAASIOx47.()x48
Observe emulation status Scan out MSTAT
Resume normal execution Assen MCMD.MEXlT
Hardware Reset Viking Assen MCMD.MRESET
Watchdog Reset Viking In emulation. issue TA
Allow user emulation request Assen MCMDJN1TM, user exec SIGM

6.4.1. Force Emulation Mode

6.4.2. RIW Integer Registers

6.4.3. RIW Integer Register
File·

6.4.4. RIW FP Registers

6.4.5. RIW FP Register File

Each of the primitive is briefly described:

TIle remote emulator can force Viking to enter emulation by asserting the
MCMD.MENTER bit Since this bit is on the MCI scan chain, the only way to
access it is by rr,f.o scan methodology.

While in emulation mode, the following IU registers are completely accessible
through the use of normal SPARC instructions (loaded onto MINST). They are:
pSR. WIM. TBR, Y.

While in emulation mode, the IU register file is completely accessible through the
use of normal SPARC instructions (loaded onto MINST). It covers all implemented
windows.

While in emulation mode, the following FP registers are completely accessible
through the use of normal SPARC instructions (loaded onto MINST). They are:
FSR, FQ. See "Note on FP related emulation instructions" below.

While in emulation mode, the FP register file is completely accessible through the
use of normal SPARC instructions (loaded onto MINST). They are: %fO..%t3l.
See "Note on FP related emulation instructions" below.

Sun Microsystems Proprictmy Revision 2.00 of November 1.1990

164 TMS390ZS0 - Viking User Documentation

6.4.6. Read/Update Memory

6.4.7. RIW Emulation Exit PC

andNPc

6.4.8. Observe Emulation
Status

6.4.9. Resume Normal
Operation

6.4.10. Hardware Reset Viking

6.4.11. Watchdog Reset Viking

6.4.12. Allow user emulatioD
request

6.S. Emulation Sequences

Note on FP related emulation instructions:
Before issuing any FP-re1ated emulation instructions, the remote emula­
tor must examine MST AT.FQE to make sure that all prior FPOPS in the FQ
have completed and no pending floating point exception was generated

While in emulation mode, memory is completely accessible through the use of
normal SPARC instructions (loaded onto MINST). All ASI spaces are also accessi­
ble.

While in emulation mode, allow the remote emulator to examine the emulation
exit PC/NPC pair. TIlere is no simple architectural means available to observe the
current program counter values, other than CAlL and trapS. nus emulation prim­
itive allows read and write, using LDAISTA Ox47-Ox48. Changes in the processors
execution stream are accomplished by modifying these PC/NPC register pair.

While in emulation mode. MSTAT recoRls if the attempted emulation insttuction
has completed. faulted, caused error mode or has a pending interrupt request.
MSTAT also specifies if the FQ is empty or has generated a pending ~ exception.
TIle pending interrupt request can be used to suggest to the emulator that normal
program flow should be continued. to minimize interrupt latency.

While in emulation mode, force Viking to resume non-emulation execution from
the saved (or emulation modified) PCJNPC pair. nus is accomplished by asserting
MCMD.MEXlT

Emulation can initiate both a full reset or a watchdog reseL To initiate a full
reset. assert MCMD.MRESET.

To initiate a watchdog reset. while in emulation. issue a trap always (T A) emula­
tion instruction.

By asserting MCMDJNlTM. the remote emulator is allowing a user request to enter
emulation. which the user accomplishes by executing the SIOM (a Viking specific
instruction). SIOM executes as a NOP when MCMDlNlTM is not asserted.

Issuing each emulation instnJ4:tion requires the emulator to send multiple IT AG
scan sequences. Since the MCI TDR contains both the MINST and MCMO registers.
only one register needs to be loaded to issue a single emulation instruction.

/~-',

Depending on the emulation instruction to execute, MDIN may need to be set
before the instruction is executed. For more complex emulation sequences, pro­
cessor state will need to be preserved before any state is modified. This involves .

• ~...!! Revisioft 2.00 of November 1. 1990

6.6. Emulation Execution
Details

6.6.1. State during Emulation
mode

Chapter 6 - Remote Emulation Support 165

many emulation instructions.

Unless Viking is in error mode. the remote emulator can force Viking into emula­
tion mode by scanning in an asserted MCMD.MENTER value. The emulator polls
MSTAT for an indication that the instruction is complete. The scan sequence for
emulating an individual instruction is at least a portion of the following:

Scan-In any required pointers and data into MDIN.
Scan-In the emulation instruction (MCI_MINST) and

emulation protocol command (MCMO). including the
MEXEC and optionally the MEXIT bits.

Scan-Out MSTAT emulation status register
to determine when the emulation instruction has completed,
faulted, or induced error mode. This poll also indicates
whether any prioritized intenupt is currently at Viking's pins.

Scan-Out of any requested Viking system state data from MDOUT.

This section provides some additional infonnation on how Viking operates in
emulation mode.

Viking assumes the following state when in emulation mode:

Table 6-5 Viking State upon entry into EmuJation mode

6.6.2. Faults during
Emulation Execution

Register/Bit Affected State
PSR.s asserted
PSR.EF asserted
PSR.ET negated
AcrION.MIX negated
MCNTL.NF asserted

Synchronous ST

As reflected in the table above. when Viking enters emulation mode. all emula­
tion instructions execute in supervisor mode, multiple instruction execution
mode is disabled, the NF bit is asserted, and emulation ST instructions are syn­
chronous and bypass the store buffer. A store buffer copy-out was done before
entry into emulation. 1be FPU is still enabled, it is allowed to continue execu­
tion, without being aware that the processor has entered emulation.

If an emulation data memory reference instruction faults, it sets the
.MSTAT.MIFLTD bit (but does not cause error mode). The remote emulator must
force an emulation instruction to clear out the MSFSR register through the MMU
ASI space. Failing to do'this willleaveMSTAT.MIFLTD asserted, and can give
subsequent emulation instructions a faulty emulation status indication.

.~!! SW'l Mic:msyst.ems Proprietary Revision 2.00 of November 1.1990

166 TMS390ZS0 - ViJcing User Documentation

6.6.3. Legal and Dlegal
Emulation Instructions

6.6.4. Compound Emulation
. Protocol Commands

The processor executes with PSR.ET disabled. Any synchronous exceptions that
are reponed will cause Viking to enterenormode (and setMSTAT.ERRMODE)
which induces a watchdog reset. 'The faa that PSR.ET was disabled upon emula­
tion entry allows asynchronous exceptions (such as priority intenupts.
data_store_exception. floating.,poincexception) to be ignored.

The emulation instruction in MINST must be a legal SPARC instruction. However.
only a subset of the SPARe instruction set is supponed during emulation mode.
In general, instructions which affect the flow of execution when not in emulation
mode are not supponed. A simple example is a branch instruction. There is no
reason to support control transfer instructions in emulation mode. Operation of
the processor in emulation mode on these illegal instructions is undefined.

Legal emulation instructions:

All legal memory reference instructions (including alternates, atomics).
All arithmetic and logical instructions, except trapping tagged arithmetic.
SETHI.
All integer state register accesses.

IUegal emulation instructions (but legal SPARC instructions):

All control transfer instructions (CAU..BICC,FBFCC,lMPL.RETT).
All software ttaps ('nCC).
1be FLUSH 'instruction.
All trapping tagged arithmetic.
SAVE and RESTORE (manipulate CWP directly instead).
All illegal instructions.

Many of these illegal operations will cause entry into enor mode. force Viking to
leave emulation mode and induce a non-emulation watch dog reset.

Separate control bits are used to enter emulation, execute an emulation instruc­
tion, and then exit. These separate bits may be used together to optimize emula­
tion sequences. 1be simplest emulation sequence writes the MCI.MINST register
with a single emulation instruction. and set the MENTER. MEXEC. and MEXlT bits.
This will cause Viking to enter emulation. execute the emulation instruction. then
resume execution. This entire sequence will require only a few cycles to execute
(afterMCI is scanned in throughlrAO) •

..

Revision 2.00 of November 1, 1990

Chapter 6 - Remote Emulation Support _ 167

Table 6-6 Valid compound e1'TlldLuion sequences

MENTER
1

x

x

x

x

1

1

MEXEC MEXIT Action
1 0 Enter emulation mode,

issue a command,
then pause (awaiting MEXEC or MEXlT).

1 0 Once in emulation mode,
issue a new emulation instruction,
then pause (awaiting MEXEC or MEXIT).

1 1 Once in emulation mode,
issue a new emulation instruction,
exit emulation mode upon completion,
then resume execution at the captured
(or altered) non-emulation PC pair.

0 1 Once in emulation mode,
immediately resume execution at the captured
(or altered) non-emulation PC pair.

0 0 Once in emulation mode,
is aNOP.

0 0 Will cause entry into emulation mode,
and wait.

0 I Will stan entry into emulation, but then
immediately exits. No emulation instruction
is execUted. MST AT .MACK is not updated .
. To the programmer it might appear that emulation
was never entered.
("Ibis sequence is not very useful)

Simultaneous assertion of MEXEC and MEXlT can dangerously lead to timing
races in sampling MSTAT.MIDONE that cause bad inferences by the remote emula­
tion service processor. Upon completion of the last emulation instruction in the
current emulation session, this compound MCMD mode will exit emulation
mode. MSTAT.MIDONE will be set and MSTAT .MACK will be negated.

TIle remote emulator must check MSTAT to make sure the previous emulation
instruction has completed and was error-free. A re-entry into emulation clears
outMSTAT.MIDONE and MSTAT.MIFLTD, and it could do so before the remote
emulator can checkMSTAT. If this corrupted case, the remote emulator would
mistakenly assume that the last emulation instruction had not completed.

It is recommended that an MEXEC be issued without MEXlT. 1be MST AT can
determine the completion status of the last emulation instniction. When MSTAT
reports error-free, MEXlT without MEXEC can be issued to exit from emulation.
An immediate re-entry iIito emulation mode will allow the emulation program to
differentiate between the end of the first emulation session and the stan of the
·second emulation session.

.~!! Sun Microsystems Proprietary Revision 2.00 of November 1. 1990

168 TMS390ZS0 - Viking User Documentation

6.7. Emulation Instruction
Sequences for
Common Emulator
Functions

1bis section will describe some possible emulation instruction sequences for
some common emulatot primitives. Many other implementation are possible.
TIle primitives may be combined to create other functions as needed.

The primitives to be described are:

ReadlWrite Integer Registers
Read/Write Integer Control Registers (PSR WIM TBR Y)
Read/Write Floating Point Registers
Read/Write Floating Point Control Registers
Read/Write Memory (byte,half,word,double,etc.)
Read/Write Memory (Normal and ASI)
Set Code and Data Address Breakpoints
Single Step
Run for N Cycles
Run Until Breakpoint reached

The next sections provide detailed sequences for each of the above operations.
Throughout these sequences, numerous symbolic constants will be used.

The symbolic constants are described below:

Table 6-7 Symbolic ConstlllltS for Emulation Sequences

mdiag Ox38
bkv OXOOO
bkm Oxl00
bkc 0000
bIcs Ox300
mtmpl Ox40
mtmp2 Ox41
mdin Ox44
mdout Ox46
mpc Ox47
mnpc Ox48
ctrv Ox49
ctrc Ox4a
ctrs Ox4b
action Ox4c
XREG emulation register
XADDR emulation memory addr

..
I~~

I\l)

.!!l,..!! Revision 2.00 of November 1.1990

... /

\

6.7.1. Integer Register File
Read

6.7.2. Integer Register File
Write

6.7.3. Integer State Register
Read

6.7.4. Integer State Register
Write

Chapter 6 - Remote Emulation Support 169

The most basic emulator operation is to display an integer register. TIle" following
emulation instruction sequence will transfer the contents of the integer register
XREG within the current CWP to MOOtrr register. Once in MOOtrr, the data can be
scanned out to the emulator.

/I copy XREG to mdout; scan it ouL
scan_in("sta %XREG, [%gO] mdout", mci, poll)
scan_out(mdoul, remote_emulator)

To store a new value (or restore an old value) into an integer register at the
current CWP, the following sequence can be used. The new value for integer
registerXREG is assumed to have been previously scanned-in to registerMDIN.

/I scan in new value; install it into iu rfile.
scan_in(new _iu_rfile_entry _ value,mdin)
scan_in("lda [%gO] mdin, %XREG", mci, poll)

The following sequence will transfer any of the integer state registers (PSR WIM
TBR Y) registers into the MOOtrr register. The sequence below assumes-access to
the PSR is desired. Note the use of the MTMPI register to preserve and restore
integer register stale.

I/prologue
scan_in("sta%gl, [%gO] mtmpl", mci, poll)

/I copy iu..:.creg to mdout through gl temp. scan it ouL
SC8n_in("Jd %psr, %gl". ma, poll)
scan_in("sta%gl, [%gO] mdout", mci, poll)
SC8n_out(mdoul, remote_emulator)

I/epilogue
scan_in("lda [%gO] mtmpl, %gl", ma, poll)

TIle following sequence will modify any integer state register. The new value for
the given IU state register is assumed to have previously been scanned-in to
MDIN. The sequence below modifies the PSR .

..

• suo·
-~

Revision 2.00 of November 1. 199<

170 TMS390ZS0 - Viking User Documentation

6.7.5. Memory Read

II prologue
scan_in("sta%gl, [%gO) manpl", mci, poll)

II scan in new value to gl and install into psr.
scan_in(new _iucrelL value,mdin)
scan_in("lda [%gO] mdin, %gl". mci. poll)
scan_in("wr%gl. %psr", mci, poll)

lIepilogue
scan_in("lda [%gO] manpl, %gl", mci, poll

The sequence below demonstrates reading a signed byte value at a given memory
addressXADDR within an implicit alternate address space (supervisor data space
where ASI=Oxb). This ASI is used since the processor is effectively executing in
supervisor mode. The value of XADDR is assumed to reside in the MOIN I/O regis­
ter before any emulation instruction is emitted.

At the conclusio~ of the sequence, the value of the signed byte residing in
memory address .xADOR within the implicit supervisor data space ASI (Oxb) will
be placed in the MOOUT register. When MJOONE is asserted, the data can be
scanned-out to the emulator. .

The sequences for signed and unsigned half-word, word and double WOM reads
are very similar. Reads from alternate address spaces are also similar. the LDSB
instruction is replaced with a lDSBA. .

//prologue
SC3Il_in("sta%gl, [%80] munpl", mci, poll)
SC3Il_in("sta %g2, [%801 munp2", mci, poll);

II SC3Il in xaddr. copy to gl
SC3Il_in(new _xaddr_ value,mdin)
SC3Il_in("lda [%80] mdin, %gl", mci, poll)

II load g2 w/*xaddr; copy to mdout scan it out
SC3Il_in("ldsb [%gl], %g2", mci, poll)
SC3Il_in("sta%g2, [%80] mcloutH, mci. poll)
SC3Il_out(mdout, remote_emulator)

//epilogue
SC3Il_in("lda
SC3Il_in("lda

[%80] munpl. %gl". mci. poll)
[%801 munp2. %g2". mci. poll);

..

Revision 2.00 of November 1. 1990

6.7.6. Write Memory

6.7.7. Floating Point Register
Read

Chapter 6 - Remote Emulation Support 171

The following sequence modifies memory by writing a byte value at a given
memory address XADOR within an implicit alternate address space (supervisor
data space where ASI=Oxb).

During a memory write, MDIN will be used twice by the emulation software. Ini­
tially the remote emulation software will scan into MOIN the value of the memory
address XADOR to be written. Once this address is transferred to the IU register
file, the remote emulation software will then scan in the new value
(NEW_OATA_VALUE) to be written at the specified memory location (XADDR).

The sequences for half-word, word and double word writes to are very similar.
Writes to alternate spaces are also similar, with the STB instruction replaced by a
STBA.

I/prologue
scan_in("sta%gl, [%80] mtmpl", mci, poll)
scan_in("sta%g2, [%80] mtmp2", mci, poll);

/I scan in XADDR value. copy XADDR to g 1.
scan_in(XADDR_ VALUE, mdin)
scan_in("lda [%gO] mdin, %gl II ,mci, poll)

/I scan in NEW_DATA value. copy NEW_DATA to g2.
scan_in(NEW _DATA_VALUE, mdin)
scan;..in("lda [%gl] mdin, %g2",mci, poll)

/I install NEW_DATA at XADDR.
scan_in("stb%g2, [%gl]" ,mci, poll)

I/epilogue
scan_in("lda
scan_in("lda

.

(%gO] mtmpl, %gl", mci, poll)
[%gO] mtmp2, %g2", mci, poll)

For simplicity, this example provides the save address in registerMDIN, its selec-
tion is assumed to be safe. 1be following sequence will transfer a floating point
register XREG into the MDOUr register for the emulator to scan ouL The sequence
for reading floating point control registers is similar .

• ~..!! Sun Miaosystans Proprietary Revision 200 of November 1. 19

172 TMS390ZS0 - Viking User Documentation

6.7 JL Floating Point Register
Write

I/prologue
scan_in("sta%gl, [%80] mtmpl", mci, poll)
scan_in("sta %g2, [%80] mtmp2" , mci, poll)

/I scan address of background memory word (XADDR).
/I copy XADDR into %gl; load ·xaddr into g2.
scan_in(xaddr_ value, mdin);
sC3ll_in("lda [%80] mdin, %gl" ,mci, poll)
scan_in("ld [%gl], %g2". mci, poll)

/I this emulation primitive MUST not change non-emulation
/I memory state. FP reads require we alter and then

. /I restore a background memory state. No sufficient number
/I of mnnp to do this so we augment the storage by scanning
/I out to external remote emulation processor memory.
scan_in("sta %g2, mdout" ,mci, poll)
scan_out(mdout, remote_emulator_templ)

/I before issuing next emulation instruction,
/I make sure mstaLfqe= 1 and mstaLpfpx=O
/I copy fp entry to bgnd word; copy into iu temp.
scan_in("st %fXREG, [%gl]",mci, poll)
scan_in("ld [%gI1, %g2",mci. poll)

/I copy FP entry to mdout; scan out fp entry.
scan_in("sta %g2, [%gO] mdout" ,mci, poll)
scan_out(mdout, remote_emulator)

/I restore original background memory word
scan_in(remote_emulator_templ,mdin) .
scan_in("lda [%80] mdin, %g2", mci, poll)
scan_in("st %g2. [%gI1" ,DIci, poll)

I/epilogue
scan_in("lda
scan_in("1da

[%80] mtmpl. %gl",mci, poll)
[%gO] mtmp2. %g2". mci, poll)

The sequence for writing floating point registers is similar to the reading
sequence. except a floating point register is loaded from memory. rather than
written. The following is a possible code sequence:

Sun Microsystems Propri-..y Revision 2.00 of November 1. 1990

r

6.7.9. Floating Point State
Register Read

Chapter 6 - Remote Emulation Support 173

II prologue
scan_in("sta%gl, [%gO] mtmpl", mci, poll)
scan_in("sta %g2, [%gO] mtmp2", mci, poll)

/I scan address of background memory word (XADDR).
/I copy XADDR into %gl; load ·xaddr into g2.
scan_in(XADDR_ VALUE, mdin)
scan_in("lda [%gO] mdin, %gl" ,mci, poll)
scan_in("ld [%gl], %g2", mci, poll)

/I preserve original background word in remote_emulator_tempI.
/I this emulation primitive must not change non-emulation
/I memory state. FP writes require we alter and then restore
/I a background memory state. No sufficient number of nump
/I to do this so we augment the storage by scanning out to
/I external remote emulation processor memory.
scan_in("sta %g2, mdout" ~ci, poll)
scan_out(mdout, remote_emulator_temp 1)

/I scan in new new fp_data_ value
I/load it into iu rfile. write it to background word.
scan_in(NEW _FP _DATA_ V ALUE,mdin)
scan_in("lda [%gO] mdin, %g2" ,mci, pall)
scan_in("st %g2, [%gl]",mci, poll)

/I before issuing next emulation insttuction,
/I make sure mstalfqe= 1 and mstalpfpx=O
/I install new value into FP register.
scan_in("ld [%gl]. %fXREG" ,mci. poll)

/I restore original background memory word.
scan_in(remote_emulation_templ,mdin)
scan.....in("lda [%gO] mdin, %g2". mci, poll)
scaD_in("st %g2. [%gl]" ,mci, poll)

/I epilogue
scan_in("lda
scan.....in("lda

(%gO] mtmpl, %gl", mci, poll)
[%gO] mtmp2, %g2", mci, poll)

Reading values from floating point state registers, such as the FSR is similar to the
previous two examples. The floating point memory references are replaced by
store FSR operations. Extracting entries from the floating point queue is more
difficult. While in emwation mode, FQ entries should never be extracted unless
MSTAT.PFPX indicates an FP exception. Otherwise the remaining FPOPS in the FQ
should be allowed to execute. If PFPX is asserted and the emulator wants to
recover, the FQ can be read with a double word size. Since MDOUf is only a

Sun Microsystems Proprietary Revision 2.00 of November 1. 199

174 TMS390ZS0 - Viking User Documentation

6.7.10. Floating Point State
Register Write

6.7.11. Setting Code and Data
Addre~ Breakpoints

single word wide, two scan passes are required to transfer the full queue entry to
the emulator.

The following sequence will read the floating point queue.

There is an additional archiucrural side affect of reading the floating point
queue. When an entry is read, it is effectively removed from the queue. Since
emulation is required to be non-intrusive to program execution, the old Stale of
the queue must be restored. If the queue state is to remain unchanged after being
observed, then all entries in the queue must be extracted using STDFQ until it is
empty. This must be followed by re-inserting (re-writing) all of these removed
entries back into the queue. However, there exist no simple instruction to allow
writing to the FP queue. It may however be restored by executing a floating point
instruction while in emulation mode. TIle'instruction and PC value are both
stored in the queue. By writing the PC into the MDIN register, and then issuing
the floating point instruction as an emulation instruction, the queue will be
restored.

Writing to the floating point state registers is similar to reading them. The same'
restrictions apply.

TIle sequence below will set up a code or data address breakpoint and resume
normal execution. When (if) the breakpoint occurs, the processor will re-enter
emulation mode.

,A string of emulation instruction sequences will be required to write the code
address breakpoint register seL

Write the desired code or data space breakpoint address
value (vinual or physical) into MDIAG_BKV.

Write the code or data space breakpoint address compare
mask into MDIAG..BKM.

Write the breakpoint control register, MDIAG_BKC,
to clear {C,D)BKFEN, and select the desired value
for CSPACE. PAMO. CBKEN. DBREN and DBWEN,

Write the breakpoint status register. EDIAG_{C,D}BKS
to clear any prior code breakpoint status.

Write the action on event control register, EDIAG..AC110N,
so that the desired breakpoint event will generate
an emulation request and (optionally) assert an
emulation strobe (ESB pin).

An example for such an emulation sequence code is given below:

..

• !!1,.!! Sun MiaosystenlS PIoprieury Revision 2.00 of November 1. 1990

"". -

,-~

Chapter 6 - Remote Emulation Support 175

I/prologue
scan_in("sta%gl, [%gO] mtmpl", mci, poll)
scan_in("sta %g2. [%gO] mtmp2", mci, poll)
scan_in("sta %g3. [%gO] mdout", mci, poll)
scan_out(mdout, remote_emulator_temp 1)

1/ set gl to ASI cbkv addroffset wfm MOIAG ASI;
scan_in("or %gO, bkv, %gl",mci, poll)

1/ scan-in lower 32-bit (of 36 bits) for next cbkv value
/I install it in g2 of register pair g[23].
scan_in{NEW _CBKV _V ALUE_L032,mdin)
scan:..in("lda [%gO] mdin, %g2" ,mci, poll)

1/ scan-in upper 4-bit portion (of 36-bits) for next cbkv value
1/ install it in g3 of register pair g[23].
scan_in(NEW _CBKV _ V ALUE_HI4,mdin)
scan_in("lda [%gO] mdin, %g3" ,mci, poll)

/I install register pair g[23] into mdiag cbkv.
~_in("stda %g2. [%gl] mdiag",mci. poll)

1/ set gl to ASI cblem addr Offset wfm ~IAG ASI;
scan_in("or %gO, bkm, %gl" ,mci, poll)

/I scan-in lower 32-bit portion (of 36-bits) for next cblem value
/I install it in g2 of register pair g[23].
scan_in(NEW _CBKM_ V ALUE_L032,mdin)
scan_in("lda [%g01 mdin, %g2" ,mci, poll)

/I scan-in upper 4-bit portion (of 36-bits) for next cblem value
/I install it in g3 of register pair g[23].
scaD_in(NEW _CBKM_ V ALUE_m4,mdin)
scalLin("lda [%10] mdin, %g3" ,mci, poll)

/I install g[23] to cbkm
scan_in("stda %g2. [%gl] mdiag" ,mci, poll)

/I set gl to addr cbkc;
scan_in("or %gO, bkc, %gl" ,mci, poll)

(Code sequence is continued an next page)

Revision 2.00 of November 1. 1990

176 TMS390ZS0 - Viking User Documentation

6.7.11. Run for uN"
InstructionslCydes

II scan-in NEW _CBKC_ VALUE.
II read it into the iu rfile; install it into CBKC.
scan_in(NEW _CBKC_ VALUE, mdin)
scan_in("lda [%gO] mdin, %g2" ,mci, poll)
scan_in("sta%g2, [%gl] mdiag" ,mci, poll)

II set gl to addr cbks in mdiag; clear cbks.
scan_in("or %gO, bles, %gl" ,mci. poll)
scan_in("sta%gO, [%gl] mdiag",mci, poll)

II scan-in NEW _ACI10N_ VALUE.
scan_in(NEW _ACI10N_ VALUE, mdin);
II read it into the iu rfile;' install it into AcrION.
scan_in("lda [%gO] mdin, %g2" ,mci, poll)
scan_in("sta.%g2, [%gO] action" ,mci, poll)

II epilogue
scan_in("lda [%gO] mtmp 1, %gl", mci, poll)
scan_in("lda [%gO] mnnp2, %g2", mci, poll)
scan_in(remote_emulator_temp 1, mdin)
scan_in("lda [%gO] mdin, %g3", mci, poll)

Setting a breakpoint on a specific data memory address reference is very similar
to the above sequence. The only difference is the value written into memory
mapped BKC and AcnON asi registers. In the above example, CSPACE, CBKEN and
lEN_CBK are set. A write-only data address breakpoint would clearcsPACE,
DB FEN. DBREN' and IEN_DBK while DBWEN' would be set.

Sequences for programming "Run-for-N" instructions and cycles are similar to
setting codeIdata breakpoints. The cycle counter breakpoint is most useful for
statistically profiling execution of a program. The instruction counter breakpoint
is useful for single stepping, or block stepping through a program execution.

..

Sun Mictosystans Proprietary Revision 2.00 of November 1. 1990

6.S. Approximate Latencies
for Each Emulator
Primitive

Chapter 6 - Remote Emulation Support 177

/I prologue
scan_in(tlsta%gl, [%gO] mtmpltl, mci, poll)
scan_in(tlsta %g2, [%gO) mtmp2", mci, poll)
scan_in("sta %g3, (%gO] mdout", mci, poll)
scan_out(mdout, remote_emulatoctemp 1)

/I set gl to ASI address for CNTV w/in EDIAG.
scan_in("or %gO, OxOOQ, %gl" ,mci, poll)

/I scan-in NEW _CNTV _VALUE for ICNT/CCNT.
/I read it into %g2; install into CNTV.
scan_in(NEW _CNTV _VALUE, mdin); •
scan_in("lda [%gO] mdin, %g2" ,mci, poll)
scan_in("sta%g2, [%gl] cntvtl,mci, poll)

/I clear cnts
scan_in("sta %gO, [%gO] cnts" ,mci, poll)

II scan-in NEW _AcrION_ VALUE for AcrION.
II read it into %g2; install it into AcrION.
scan_in(NEW _AcrION_ VALUE, mdin);
scan_in("lda [%gO) mdin, %g2" ,mci, poll)
scan_in("sta%g2, [%gl] action",mci, poll)

/I scan-in NEW _CNTC_ VALUE for ICNTEN/CCNTEN.
/I read it into %g2; install it into CNTC.
scan_in(NEW _CNTC_ VALUE, mdin)
scan_in("lda (%gO) mdin, %g2" ,mci, poll)
scan_in("sta%g2, [%gl] cruc" ,mci, poll)

II epilogue
scan_in("lda [%gO] mtmpl, %gl", mci. poll)
scan_in("lda (%gO] mtmp2. %g2", mci. poll)
scan_in(remote_emulator_teD1pl. mdin) .
scan_in("lda (%gO) mdin, %g3", mci. poll)

Each emulation instruction execution requires several multi-bit IrAG TOR scan
operations.

..

Sun Mic:rosystans Proprieury Revision 2.00 of November 1. 1 ~

178 TMS390ZS0 - ViJcing User Documenwion

6.9. Details about Entering
Emulation

6.10. Emulation Exeeption
Issues

The number of emulation insUuctions per emulator primitive is:

1 to access an IU register file entry
4 to access an IU connol register
7 to access a memory location
13 to access a floating point register
13 to set up an instruction(cycle) counter expiration
21 to set up an instruction (data) address breakpoint

The number of MDIN (or MDOUT) scan operations per emulator primitive is:

1 scan operation per IU register file accesses
1 MDIN scan operation per FP register file write
1 MDIN and 1 MDOUT scan operation per FP register file read
2 (MDIN or MDOUT) scan operatio~ per memory access
3 MDIN scan operations per setting of a breakpoint or counter event

Each emulation instruction scan in and emulation status scan out takes about 50
TCK cycles (about 500 native VCK cycles). Each MDIN scan in takes about 40 TCK
cycles. Each MDOUT scan out takes about 40 TCK cycles.

Emulation mode can be entered through anyone of six different ways:

1. Set MCMD.MENTER to force emulation.
2. Execute SIOM, with MCMD.INTM seL
3. 1bmugh Code Address Breakpoint.
4. ~ugh Data Address Breakpoint.
5. 1bmugh Instruction Counter Breakpoint.
6. 1bmugh Cycle Counter Breakpoint.

The first is used by the remote emulation processor to unconditionally present an
emulation mode request by using the TrAG tap controller to asselt
MCMD.MENTER. The other ways require ASI registers to be configured so they
conditionally generate an emulation request. SIGM (a special Viking instruction)
also allows emulation entry, see 4.4.6 for more detailS. For further description on
how to set up the breakpoints, see table 4-16.

During emulation. PSR.ET is negated and MMU.NF is asserted. Negating PSItET
disables any asynchronous exception from being honored by the Vilcing IU while
in emulation mode. This includes priority intenuptS, store buffer exceptions, and
floating point exceptions. Any synchronous non data_acces8_exception will
cause the ViJcing IU processor to enter watch dog reset.

JPND informs the emulator that a priority intenupt is being defened while in
emulation mode. MIFLTD informs the emulator that a store buffer (or emulation
memory reference) exception is being deferred while in emulation mode and the
MFSR registefwill describe the.nature of the fault in more detail. MSTAT.PFPX
informs the emulator that a floating point exception is being deferred while in ,'fC

emulation mode. When any of these events occurs, the action to be taken is emu-', .
\iii.., j'

lator dependent. The remote emulation processor shoulcl avoid issuing an emula-
tion instruction that might cause control to be transferred to an exception handler.

Revision 2.00 of November 1.1990

Chapter 6 - Remote Emulation Support 179

Floating point exceptions during emulation mode are of particular concern,
requiring elaborate trap handlers. Care must be taken to examine all the signals
indicating elTOr-free condition before issuing an FP related emulation instruction
(refer to section 6.3.1.5 for more details.

Sun Microsystems Proprietary Revision 2.00 of November I, 199(

[Blank. Page]

.'

..

7
System Interface

System Interface _ ... __ __ _ _._ __ _ _ _... 183

7.1. Multiple System Interfaces _ ... _ _ ... _ .. _._ ___ _ ... __ ._ ... _ _ _._... 183

Lower Cost Systems ~ MBUS _ .. _ .. _ _................. 183

. Higher Performance Systems ~ Viking Bus ... _ _ _ _...... 183

Selecting Bus Modes _ __ .. _._ ... __ ._ _._._ ... _. ___ ._. __ . __ . __ 183

7.2. Clock Operation .. __ ._ ... _ .. _._ _ _ ____ . __ . ____ ._. ___ .. 184

Phase Locked Loop Operation . ____ .. _ _ __ . ___ . __ _____ . __ ._ 184

Input Clock Requirements ._. ___ . ___ ._ __ ._ ... _._ .. _. __ ..:. ___ . ____ .. 184

7.3. Reset Operation ____ . __ ... ___ ._. __ . __ ._ ... _._._. __ . ____ . ____ . ___ ... _... 185

IT AG and Hardware Reset _.: ... _ ... _._ .. __ _._ ... _. ___ . ____ . ___ . __ ... __ .. 185

Pin States During Reset . _________ ... ____________ . _____ . __ ._.. 185

Reset Timing ___________ _________ . _____ . __ . ________ ... 185

Response to Reset (RAM Redundancy) _ ... __ . ______ __ . ___ ._.. 185

Execution Following Reset __ ._ __ ... __ ... __ ... _. __ ._____________ 185

7.4. Interrupts _________________ ._._._. ____ .______________ 186

7.5. Memory Model Support. (PEND..) . ____________________ .____ 186

7.6. Test Support . ________________ . ______ -:-____________ . ____ .. 187

n'AG _____________________________ .________ 187

Dedicated Test Functions _______ . ____ .___________________ 187

..

[Blank Page]

r

7.1. Multiple System
Interfaces

7.1.1. Lower Cost Systems ~
MBUS

7.1.2. Higher Performance
Systems -+ Viking Bus

7.1.3. Selecting Bus Modes

7
System Interface

Viking supports a variety of different system environments. This flexibility
allows system designers to make proper cost and perfonnance tradeoff's.

This chapter will briefly introduce Viking's two bus interfaces. Further details on
each interface will be presented in later chapters. In addition, functions which are
common to both interfaces (clock, reset, inter:rupts, test) will be described in this
chapter.

Viking supports two primary bus interfaces. The SPARC MBUS standard is pro­
vided for direct connection to MBUS systems. A more optimized interface, the
Viking Bus is provided for higher performance systems and other more dedicated
applications, including the use of an external secon4 level cache.

For lower cost systems. Viking provides a standard SPARC MBUS interface. The
MBUS is described in detail in the SPARC MBUS specification. Viking's implemen­
tation of the MBUS will be described in chapter 8. MBUS is a 64-bit multiplexed
cache consistent bus. Using the MBUS interface. Viking's data cache operates in a
buffered copy-back mode. with write miss allocation.

For higher performance, or other non-MBUS systems. Viking provides its own bus
interface, called the Viking bus. The Viking bus is a non-multiplexed. highly
pipelined bus which has been optimized to interface with external second level
cache implementations. The bus is very flexible. allowing Viking to be used in a
variety of system environments. Using the Viking bus. the data cache operates as
a write-through cache. Cache consistency is also maintained. Viking Bus opera­
tion is fully described in chapter 9. Use of this bus interface places the processor
into cc 1'I'IOde, as described in earlier chapters.

The choice of bus interface must be made statically in the system. Viking
configures itself for operation in a particular mode based on the CCRDY _ pin. This
pin must be valid whed RESET_ is deassened, and must never be changed during
normal system operation. System software may view the state of this pin in the
MCNTL.MB status bit If the bit is a one. Viking is in MBUS mode. otherwise Vik­
ing bus is selected.

Revision 2.00 of November 1. 199

184 TMS390Z50 - ViJcing User Documallatioo

7.2. Clock Operation

7.2.1. Phase Locked Loop
Operation

7.2.2. Input Clock
Requirements

This section will describe Viking's clock requirements. Proper clocking is essen­
tial at high operating frequencies. In order to reduce system clock skew, a phase
locked loop (Pll) is implemented on chip. For testing and other purposes, a Pll

bypass mechanism is provided. When the PLLBYP_ signal is active (low), the Pll
circuitry will be bypassed completely.

The Pll. operates by constantly measuring internal clock routing delay and inter­
nally generating a clock which is effectively ahead of the external clock by an
amount equal to that internal routing delay. This ensures that all intemallogic
sees a clock signal nearly equivalent to the external clock pin. All system logic
using the same clock as the processor is expected to provide acceptable setup and
hold times relative to the processor clock input pin

Imponant Note:
Prior to normal operation, the Pll must be allowed time to stabilize.
During this time, RESET_ should be active. The time required is lOOms
(milliseconds).

The input clock to Viking must never be stopped or changed from its
normal periodic operation while the Pll. is enabled. Doing so will cause
PlJ.. instability and unpredictable operation.

While the PlJ.. does improve system performance, it must also be used carefully.·
As noted above, the external clock. input must be stable at all times. The PlJ..

, may take .long periods of time. to stabilize initially. During this initialization time,
the RESET_ input must be assened, as the internal clock may be unstable.

Imponant Note:
It is essential that the rrAG TAP conuoller be reset prior to, or at the
same time as RESET_ in order for the PlJ.. to begin iilitialization. The
TAP controller may be initialized either by assening the TRST _ pin, or
by asserting the TMS pin for five consecutive cycles ofTCK (Test
ClOck). If this reset does DOt occur, the Pll. clock feedback loop may
DOt be estabUshed. and ~ctable operation may result

Whenever the TrAG interface is not in use by a particular system.
assening the TRST_ signal statically is strongly recommended.

Other than providing a cle~ stable clock, Viking can tolerate most clock sources
when the PlJ.. is enabled.

With the PlJ.. enabled. Vikin, uses only the rising edge of the incoming clock.
Intemally, Viking multiplies. then divides the clock to provide a stable 50% duty
cycle clock. Input duty cycle must be at least 2S'IJ (either bigh or low).

When the PlJ.. is bypassed, care must be taken to provide a SO% duty cycle cloc~/
Pin timings for operation with the PU. bypassed are not fully defined.

Revision 2.00 of November 1. 1990

7.3. Reset Operation

7.3.1. JTAG and Hardware
Reset

7.3.2. Pin States During Reset

7:3.3. Reset Timing

7.3.4. Response to Reset (RAM
Redundancy)

7.3.5. Execution Following
Reset

Chapter 7 - System Interlace 185

Imponant Note:
Operation in a system with the PLL bypassed is not recommended or
fully specified. Use in this manner will generally require reduced
operating frequencies and very careful system design.

Proper reset of Viking is critical. Improper use of reset will result in unpredict­
able operation. From a software perspective, two reset operations are defined:
Hardware Reset and Watchdog Reset. Since watchdog reset is strictly a function
of software enol'S. it will not be discussed here. This section will describe
hardware reset requirements.

In addition to hardware reset, another reset must be considered for proper system
operation. nAG TAP Reset must be asserted during initial power-on reset. This
may be accomplished either by asserting the TRST_ signal, or holding TMS active
for five cycles ofTCK.

As soon as RESET_ is assened. Viking will Ui-state all signals immediately
(except forTDO and ESB). All extemallogic should monitor RESET_ to ensure the
Validity of control signals.

Once the PLL has initialized. RESET_ must be assened for an additional sixteen
cycles. IT funher reset operations are required beyond the initial power-up reset,
RESET_ need only be assened for a total of eight cycles. Since PLL synchroniza­
tion time is not exact, eight cycles beyond that time is not a critical specification

Vildng implements internal RAM redundancy to increase component yield. A por­
tion of this redundancy must be initialized each time the component is reset
(hardware reset ol11y). This initialization takes approximately 340 cycles, and is
intemally timed. These cycles begin once the RESET_ signal is deassened. and
before the processor tries to fetch its first instruction. During this time the bus
will be inactive. Vilcing will Ui-state all 110 signals. All bus requests will be inac­
tive. Viking will execute its first bus cycle 345 cycles after RESET_is deassened.

Immediately after hardware reset and redundancy repair are complete. Viking
will execute a reset trap. This trap will cause the processor to enter boot mode
(MCN'ILBT is set) and begin execution at vinual address OxOOOOOOOO. This will
force a READ-SlNGLE bus operation at physical address 0xflU000000. The upper
eight bits are set as a result of boot mode (See section 4.3 - Reset Operation for
a detailed description of boot mode and processor state at reset.

In response to the read single operation. system logic should supply two valid
SPARe instructions on the 64-bit data bus (in accordance with either MBUS,or Vik
ing bus protocols). Onp: these instructions have entered the pipeline, another'
read single request for the next two instructions will appear on the bus. TIle phy­
sical addresses requested by these reads will be contiguous until a control
transfer instruction is executed (nonnally within two or ~ instructions).

Sun Mic:rosystans Proprietary Revision 2.00 of November 1. IS

11
I ~

I
I

186 TMS390ZS0 - Viking User Documentation

7.4. Interrupts

7.5. Memory Model
Support (PEND J

Viking provides four external interrupt request signals, IR.L[3:O]. External inter­
rupt requests are given to the processor by setting the IR.L[3:0] pins to the proper
interrupt level.

The externally applied level corresponds to the same SPARe interrupt levels. A
value of zero (1RL{3:0]=OOOO) on the pins indicates no interrupt is present. A value
of Ox! (IR.L[3:O]= 1111) is considered a non-mDS1cable interrupt All interrupts are
disabled (even non-maskable interrupt) if the PSR.EI' (enable traps) bit is not set.

Interrupt requests are level sensitive. System logic is expected to maintain all
interrupt status, prioritize all external requests, and apply proper interrupt levels.
Once an interrupt occurs, system software should manipulate any system control
registers necessuy to satisfy the interrupt request.

Interrupt requests are synchronized for three cycles after being applied to the
IRU3:O) pins. A debouncing circuit compares the values of the interrupt requests
after two and three cycles. If the values are the same, that level interrupt will be
presented for comparison with PSR.PIL. If the incoming value is greater, or equal
to Ox!, the interrupt request will be presented to the pipeline (provided PSR.EI' is
asserted). If the values in these two stages of synchronization are different, no
interrupt request will be made.

The synchronization mechanism above allows interrupt requests to be asynchro­
nous. Due to the synchronization time, pending interrupts will remain active for
several cycles intemally after they are removed extemally. System software
should ensure that enough time is allowed between clearing external interrupt
requests and re-enabling interruptS to" the processor.

The two standard memory models, TSO, and pso (see section 4.5 - Memory
Model), are supported under system control using the PEND_ input pin. This pin
may be used in both MBUS and cc modes. It's use is generally not required, or
recommended in MaUS mode however. Selection ofTSO or PSO mode affects
MBUS operation only if PEND_ is not always asserted. (In nOrmal operation it
should be tied to vee).
Viking will sample this signal prior to the start of all bus transactions which
require permission to perform a store transaction on the bus. If the PEND_ signal
is asserted. the access will not begin. PEND_ must be asserted along with the .
ready response of the previous store to guarantee that it is seen before the next
store. TIle uansactions which require this check depend on the memory model
selected. The table below defines the significance ofPEND_ .

..

• !!l,.!! Revision 2.00 ofNovernber 1.1990

7.6. Test Support

7.6.1. JTAG

Chapter 7 - System Interface 187

Table 7-1 PEND_ operation

Viking Bus MBUS

Transaction Type PSO TSO PSO TSO

Write-through Store Only if prior STBAR Yes N/A N/A
Non-cacheable Store Only if prior STBAR Yes Only if prior STBAR Yes
Swaps Only if prior STBAR Yes N/A N/A
Non-cacheable Swaps Only if prior STBAR Yes OnlyifpriorSTBAR Yes
Control Space (CSA_ Yes Yes N/A N/A
Demaps Yes Yes N/A N/A
Internal ASI's Yes Yes Yes Yes
Copyback writes N/A N/A Only if prior STBAR Yes

Note that internal ASI operations (both loads and stores) will wait for deassertion
of the PEND_ signal. There is one exception to this, ASI Ox4c, the "Action on
event" register, which does not depend on. PEND_.

Viking provides considerable support for system test. This support includes
TrAG, and several dedicated test pins.

TrAG boundary scan is provided to allow for system continuity testing. See sec-
. tion 5 -IrAQ Serial Scan Interface. and the IEEE Pl149.1 specification for a.full
description of this interface.

The 1I'AG interface is also used to gain access to additional functional test facili ~
ties. A BIST (built in self test) mechanism is available that can be used either
from the 1I'AG interface. or from software. Extensive debugging and emulation
facilities are also available over TrAG. (See sections 6 - Remote Emulation Sup­
port. and 4.14 - Software Debugging Facilities).

7.6.2. Dedicated Test
Functions

Several device pins are provided to improve external visibility of processor.
operation. The PIPE{9:0] pins provide information about the current state of the
processor pipeline. These signals are defined as an aid to system hardware and
software debug.

A single strobe pin is available. called ESB. This pin operates under software
control to provide a programmable external synchronization pulse. It may be trig­
gered by code, ~ or cycle count breakpoint detection (see section 4.14 -
Software Debugging Facilities). A typical application of this signal is to trigger
logic analysis equipment.

Viking provides a simple mechanism to disable all outputs. The TEST_pin will
immediately tri-state all output drivers when asserted. This allows external test
equipment to control Viking signals. Nonnally,1I'AG boundary scan will be used
to accomplish this function. The signal is provided primarily for non-IrAQ
environments. Processor state is not guaranteed after assertion ofTEST_. Note
that the TOO and ESB pins are not tristated in response to TEST_assertion .

• !!!!! Sun Mic:rosyst.ems Proprie!a')' Revision 2.00 of November 1. 199

[Blank Page]

..

(

8
MBUS Interface

MBUS Interface ... 191

8.1. Compatibility _ _ _.. 191

8.2. Selecting MBUS Mode ... 191

8.3. Module ID ._.. 192

8.4. Cache Policy _ _ _ _ __ 192

8.5. Level-2 Consistency Operation _ _._..................... 192

[8.6. MBUS Transactions _ _ .. ___ .. __ ._. ___ ._ ... _._._. __ ._ ... __ _........ 194

Non-Cacheable Operations _. __ __ _ ... _ _ _............................. 194

Reads . __ __ ... _ _ ... _. __ __ . __ _. __ ._ .. _._ ... _ _ _ __ 195

Writes _ _._._ __ . __ ._ .. ___ ... _._ ... _ _ .. _ _._ ... _ _........ 195

Atomic Operations __ _._. __ ._._. __ ... _____ ._. ____ _ _ _...... 195

Pon Register Reads ._ .. __ .. ____ ._ ... _____ ._._ _ _ _ _ ... _... 195

Cacheable Operations _____ . ___ ... __ ._._ ... _._ _ .. ____ _ ... _..... 195

Reads . __ ._. ____ ... _. ______ . _____ ._. ___ .. _._. __ _ ... _ __ _........ 195

Writes ________________________ ._. ___ ._. _________ 196

Atomic Operations ___________ _____ ... ___ . ___ ... __ .. _ ... _ ... _.. 196

Pure Consistency Operations .. _._. ______ _._. ______ __ _._ 196

Table Walk Operations ___________ . ___ . ___ ... ____ ... _____ ... 196

Bus-initiated (consistency) Operations . ___ ... __ . ______ _ ... _ ... _... 197

Reads . _________________ . _______ .. _ _ ... _ _.. 197

Write _____________ . _____ ._. _________ _ __ ._ _ _........ 197

Pure Consistency Operations ... _________ ._ ... _ _ .. _ _ ... _ _...... 197

8.7. Store Buffer Operation in MBUS Mode . ___ ._ ;:. __ _ .. _........... 197
~

8.8. Bus Arbitration ... ; 198
"

8.9. ElTOr and Retry Handling 198
I

.~ . ./

ElTOrs 198

Asynchronous ElTOrs __ _ .. _ ... _ .. 199

Relinquish and Retry (R&R) .. ___ __ _ ... ______ .. 199

Retry .. _ ... __ ... _ _ _ _ _ 199

8.10. Pon Register _ 199

8.11. MBUS Pin Connections .. _ .. 200

..

f

. 8.1. Compatibility

8.2. Selecting MBUS Mode

8
:MBUS Interface

This section describes Viking's implementation of the SPARC MBUS standard. Vik­
ing is fully compliant with the SPARC MBUS standard. . .
Viking implements level-2 MBUS. This allows operation in a multiple processor
environment. Cache operation and consistency policies are defined in the MBUS
speci fication.

This section will not describe basic MBUS operations. For this information, refer
. to the MBUS specification. Since the MBUS allows for many variances in detailed
processor operation, details of Viking's MBUS operation are described .

Viking may be used in conjunction with some other MBUS processor modules, but
not all. In particular, modules which require the virtual address superset bits will
not be compatible.

Vildng responds properly to all standard MBUS transactions, though it does not
produce all of them. Only 32-byte burst transactions are supported. All cache
consistent transactions operate on 32-byte blocks.

All responses on MSH_ andMIIC are provided at time "A+3" (the third cycle
after assertion of address on the bus). Vildng can operate in a system with vari­
able response times, up to •• A+ 7". MBUS systems should be designed to accept
these timing variations.

Even though Vildng may be protocol compatible with some modules, electrical
and signal timing differences may make certain modules incompatible. See
11.2.3 - MBUS pin timing, or the Viking data sheet for pin timing details.

MBUS operation is selected by driving the CCRDY _ pin inactive. This signal
sh,ould be driven statically by the system. Any change in the state of this signal
after ~ deassertion of RESET_will result in unpredictable operation. Operation
in MBUS mode may be determined by software reading the MCNI'LMB bit.

.~!! Sun Mic:rosystems Proprietary Revision 2.00 of November 1. 1990

192 TMS390ZS0 - ViJcing User Documentation

8.3. Module ID

8.4. Cache Policy

8.5. Level-2 Consistency
Operation

The current module number is determined at reset by the processor. The MID[3:0]

signals are cOIUlected to Viking's address bus. pins ADDR[3:0]. The module
number should be asserted statically by system hardware.

The number may be any value except 0000. which references the reserved boot
mode address space.

The leve1-2 MBUS requires copy-back cache operation. Caches must also write­
allocate data for write misses. This is due to a lack of any write broadcast
(cached data update) operation on the bus. All cacheable writes are done to the
local cache. so the line must be allocated (read) first for write misses.

Cacheability for instruction and data references is described in tables 4-6 and 4-7
respectively.

The leve1-2 MBUS speCifies a single ownership. write invalidate cache con­
sistency policy. Only a single cache may own a modified copy of a cache line at
anyone time. Multiple slimed copies of modified or clean data may exist within
the system at any time. These multiple copies are invalidated any time the cache
line is modified· (the modified data may then be re-read from the owner and
cached as modified &: shared infounation). This protocol is described int he
MBUS specification.

~ng any coherent read transaction. all processors in the system will assert the
MSH_ (Shared) signal if they currently have a cached copy of that data. Since
several caches may be sharing the information. the MSH_ signal is open collector.
and may be asserted by all caches simultaneously. MSH_ must be pulled inactive
external to the processor (typically a resistive pull-up). MSH_ may be asserted at
any time prior to the first data acknowledgment for the transaction. MSH_ must
be asserted for at least one cycle.

Any cache may intervene. in a read transaction by asserting the MDI_ (memory
inhibit) signal. Since there may be only one owner at a time for each cache line.
only a single cache may assert MIle Viking asserts MSH_ and M1H_ signals in
cycle .. A+3", three cycles after the address phase of each MBUS transaction.

Once Viking assertsMDI_ in response to a read (CR. oreRI) transaction. it will
complete the bus cycle by supplying data and a ready reply starting four cycles
later. During these four cycles, the memory controller can drive other data and
ready signals in response to the transaction for two cycles, followed by a thiro
cycle where the bus is driven high. Any replies received during this time are
ignored by Viking. No exceptions may be reported after asserting MDI_ •

..

• ~!! Sun Mic:Iosyaems Proprietary Revision 2.00 of November 1.1990

[

Chapter 8 - MBUS Interface 193

The diagram below represents the cache consistency algorithm used by Viking's
data cache on the MBUS.

Figure 8-1 Cache consistency algorithm: Data cache on the MBUS

..

• ~!! Sun Mic:rosystans Proprietlry Revision 2.00 of November 1. 1990

194 TMS390ZS0 - Viking User Documentation

8.6. MBUS Transactions

8.6.1. Non-Cacheable
Operations

The diagram below represents a simpler consistency algorithm used by Viking's
instruction cache on the MBUS.

Figure 8-2 Cache consistency algoritlun: Instruction cache on the MBUS

Valid

Viking CR (MSH_ is don't care)

(U:adlll MISS)

Bus CR (Assert MSHJ

Viking will produce all valid MBUS transactions. except for CWI (Coherent Write
and Invalidate). Viking accept all transactions (including CWI) from other system
components.

The transaction type used by Viking depends on the processor state (including the
instruction, and MMU state). as well as the current state of the cache line within
the processor.

For I/O transactions. or during boot up. non-cacMable transactions will be used.
No snooping is done for these references. The standard MBUS level-! transac­
tions are used for reading and writing, When the store buffer is enabled
(MCNTL.SB) non-cacheable stores will be queued into ViJcing's store buffer. the
processor will not wait for completion. All non-cacheable reads will cause the
buffered stores to copyout before the read is begun.

Cacheability of transactions is computed according to tables 4-6 and 4-7

..

Sun Miclosysfems Proprieta'y . Revision 2.00 of November I, 1990

(
8.6.1.1 Reads

8.6.1.2 Writes

8.6.1.3 Atomic Operations

(

8.6.1.4 Pon Register Reads

8.6.2. Cacheable Operations

8.6.2.1 Reads

Chapter 8 - MBUS Interface 195

Non-cacheable re2d operations (for code or data) use the READ transaction. Only
single cycle (64-bits maximum) transfem will be used. Viking cannot burst
transfer non-cacheable data. 1be transaction may be byte, half-word. word, or
double word in length. big-endiim word ordering is used (the least significant
bytes in a word appear on the high bits of tile bus. according to SPARC standards.)

Non-cacheable write operations are queued in Viking's store buffer. As soon as
Viking receives a bus grant, the transactions will be issued on the bus. The pro­
cessor will not wait during this time, unless the buffer fills (see section 4.12-
Store Buffer for a detailed description of store buffer operation.)

Burst writes will not be used for non-cacheable writes. Bytes, half-words, words,
and double words may all be stored, with big-endian ordering. Any errors are
reported as deje"ed data store errom. (Only after MMU protection has succeeded).

For synchronization reasons, all cacheable stores will wait until the store buffer
has completed all non-cacheable stores before completing.

Non-cacheable atomic transactions are caused by ex~cution of either SWAP or
LDSTUB instructions. These operations are perfonned as a locked sequence of
READ and WRITE transactions.

The lock bit field in the address phase of the read and write transactions will be
set. Viking will not release tile bus between the two transactions, unless explicitJ y
requested by a relinquish and retry (R&R) reply. R&R repliC$ are accepted for
both read and write portions of atomic transactions.

MBUS port registers may be read using non-cacheable accesses to physical
addresses in the range 0xff1~. depending on module number
being addressed. It is legal for a processOr to address it's own pon register. This
is the only case of snooping on non-coherent read transactions.

See section 8.10, for full details of the port register.

During normal operation, most transactions are cacheable. Cacheable transac­
tions will use the level-2 consistency mechanism. The exact transactions
requested by Vilcing depend on the instJuction being executed, the cacheability of
the reference, and the current state of the cache line.

'There are three typeS of read transactions on the MBUS. Standard non-coherent
READ transactions are used fornon-cacheable operations. Coherent Read (CR)
and Coherent Read with Invalidate (CRl) transactions are used for cacheable
references.

CR transactions are used to read data from the current ow~r. The owner may be
memory, or another cadle. CR will be used for all data cache load misses. and all
instruction cache misses. If another cache owns the data, it will respond by
asserting the MIH_ signal, and providing the data.

CRI transactions are used to read data from the current owner for write allocate
operations. Use of this transaction implies that the data will be modified upon

Sun Microsystems Propria.-y Revision 2.00 of November 1. 199<

196 TMS390ZS0 - Vi.ting User Documentation

8.6.2.2 Writes

8.6.2.3 Atomic Operations

8.6.2.4 Pure Consistency
Operations

8.6.3. Table Walk Operations

arrival at the processor. 111e current owner should relinquish ownership. all
copies of the cache line should be invalidated. After the transaction completes.
Viking will be the excillsive owner of the cache line.

All CR and CRI transactions use critical word first ordering. 1be doubleword
which is needed first will be the starting address of the transaction. Doublewords
from memory must be rewmed in modIdo 32-byte address order. Once the
needed data anives, the processor will use it immediately.

Any processor which has a valid cached copy of data referenced by CR transac­
tions must assen the MSH_ signal to indicate that the infonnation is shared. Vik­
ing can accept the assertion of MSH_ at any time until receipt of the first data
word.

If the data is owned by another cache, Vildng will ignore any data ready
responses until four cycles beyond the assertion of MIle nus allows memory
controllers to begin transmitting data sooner. Memory controllers must not
respond with data until a time equal to the maximum MIle assertion delay for
any cache in the system.

MBUS does not provide any true coherent write ttansactions. A processor must
own data before it may write to it As a result. all cacheable write operations are
done locally to a processor cache. 1be WRITE transaction is used for all non­
cacheable stores, and for cache copyback operations. WRITE operations to any
~ data will cause CI transactions to be issued to all other shared ~pies.

Vildng will relinquish ownership of a cache line -under several circumstances: As
a result of a copyback operation (using a WRITE ttansaction). In response to a CRI
transaction for that line. In response to either a CI, or CWI transaction.

Since all cacl1eable data is modified locally, no special handling is needed for
cacheable atomic operations. A normal CRI transaction is used to fetch read data,
and an internal write operation will store the modified data locally.

Vilcing will request only a single type of pure consistency operation (operations
which transfer no data. but affect the state of a cached line). This is the CI,
coMrent invalidate. 1be CI will invalidate all cached copies of a line in the sys­
tem. 'Ibis is used when the processor attemptS a store to a slimed line, regardless
of ownership. After the CI, the processor will become the excillsive owner of the
cache line. The processor will wait for proper completion of the CI transaction
before allowing the internal write to occur.

All page tables should be treated as non CQCMable in Viking direct MBUS sys­
tems. As a result. only level-l transactions are used to reference page tables. Dur­
ing the duration of the table wdlk. Vildng will maintain bus ownership, unless '
explicidy told to release by an R&R response. 1be lock bit in the MAD field will
be set.

Sun MicrosylllelllS Propriecary Revision 2.00 of November 1, 1990

(

r

8.6.4. Bus-initiated
(consistency)
Operations

8.6.4.1 Reads

8.6.4.2 Write

8.6.4.3 Pure Consistency
Operations

8.7. Store ButTer Operation
inMBUSMode

Chapcec 8 - MBUS Interface 197

All levels of the page table will be read with standard single word READ transac­
tions. Updates to R and M bits. or just M bits will be done with standard WRITE
operations. Updates the the R bit only will be done with non-cacheable atomic
swaps (See non-cacheable atomic references above).

This mechanism eliminates potential status bit inconsistencies when multiple
MMUs are attempting to update page tables simultaneously.

Viking maintains cache consistency on the level-2 MBUS by snooping other pro­
cessors transactions. The sections below describe three different classes of con­
sistency operations that Viking must participate in.

Viking will respond with the proper MSH_ and MIlC signals in response to a
coherent read (CR) transaction on the bus. These signals ~ driven in the "A+3"
cycle. If Viking owns the cache line. after asserting MIle Viking will wait an
additional four cycles and respond with data. For CRI transactions. the MSH_ sig­
nal will never be assened, MIH_ will be asserted if the processor owns the data.

The MSH_ pin is driven as an open collector style signal. It will only be driven
low, it must be pulled inactive externally. Anytime MIH_ must be driven, it will
be driven low for a cycle, then driven high again for a cycle, then tri-stated.

Since write transactions are non-coherent, Viking does not snoop these opera-
tions. CWI transactions are treated as simple invalidates. .

Viking will treat all pure consistency operations as simple invalidations. This
includes CI and CWI.

Since no reply from the processor is required, Viking can accept CI and CWI tran­
sactions at maximum bus rate, every other cycle. The rate of these transactions is
controlled by system logic, and will generally be slower than two cycles per tran­
saction.

Viking's store buffer will be used to buffer all copy back data. as well as non­
cacheable stores in MBUS mode. Any errors on these transactions will be reported
as deferred dIlla_store_e"ors. See section 4.5.6 - Memory, Exceptions and
No-Fault operation for details of these exceptions.

Viking's store buffer maintains consistency. During copy back operations, the
store buffer becomes the owner of a cache line. The store buffer will snoop all
coherent read operations and respond appropriately with the status of the line. By
definition, the contents of the copyback buffer are owned. Data is always
returned in critical word first order.

The following table describes the actions taken if a coherent transaction hits copy
back data in Viking's store buffer:

• s.un
-,u.n.

Sun Mic:rosystems Proprietary Revision 2.00 of November 1. 1990

198 TMS390ZS0 - ViJring User Documentation

Table 8-1 Store buffer copyback snoop hit actions

MBUS transaction Action
CR MIH_. MSH_. supply data, continue copyback
CRI Mlle. supply data. cancel copyback
a cancel copyback
CWI cancel copyback

8.8. Bus Arbitration Viking requests the use of the MBUS with the MBR_ signal. This signal will be
asserted when there is any internal bus cycle pending. Since Viking issues some
transactions speculatively, the request for a particular transaction may disappear
after the bus has been requested. The MBR_ signal will be deasserted immediately
should this occur. If the internal request is still valid when the MBUS is granted,
the transaction will occur. Viking will attempt to overlap arbitration with current
bus cycles (including its own bus cycles).

8.9. Error and Retry
- Handling

8.9.1. Errors

A processor is granted future use of the bus by receiving the MBG_ signal. When
MBG_ is receiVed, the bus may still be busy servicing the previous-owner. This
will be indicated by the MBB_ (MBUS busy) signal. The MBR_ signal will be "
deassened as soon as MBG_ is assened. In order to gain ownership of the bus, the ", _-­
processor waits for its MBG_ signal to be active, and the MBB_ to be deassened.
Once this OCCUrs, it will"assertMBB_. After arbitration is complete, the processor
will assert MAS_ to begin the transaction. "

Bus busy will be maintained during locked and atomic transactions (like table
walks). If Viking already owns the bus there will be no arbitration delay to begin
subsequent transactions.

Several different transaction responses are defined by the MBUS. Successful bus
cycles are terminated with the Valid Data Transfer acknowledgment (Ready).

Unsuccessful transactions may be terminated with several different error
responses, or retries. Viking supports all error responses, but ~y one of the retry
responses.

All error responses are applied to the cunent data transfer only. Any data
received with a Valid Data Transfer response will be assumed correct and used
intemally. If any errors occur during the transfer of a cache line, the internal
cache will not be validated. All data returned prior to the error may be used inter­
nally.

'There are three error responses defined. 'These are ERROR1 (Bus Error), ERROR2
(runeout), and ERROR) (Uncorrectable). Viking treats all these errors in the same
manner, and sets the MFSR to indicate the exact error response, as shown in the ,-­
table:

Sun Microsystans Proprietlly Revision 2.GOofNovember 1. 1990

(

(

[

8.9.2. Asynchronous Errors

8.9.3. Relinquish and Retry
(R&R)

8.9.3.1 Retry

8.10~ Port Register

Chapter 8 - MBUS Interface 199

Response MFSR Setting
ERROR1 (Bus Error) MFSR.BE
ERROR2 (Timeout) MFSR.TO
ERRORJ (Uncorrectable) MFSR.UC

All RETRY responses will be treated as ERRORJ replies.

Viking will assert the AERR_ signal whenever the processor enters error mode, or
an exception occurs during a store buffer copyout AERR_ will remain asserted
until the MFSR register is cleared of the exception (it is clear on read).

Viking supports relinquish and retry (R&R) replies only on the first response to
any transaction, including copyback operations. After receiving an R&R, Viking
will release bus ownership, and attempt to retry the transaction.

Viking does not support the retry reply. All retries will be turned in the equivalent
ofERRORJ replies. Viking expects that all data returned to the processor with a
READY response is truly correct 1bis data is used immediately by the pipeline.
Viking can not tolerate late error responses under any circumstances.

. The MaUS port register contains vendor identification information for the com­
ponent Processors respond to READ transactions to an address which is based on
the current modUle ID value (See MID above). See the MBUS specification for
further details.

Viking will return the value OxOOOOOOO4 on MAD[31:O] in response to any read of
its port register. This indicates device 0, revision 0 for the vendor (Texas instru­
ments). The version number may change in future releases of the component

Sun Mic:rosystems Proprietary Revision 2.00 of November 1. 199<l

200 TMS390ZS0 - Vilcing User Docurnenwion

8.11. MBUS Pin
Connections

Since Viking's bus interface is shared between MBUS and Viking Bus, unique pin
connections must be made for each interface. The table below shows pin connec­
tivity for Viking on the MBUS. Only connections unique to the MBUS are shown
here.

Pin Type Pin Name Direction MBUS Connection
ADDR{35:0] I/O ADDR[3:0)=MID[3:0)

ADDR[35:4]=n/c
Busses DATA[63:0] 110 MAD[63:0]
[l08] DPAR[O:7] I/O nIc

Data Size BURST 0 nIc
[3] SIZE[l:O] 0 nIc

Request RGRT_ I vee
Strobes WGRT_ I MBG_

[3] BUSREQ.. 0 MBR_
ARDY_ I/O MAS_

CCRDY_ I vee
RRDY_ I vee
WRDY_ I/O MRDY_
CCHBL_ 0 nIc

Access CMDS_ 110 n/C
Strobes CSA_ 0 D/c

(13) LDST_ 0 D/c
SU_ O D/c

DEMAP_ ·110 D/c
RD_ 110 D/c

WEE_ 110 MBB_
WR_ 110 D/c

IRL[3:0] I IRL[3:O]
MEXC_ I MERR_

Exception PENn_ I vee
Signals RESET_ I RSTIN_

[9] RETRY_ I MRTY_
ERROR_ 0 AERR_

vcr I a..x
Oock VPU.RC I VPU.RC

PlLBVP_ I vee
Cache OE_ 110 D/c

[9] WE.JO:7] 0 D/c
Copyback OWNER_ 110 MIH_

. [2] SHARED_ 110 MSH~

..

• SUil -,.- Sun Miaosystems PIoprieury Revision 2.00 of November 1. 1990

(

9
Viking Bus Interface

Viking Bus Interface _._._ .. __ ... _____ _ __ __ __ 203

9.1. Overview ._ ___ _ _._ ______ . ___ _._._ _. __ .. ____ _._ ... _ _............ 203

Bus Transaction Overview _ _................................... 203

Cache Consistency ... __ . __ ._._._ _ .. __ _ _ __ ... ___ _ ... _... 203

MMU Consistency ____ ___ ._ __ ._ ... _._._. __ ._. __ .. _. _____ .. ,. __ ._.. 204

9.2. Systems Without External Cache ._ __ _. ___ _____ ._ ___ . __ .. 204

[
Cache Consistency .. _ ____ ._ ... _. __ ._:.._ .. _______ ... _____ ... __ . __ .__ 205

Arbitration ... __ ._ _. _____ . ___ . ____ . __________ . ___ . .:________ 206

Error Reporting ___________________ . ___ .. ___ . ______ ._ ... _. ____ . ___ .. 207

Memory and I/O Transactions ___________ . __ . __ . ____ :.._________ 207

Read Single _. ____ . ___ ... _. ______ __ . __ . _________ . ___ .. ____ .. 20~

Read Block . ___ . __ ... _. _______________ . _________ ._______ 208

Overlapped Read Blocks ._. _____ ____ ... _ ___ ._________ 211

Write Singles ______ . ____________ ... _____ . ______ . ______ ... ___ ._ 212

Burst Writes _____________________ . ________________ .. 213

Overlapped Read/Writes ____________ ._________________ 214

Swap ______________________ ..:. _____ . _____________ 215

Processor Initiated Demap ._______________________ 216

External Demap Requests _. ___ . __ ___ ._. _____ ... _____ ._____ 217

Bus Monitoring _________ . _____ . __ ... ___ ______ . ____ . ____ .. 218

9.3. External Cache Based Machines ________ . __ . _______ . __ .. ___ ... _.. 218

Basic System Configuration ______ __ __ ._ _. ___ _ ___ ... 219

External Cache Organization ._._ ... __ . __ _ _ .. _ ... _ ... _. ________ ._ _.. 219
,

Consistency Requirements .. 220

Write Through, Cache Inclusion .. 221

Cache Hit Transactions _ _ _ _ _...... 221

Read Single and Read Block _._ _ _.................................... 221
Overlapped Read Hits .. __ ... _. ____ ____ __ _ 223

Write Singles _ ... _ ... _ .. _.. 223

Write Bursts .. 225

Overlapped Read/Write Hits _ _.................... 226

Swap ... 227

l)emap .. ______ ... _ ____ _... 228

External Cache Misses (and Non-Cacheables) __ . ___ ... _ _ _.. 228

Read Misses _____ _ ... _ _ ... __ _ ... _.. 229

Write Misses' _ ... ___ _ _ _... 230

Overlapped Hits and Misses ._ __ .. 233

Overlapped Read/Write Misses ... 235
I/O and Reads and Writes ___ ... ___ _. __ __ . ____ 237

Cache Invalidations . ______ _ __ ... _ ... _._ __ _ _ .. _..... 239
SRAM Timing Variations _____ __ ... _:_ ... _____________ .. 241

Accesses to Slower Pipelined SRAM _ ... ___ ... __ ... _____ ... _........... 241

Accesses to Nonpipelined SRAM ._ ... _ _ ____ ___ ... __ .. 242

..

(

[

9.1. Overview

9.1.1. Bus Transaction
Overview·

9.1.2. Cache Consistency

9
Viking Bus Interface

The Viking Bus in1erface provides a non-multiplexed highly pipelined bus inter­
face for a variety of system applications. The interface is very flexible. and can
be used to cormect to a range of systems from low cost DRAM optimized designs.
to high performance second level cache based machines.

The following sections introduce the basic transactions produced by the Viking
Bus. The interaction of these transactions with the cache consistency protocol
will be described as well.

Read and write single transactions are the most basic bus operations. They will
appear very similar in most designs. Block read and burst write transactions are
used to improve Viking-bus bandwidth.. Most transactions may be pipelined to
provide additional perfOlDlance improvements. A swap (atomic load/store)
operation is defined to provide locked bus transactions.

As examples, the operation of these bus cycles in several different system
configurations will be provided.

When using the Viking Bus, the processor is operating in CC mode. This forces
the intemal data cache to operate as a write through cache. Since the cache
writes through. all modifications that the processor makes to cached data will be
reflected extemally. 1bese transactions are used to keep in1ernal caches, external
caches, and other external processors up to date with any write operations.

Vilcing's internal caches are kept up to date by i1JValidation. Whenever an exter­
nal bus master assens the CMDS_ and WR_ signals (with DEMAr _ deasserted), any
copies of data cached intemaIly that match the address on the bus will be invali­
dated.

In systems with external caches, inclusion is nolDlally maintained with the exter­
nal cache. This allows the external cache controller to filter many system bus
transactions, and pass OIl only those which require action within the first level
cachCs to Viking.

Sun MicrosysfemS Proprietlry Revision 2.00 of November 1. 1990

204 TMS390ZS0 - Vikblg User Documentation

9.1.3. MMU Consistency
"Demap" transactions are used by Viking to flush one or more pages from its
MMU's TI.B. Internally, these are generated by reference MMU flush operations
(see section 4.11.7 - MMU Probe and Demap/Aush). The information transmit­
ted for a DeMap includes viltUal address and type, which the MMU uses as cri­
teria to match pages in the TI.B for removal. The context to be used for the
demap is broadcast in bits 47 through 32. The lower 32 bits are equivalent to the
data fonnat of the ftushoperation. The exact format is:

Table 9-1 Broadcast DeMapDataFormat

9.2. 'Systems Without
External Cache

I Rsvd Context VFPA Rsvd Type Rsvd
63 48 47 32 31 12 11 10 8 7 1

In addition to broadcasting this demap transaction extemally, Viking can receive
external demaps. When a demap is received, the processor executes the demap as
if it had been generated internally, only using the provided context rather than the
current internal context.

Vildng requires a single ready reply for the demap operation. It is system
hardw8leS' responsibility to ensure that the demap is broadcast to, and completed
by all MMUs in the system. Incoming demaps use a two phase request/reply pro­
tocoL

. Jmponam Note:
If broadcast DeMaps are used, only a single DeMap transaction may be
pending in the system at any one time. System software is responsible
for maintaining this. Indeterminate operation may result if multiple
DeMaps are in progress at the same time by any processor.

Viking systems built without an external cache are targeted towards lower cost.
and ge:nerally lower performance applications. Good performance can be
achieved in this environment by taking full advantage of Vildng's on-chip caches,
and providing low latency access to system memory. The Vildng bus allows for
efficient implementation of a variety of systems in this class.

1be sections below will describe operation of such a system as an example. The
system described assumes the use of static column mode dynamic RAM. Similar
configurations could be built with nibble, or fast page motU DRAM .

..

Revision 2.00 of November 1. 1990

(

9.2.1. Cache Consistency

Chapter 9 - Viking Bus Interface 205

An example of this interface is shown below:

Figure 9-1 Viking Non-Cached System
Addrels

Data
Strobes

r r I I .LL. -.-.
.... 1 •• ,.1 I ' I ,

I ' : ... 1 ... 1 >J~I sS a~
... >-

~i ~; ~! :e'J @§ ;,; =
::> ::> :"'~ '" • • Memory IJ() ."

Viking Controlla' Processor Additional

(MC) (lOP) Processor(s
.........................

D D
DRAM Interface I/O Interface

This diagram shows the principle components of such a system: Viking, a
memory controller device, and an ua processor. The diagram isa logical
diagram only. Additional devices, and possibly buffering may be required
depending on the exact implementatiorL The protocol allows for additional pro­
cessors, although this may contribute unacceptable bus traffic and electrical load­
ing.

Two simplifications are made to the protocol and interconnect for this environ­
ment One involves Viking's bus grant signals, the other deals with its •• data
ready" signals. As discussed in section 9.3, Viking has separate bus grant signals
for read and write: RGRT_ and WGRT_. which are separate to allow overlapped
read and write cache misses. RRDY_ and WRDY_ are also separate, to clearly
qualify data for these accesses. Since this overlap is not needed in a DRAM based
system, RGRT_ and WGRT_ may be tied together, to fonn a single bus grant signal,
shown above as BUSGRT_. Similarly, RRDY_ and WRDY_ are wired together,
defined above as DRDY_.

In this configuration, cache consistency is managed with invalidation. Since Vik­
ing is operating in CC mode, all internal store operations will write through to
external memory. All other caches in the system should see these write transac­
tions and cause any internal copies of that cache line to be invalidated.

Viking's internal cachet snoop on each others transactions as they appear on the
bus. Only write transactions will cause invalidation to occur. All read responses
will come from main memory, which is always correct due to the write through
operation of the cache. Self modifying code is implicitly supported by this

.~,.!! Sun Microsysrems Proprietary Revision 2.00 of November 1. 1990

206 TMS390ZS0 - Viking User Documentation

9.2.2. Arbitration

protocol, FLUSH instructions are still required to guarantee proper operation (see
section 4.4.4 - Rush (IFLUSH».

When Viking needs to perform an external bus access, it must have access to the
system bus. Access is granted to Viking by asserting the bus grant signals RGRT_
and WGRT_. In systems with external caches, these signals will nonnally be con­
trolled independently. In simpler DRAM based systems, a single compOsite
BUSGRT_ signal may be used, by connecting WGRT_ and RGRT_ together.

Viking supports lazy arbitration; if the bus grant is already assened when Viking
wants to begin an access, the access will begin immediately. If a grant is not
present, the BUSREQ signal will be asserted until the bus is granted. Once the
bus is granted, Viking may issue an access, as described in the following sections.
The bus grant must remain active for the duration of the bus cycle. If the grant
signal is deasserted, Viking will tri-swe it's busses on the following cycle.

Important Note:
Viking will begin a transaction on the bus immediately if the bus grant
signals are active. Since it is possible for Viking to begin a bus cycle at
the same time external arbitration is removing these bus grants. system
logic must monitor the CMDS_ signal to ensure that a transaction has
not started as the bus grant was removed. Since external arbiters should
ensure that an empty cycle exists between bus owners, this cycle may "I·· "­

be used to detect the arbitration collision.

Once the bus grant has been deasserted, Viking will tri-state it's I/O
signals on the next cycle. 1bis will generally interfere with the transac­
tion that has been started, although" some transaction may still be com­
plete<l.

When this situation occurs, it should be resolved by retrying Viking's
transaction. When the memory or external cache controller detects the
arbitration conftid (grant is deasserted and CMDS_ is asserted), it
should immediately assert the REI'RY _ signal. This will force Viking to
cancel the pending transaction and re-arbitrate for use of the bus.

Viking also samples the OE_ pin to prevent collisions with returning read data
from reads generated by the external cache controller. Although it is generally
legal for Viking to overlap write cycles with outstanding read miss requests, this
can cause a data drive COnOid when the external cache controller is reading from
the SRAM, and Viking tries to begin a store transaction. Viking will not initiate
driving the data bus if the Oil. signal was asserted extemally on the previous
cycle. 1bis case should generally be covered by arbitration, but is included for
extra protection. ..

Sun Mic:IaIysIemI PIoprieury Revision 2.00 of November 1. 1990

[

9.2.3. Error Reporting

Table 9-2

9.2.4. Memory and 110
Transactions

MEXC
1
1
1
1
0
0
0
0

Chapter 9 - Viking Bus Interface 207

All Viking bus transactions may have error responses. There are several different
types of error responses which are encoded on the RRDY ... WRDY_, RETRY_ and
MEXC_ signals. The encoding is similar to the encoding defined for MBUS error
responses. RRDY_ and WRDY_ are interpreted the same way, qualified by read and
write transactions. The table below defines the legal replies:

Rep/yCodes

WRDYJRRDY RETRY Reply Definition
1 1 No reply (idle)
1 0 Retry
0 1 Data transfer complete
0 0 Error: UD (Undefined)
1 1 Error: BE (Bus Error)
1 0 Error: TO (Timeout)
0 1 Error: UC (Uncorrectable)
0 0 megal Response (Reserved)

1broughout the bus cycle examples in this chapter, a standard error response with
MEXC_ and either (or both) RRDY_ orWRDY_ asserted is used. This error will be
interpreted as an uncorrectable error.

Other than retry responses, the error replies are all treated in exactly the same
-manner. The particular error type is decoded and use to set the appropriate bits in
the MFSR. See section 4.11.11 for a full description of the MFSR register.

Memory transactions are generally cacheable. while 'Va transactions are gen­
erally nol Cacheable read operations, with the exception of MMU table walk
operations, will use read block transactions. Non-Cacheable transactions will
always use single cycle transfers. 1be CCHBL_ signal will be asserted during all
cacheable transactions .

..

Sun Microsystems Proprietary Revision 2.00 of November 1.1990

208 TMS390ZS0 - Viking User Docwnentation

9.2.4.1 Read Single

9.2.4.2 Read Block

The following timing diagram shows a Viking read single operation. The read
single is indicated by the BURST signal being inactive. Read singles may be one,
two, four, or eight bytes; specified by SJZE[l:O). An example of a read single is
shown below. Timing will vary depending on the devices used.

-.
_.,..-r u.
CIIDS.

lID. -. -.
.�WD�' -

Figure 9-2 Read Single Protocol

~I ~"'\' ., ., . '0' ., ., ., " " .. "

::: :<\::::::::::::::::::.:. :0:::.::.: -• • . • • • • I •• [
cayc. •• aau. _NO' ___ let

~~~~~~~~~~~~~~. '~~. ,~ .. ~,~~~~.~.r I-J..:__.. __ ..... ______________ \Io.-\ ... J .. J'--____ , 1/, 

... : ... _ I ":II:M 'NO 

This diagram shows Viking arbitrating for the bus, using BUSREO- and BUSGRT_ 
(RGRT.JWGRTJ. The commlllld SITobe signal. CMDS_, is then asserted, identify­
ing the beginning of the access, and qualifying the initial address and strobes, 
such as RD ... WR... BURST, and SIZE. The RD ... WIt-. and SlZE[1:0) signals will 
remain active for the duration of the transfer. The BURST signal will be inactive 
for all read single operations. 

The memory controller responds with AmY ... to show the current address has 
been accepted, and that another may be sent. DRDY _ (RRDY.JWRDY.J is also 
asserted by the controller to qualify returned data. If an enor is encountered on 
the read, MEXC_ may be asserted to terminate the access, as shown in the exam­
ple above •. 

Read block timing is similar in some respects to the read single. However, its 
target is always memory, since read blocks are cacheable accesses. 32-bytes of 
data are always returned. Read block latency is system dependent, and to a large 
degree determines system performance. A read block operation to static column 
DRAM is shown in the figure below. This figure asswnes that the memory system 
is capable of providing one data word every other cycle. 

The transaction begins in the same manner as the read single. The BURST signal 
will be active along with the command strobe assertion. 'BURST will remain active 

San Mic:rosyItemI Propriec.y Revision 2.00 ofNoYember 1. 1990 



( 

r 

Chapter 9 - Viking Bus Interface 209 

for the first three transfers and deassert for the fourth. indicating the end of the 
transaction. 

Figure 9-3 SCRAM Read Block - Alternate Cycle Data 

CI.IICII 

... _-
Jat'!_/wa'r_ 0 
..,... . - .... 
...... _1_ 
IID_ 

--
MDY ---1IlIn'_,-.oy_ 

DAft 

_101')_ 

-eye .. .... c:u 

__ ftat:.iclce1 __ 

TIle memory conttoller responds with ARDY_. to show the current address has 
been accepted, and that another may be senL DRDY _ (RRDY.JWRDY.J is also 
asserted to qualify returned data 1be last line. "DRAM Cycle", is given as an 
example of possible SCRAM timing. 

In order to improve performance, it is possible to use two banks of memory to 
interleave data transfer. This can achieve twice the memory bandwidth of the 
previous example. Operation in a system such as this is described to show the 
flexibility of the Viking bus in supporting different memory configurations. After 
an initial access time, this model can return subsequent data doublewords every 
cycle. This example also shows no BUSREQ..; when Viking already has the bus 
(RGRT.JWGRT_ is asserted), it may begin an access immediately . 

• sun -v-- Revision 2.00 of November 1. 199C 

.1 

l 



210 TMS390ZS0 - Viking User Documentation 

Figure 9-4 Read Block - Dala on Consecutive Cycles 

__ IWZr_ 

..... 
aGI_ 

D 

""- o I 
~--'-~~====::=::;:;~.......,.;...-'--'--"'""'"'-'--"--' ............... ~-, ! 

:::':'::a,:·:·:i 
~~~~~~~~~~~~.~'. , .. 

, ,

--
--
Daft

: [
. (__ 1

_ : _ _ • 22:.0:11 1 ...

This configuration has ARDY_ constantly asserted, allowing Viking to send out all
four block addresses immediately in consecutive cycles. This allows the memory .
controller to look ahead into the transaction and stan: memory cycles as early as
possible.

The memory controller may return exceptions along with any of the four double­
words by assening MEXC_, as shown below. Vilcing also checks parity on each of
the incoming doublewords OfMCNTL.PE is enabled). Memory exceptions are sig­
naled for both parity enors and MEXC_. The handling of memory exceptions is
described in further detail in section 4.5.6.

Memory exceptions always invalidate the Viking cache block into which they
were being placed. However, the execution stream actually responds to the
exception only if the specific exception data was being demanded by the pipe­
line. In all other cases. the access is treated as a prefetch, and the enors are
ignored. An example of memory exception signalling is shown below. .

..

Revision 2.00 of November 1. 1990

(

9.2.4.3 Overlapped Read
Blocks

Chapter 9 - Vilcing Bus Interface 211

Figure 9·5 Readfrom SCRAM with Exception

--.-. -
OD_

.... __ "
__ I

LJI I

o

:oJV\t\D: ._._._r ._r_._ .

.l

· I
J

, I

l
· [

~~~~~~~~~~~-.~:~~:~~~.l 

I c:u 
· [ 

........... : __ • u:~.:u 1M. 

To further improve memory usage, Viking can overlap memory reads to a large 
extent The example below illustrates this overlap. 

--
aD. 

JD. -. ---. 
-~. 

__ I 

Figure 9-6 Overlapped Read Blocks 

~~~~~~~~~~~~~~ 

, . ~ :-:-'-'

__ • __ u... __ .ia_~~

_ : _ ... 'l.:n:Ul'"

Sun Mic:rosyslemS Proprietlry Revision 2.00 of November 1. 199<

212 TMS390ZS0 - Viking User Documenwion

9.2.4.4 Write Singles

In this example, as in figure 9-4, ARDY _ is grounded, allowing subblock
addresses to be issued in consecutive cycles. DRDY_ is assened for each returned
doubleword. However, the second read begins before the first has completed.
Specifically, once Viking has seen the first DRDY_ of the previous access, the next
may begin. When the read blocks are to the same SCRAM page, the effect is to
combine them, into one nearly continuous stream of reads. Even without con­
secutive SCRAM hits, memory latency is reduced significantly. Typically, the
memory controller will check if the two bus transactions are to the same RAM
page, which would allow use of static column or page mode DRAM optimizations.

Note that overlapped read singles are precluded. A read cannot stan until one
DRDY_ is seen from the previous read; however, this single DRDY_ completes the
previous transaction. This also prevents the potential complexity of overlapped
I/O reads.

Overlapping may be disabled by negating the bus grant signals (RGRT.../WGRTJ
after each read block has started. As an alternative, not assening ARDY_ con­
stantly will eliminate the overlap.

A write single is shown below. In this particular example, Viking's bus grant sig­
nals are not assened, so Viking must request the bus first before proceeding. As
with reads, CMDS_ is then assened for one cycle, to begin the access. ADDR[2:0]
indicates the staning position of the transfer on the data bus, and SIZE{I:01 indi­
cates the number of bytes (1,2,4,8). WR_ identifies this transaction as a write, it
will remain assened for the duration of the write.

Figure 9-7 Write Single to DRAM

• -- ~~·······r······· ---- :-"\ . r,
- .. [
lID --- :C1.P.
------------- ~-------------------------------.-I~,~ .. -'------------------------~.(,~. .(_.CpoM au CUll"

.... , J 1,,1.,10 1'"

,r·

Note that Address and Data are driven throughout the write cycle, until a WRDY _"--.
is received. Parity is generated and driven with data. Although ARDY _ is

.~!! Sun Microsysfems Proprietay Revision 2.00 of November 1. 1990

(

9.2.4.5 Burst Writes

Chapter 9 - Viking Bus Interface 213

grounded, as in the earlier read block cases, the address does not advance until
data is also accepted, with DRDY_. This avoids confusion between consecutive
write singles. Memory errors may also be reponed by the memory controller
with MEXC_ in this cycle, as shown below:

Figure 9-8 Write Single to DRAM with Exception

u
~'.' ,·'C/ ,. , ...
., , :-\ . 0;'----'-"---'--'----"---'--

wrlte

Ila:
· i

OCII_
· !

I--'-~'"-"-' ...:..': \...:..-:lL...:..: ..;....-1....:...: ~-'--'-____:......:.---".....:.....:--'--'-'--'-'-'--'-'--'-"-- \

~~-'--~. ~' 0":--'-''-'-''':''-'';'''''':-:'''''':''''''';'''''''':'-'-'-11 -- '1
~==:;:=:::;::==:::;::=~:;:::=:::;====:::.:::====~======. I

1lUtD1'_,-.ct_ :op:
DATA :op:

au x CAlC_.

DaU , ... _ J 17,11, .. 11M

The WEE_ signal controls assertion of the WE[7:0] .pins. If WEE_ is not assened
prior to the ready response, the WE[7:0] pins will remain in tri-state.

Viking may issue an aIbitrary length seqUence of write single transactions as a
write burst. This burst can continue as long as the store transactions in the store
buffer are within the same 32-byte cache line. Any transaction crossing this
boundary will cause the write burst to tenninate. The individual transfers within
the burst may be of any size. They need not be to consecutive bytes or words,
only within the cache line.

This optimization is typically used to eliminate cache tag checks in
configurations with an external cache, but it can also be used in DRAM based
designs as described in this section. In particular, since the burst does not cross
32-byte boundaries, it is guaranteed not to cross the page address of most
dynamic rams (static column, nibble mode, page mode, etc.). This allows optim­
ized DRAM write cycles to be used, typically avoiding RAS time.

An example burst write is shown below. The figure displays a burst of three
writes. ..

!
· !

I · ,
· [
· i

I

·l

Revision 2.00 of November 1. 1990

214 TMS390Z50 - Viking User Documentation

9.2.4.6 Overlapped
Read/Wri~

Figure 9-9 Burst Write to SCRAM

.... --,-~
nlll -.... , -.....
_1-
""-
--MDr_ -.
-.,...,..
DA~A -..... , -......

~ .. , --
The burst is identified by two signals, CMDS_ and BURST. Command strobe is
asserted once at the beginning of.the burst BURST will remain asserted until the
beginning of the last ~tion in the burst The next data and address in the
burst will appear in the cycle immediately following assertion of the WRDY _ sig­
nal. CMDS_ will not be asserted for each transfer. Assertion of the BURST signal
indicates that there will be at least one more store in the burst.

The WEE_ signal is used to enable subsequent transfers in a burst write. If the
WEE_ signal is not asserted prior to the first ready response, subsequent transfers
will be forced to reassert CMDS_. This essentially disables all burst write transac­
tions. The WEE_ signal also controls assertion of the WE[7:O] signals. If WEE_ is
not asserted any time before the first ready, the WE[7:O] signals will remain in tri­
state.

Read and write cycles may be overlapped in the same manner as overlapped
reads. The initial write latency may be interleaved with a previOUS read. Viking
can overlap any write with a preceding read block, as shown below. Store data is
not valid until all data from the preceding read block has been returned. System
logic is responsible for detemlining when the data is valid on the bus, there is no
explicit signal to indicate this. Viking automatically insens a single buffer cycle
between incoming read data, and outgoing write data, to avoid bus collisions.
Once store data is driven on the bus, it will remain until WRDY _ is asserted. ..
Write bursts may overlap read blocks. as well as write singles, since the protocol
is identical. Only the first address will overlap with data being returned on the
bus .

• !!!!! Revision 2.00 of November 1.1990

(

(

9.2.4.7 Swap

Chapter 9 - Viking Bus Interface 215

Figure 9·10 Overlapped Read/Write Block

"IE

••• , • ~ • ; • ~ • ~ • I • , ••• :.' •• ~t.· .. '~: . ,

~~DK:.I.":'" ~' '-'..:.,' --..:' '.' ' , ' '~-' -' '--' -' [
....... , , ' , ' ;0' 'D

~' '~'::' .=, =, '::'::;::, ~, ;M'

""- o
--11."_

--
IUUft'_/.urt_

__ 1 , , ' , ' , ' , '~' , ' , ' '~~,' '~~,' 'H~' , ' ~:-'-'---.-

This overlap can be disabled by negating the bus grant signal (WORT..) during the
read block access.

Viking performs swaps by issuing writes before reads~ This allows system logic
to takes advantage of the read·modify·write cycle of most DRAMS, allowing the
Swap to be performed in one memory cycle. The timing for this is shown below.
Swap bus cycles are generated for the SWAP and LDSTUB transactions, as well as
some page table status updates from. the MMU. Two ready responses are required
for this transaction: one for the write portion, another for the read. The memory
controller must store the write data during the write phase, and only modify
memory after the read phase has completed. System logic should not return data
for the read phase until the RD_ signal has been asserted. Returning data sooner
may cause bus drive confficts .

..

Revision 2.00 of November 1. 199<

216 TMS390ZS0 - Viking User Documentation

9.2.4.8 Processor Initiated
Demap

Figure 9-11 Swap with SCRAM

CLOCK

.... &0 I I'
, :: ' ' ,[

Ila 11 ..

~~;~: , ,~,~~I
r-~'~, ~~------~~~--------~--~,CJr:~~~

,~ 0, I -. J--'---';:""~ , Or-'-;~-----'
, ' , , , , ,l

~­

UD1'_/~_

~ 'WT1~.~~ , ,

~~~~~~~-7~~~~~~~~, ~,~, ' , ' , ' 
I I 

I===±::====~~=' ;-: .. -;~=' ;:==========; L~~~' ' .. ' , ' 
;~;'" DAD 

,'-', , ' , ' , ' , ' , ,( 

-~'"' I .... I CAl (It, CAl 1111 .... , ...... I _ ... _dte. I 

_ ..... : 

LDST_ identifies an access as an atomic Swap. SIZE[l:O) indicates whether one or 
'four bytes will be swapped (these are the only legal sizes for swaps). LDST_. RD_., "~ 

and WR_ are all assened continuously for the duration of the swap operation. 
After the first DRDY _ assertion. Vildng will wait for another DRDY_. indicating 
that read datil is ready. To return this old data. the memory controller must 
buffer the store data. then read memory first -After data is returned to Viking. it 
can then write the contents of the buffer into the RAM, using the second portion 
of a read-modify-write Cycle. 

Viking uses the Demap transaction to remove a PrE from all system nBs. In this 
type of system, a demap may affect an 110 nB, other processor MMUs, or simply 
be reflected back by the memory controller with no action taken in the system. 
1be timing for the demap transaction is simUar to a swap, two replies are 
required. 1be first reply (using WRDY_ acknowledges receipt of the demap 
request. The second reply intOnDS the processor that the demap has successfully 
completed across the system, and is signalled with the RRDY_ signal. Both ready 
signals may be assened at the same time, as shown in the diagram below, but two 
separate ready responses must be given. Exceptions may be reponed to the 
demap, by asserting the exception along with the RRDY_ response. 

,~' 

Revision 2.00 of November 1. 1990 

',,-, 



( 

9.2.4.9 External Demap 
Requests 

--
""-
'"'-

Chapter 9 - Viking Bus Interface 217 

Figure 9-12 Processor Initiated Demap 

;~ 
I~; 

----------------~~--------~----------
r-'-'"-'----""""--'"--'-~"'"'; ':\ . . i 

L-. i 

--~-

DA7A .... p .. I . . 
1 ..... 1 ..... a-wlp .... 1' I 

_ : .. ~ _ »17:17:03 1_ 

The demap is signaled by assertion of DEMAP _ and CMDS_. All information for 
the demap, including the virtual address, context, and command inform~tion, is 

. passed on DATA[63:O). The address is a "don't care" for demaps, and will be all 
zeroes. The format is defined in table 9-1. 

Many systems may chose not to take any action in response to the Demap. They 
must respond to the demap with two RRDY..JWRDY _ assertions. In this case, the 
memory controller may hold RRDY..JWRDY_ active for two consecutive cycles. 

Important Note: 
Ifbroadcast DeMaps are used, only a single DeMap transaction may be 
pending in the system at any one time. System software is responsible 
for maintaining this. Indeterminate operation may result if multiple 
DeMaps are in progress at the same time by any processor. 

Incoming demaps use a two phase protocol. The fim phase of the protocol is an 
external tlemtzp request. The second phase is a reply to that request There may 
be other bus activity between the request and reply. 

The request portion of the demap is issued by an external bus master activating 
CMOS_, and DEMAP _. DATA(63:0] should contain the demap command in the for­
mat described in table 9-1. This command should be issued on the bus for a sin­
gle cycle. Viking will not respond to this request immediately. 

. .. 
Once the external request has been serviced internally, Viking will begin a demap 
reply transaction. This reply appears on the bus similar to an internally generated 
demap. The major difference being that it is signalled as a read. rather than write. 
The reply is signalled by Viking asserting CMDS_, RD __ and DEMAP _. System 

Sun Miaosystans PIoprielIIry Revision 2.00 of November 1. 199 



218 TMS390ZS0 - Viking User Documentation 

9.2.5. Bus Monitoring 

9.3. External Cache Based 
Machines 

logic should respond with a ready (RRDY.J to complete the transaction. An 
example external demap transaction is. shown below. 

Figure 9-13 ExterMlly Generated Demop and Reply 

--
CIGI_ --c:s&_ 

IID_ 

--
J-'-'O"":""':-....:.......:.-'--'--'-'-~:......:.............:.-;..-'-; --=-"jJ: ...... ' ~-,-..:.....:.-:.......;.....:~-,---,-...:.-.:....-,--I 
~~-;'~{--T-----------~--' ~----~---------

-­
lEE--
.. _ ..... :~U.I ... 

. . 
I ""PliO a_.. '''''I 

In cc mode, all consistency is done through invalidation. Whenever the bus 
grant (RGRT...JWGRT.J signals are deasserted, an external bus master is free to ini­
tiate an invalidation on the Viking bus. The external master must assert CMDS_. 
WIL. and ADDR[3S:O). 

Viking's Bus Unit supports an external second level cache, which Significantly 
enhances perfOlUlance. This E-cache may be built primarily from discrete 
SRAM chips, allowing it to easily track advances in commercial RAM technol­
ogy. The on-chip control logic supports a simple, flexible cache design. for the 
different sizes, types and speeds of SRAMs which may be available upon 
Vildng's completion. 

An exremal cache controller (CC) controls the cache and provides an interface to 
memory and VO. The external cache controller also implements system cache 
consistency functions, in conjunction with Viking cache invalidations. 

, [ 

The key features and operaticms descn"bed in this section are pipelined memory 
transfers, overiapped cache accesses, and cache consistency operations. ~~ 

.!!l,.!! Sun MicmsysIImI Propriegry Revision 2.00 of November 1. 1990 



9.3.1. Basic System 
Configuration 

9.3.2. External Cache 
Organization 

Chapter 9 - Viking Bus Interface 219 

This section will describe general processor operation with the MXCC cache con­
troller chip, along with pipelined cache RAMS. Detailed operation of the MXCC is 
described in a separate document - the MXCC Specification. The'nominal pro­
cessor l'TIOdule configuration is shown below: 

Figure 9-14 Viking with External Cache 

CACHE 
CON'tROILER 

The external cache nonnally consists of eight SRAM chips. These RAM chips are 
organized as either 128Kx9 or 128Kx8. The "by nine" configuration provides 
for external cache parity. 

The CC is responsible for controlling Viking's access.to the cache, including bus 
grant and data ready signals. The CC must also process cache misses, and cache 
consistency operations (snoops). This requires an interface to a system memory 
bus, as shown to ·the right of the figure. 

To optimize cache miss handling, Viking has separate bus grant·and data ready 
strobes for reads and writes. TIle use of these strobes will be shown below in 
detail, as cache misses are discussed. 

Many E-cache characteristics arise from Viking, the MXCC chip, system require­
ments, and the use of discrete RAM components. This section generally describes 
one external cache implementation, many alternatives are possible. Some of the 
characteristics of this environment are described below. 

TIle E-cache is always a physical address cache. Typically, the cache is imple­
mented as a direct mapped cache, but it is possible to construct set associative 
caches. The E-cache must have a line size of at least 32-bytes (the processor 
intemalline size). Larger line sizes can be accommodated, with appropriate logic 
in the cache controller. Sub-blocking may be implemented. as long as the sub 
block at least 32-bytes. Processor data.access is done on a 64-bit data bus. The 
system bus interface can be 64-bits. or possibly larger. 

TIle cache controller is free to implement whatever cache consistency policy 
desired. The cache controller interacts with Viking using invalidation requests to 
propagate the consisteney policy into the processor. Typically, the cache con­
troller contains an integrated set of tags for the E-Cache. These tags are kept up 
to date as a superset of the infonnation contained in Viking's caches. This allows 
the cache controller to snoop bus activity and .only pass required invalidation 

Revision 2.00 of November 1. 1990 



220 TMS390ZS0 - Vilcing User Documentation 

9.3.3. Consistency 
Requirements 

requests in to the processor. There is some loss of internal cache occupancy due 
to this policy of inclusion, which is minimized by the large size of the external 
cache. . 

The E-cache is a single processor cache. Generally, it should not be shared with 
other processors. This is largely due to the high bandwidth requirements imposed 
by a single Viking processor. Although it is not recommended, sharing can be 
accomplished by conlOlling bus arbitration as described above. 

The E-cache·protocol is optimized for single cycle pipelined transactions. This 
assumes registered input and output SRAM devices. An E-cache read takes three 
cycles to complete, throughput is one read per cycle (pipelined). Non-pipelined 
RAMs can be used, with reduced performance. A variety of access times can be 
supported (all timing is determined by the cache conuoller). 

The two major properties supporting E-cache consistency are inclusion, which 
ensures that all infonnation stored in Viking's Instruction and Data Caches is also 
present in the external cache. A second property is for Viking's D-cache to 
write-through all stores to the E-cache. 

An example of a processor with external cache is shown below: 

Figure 9-15 E-Cache Processor Configuration (four system busses) 

I 
... 0 Bull 

.. 

.. ...,-

I I 
.. 2 .. 3 

Revision 2.00 of November 1.1990 



( 

( 

9.3.3.1 Write Through. Cache 
Inclusion 

9.3.4. Cache Hit Transactions 

9.3.4.1 Read Single and Read 
Block 

Chapter 9 - Viking Bus Interface 221 

Cache inclusion is assumed in any Viking system with an external cache. This 
allows the cache controller to snoop system bus transactions on behalf of the pro­
cessor. Viking's address bus is usually occupied. snooping all bus traffic would 
reduce performance. When a snoop write-hit occurs, the E-cache forces Viking 
to release it's bus (by deasserting RGRT_ and WGRT_ at the appropriate time. see 
section 9.2.2 - Arbitration). Once the bus is available. it can update the E­
cache. At the same time, Viking snoops its address bus to determine if it must 
invalidate its caches also. This combined snoop mechanism provides a simple 
system interface, where consistency information comes from one source. the E­
cache tags. 

Cache inclusion may restrict what can be cached within Viking. Viking's 5-way 
associative Instruction cache and 4-way associative Data cache may not contain 
any data that is not also present in the E-cache. Whenever the E-cache replaces a 
line externally it must force Viking to invalida~ any internal copies of the victim­
ized line. This can lower the performance of the internal caches by forcing cer­
tain data to be invalidated where it would otherwise remain in the cache. This 
suggests that the E-cache should be several times the size of Viking's combined 
caches. a 256K-byte external cache is a good minimum size. 

Invalidation occurs when the cache controller asserts CMDS_, WR_ and the snoop 
address on ADDR[3S:O), enabling Viking's snoop logic. Viking can accept one 
snoop transaction every other cycle. 

The impact of writing through all ~res to the external cache is minimized by the 
Viking's store buffer, which allows the processor to Continue even though some 
stores haven't yet reached the E-cache. The store buffer has lower priority than 
read transactions, so stores usually do not interfere with cache miss traffic. This 
interference is further reduced by burst writes and overlapped accesses. 

This section describes accesses which hit in an external cache. The protocol is 
very similar to Viking's access to main memory in DRAM based systems 
described in section 9.2. Several important differences exist, and will be 
described in this section. Bus grant signals for read and write accesses have been 
separated, as have read and write data-ready strobes. Another difference is that 
two strobes (OE_ and WE.l7:0]), are provided to control the cache SRAMs directly. 
The WEE_ (write enable enable) signal is used to control Vikings use of the 
WE.l7:0) signals. 

Most of the timing diagrams that follow illustrate Viking bus timing with a cache 
controller chip like the MXCC, and pipelined single-cycle SRAMs. Many varia­
tions are possible. such as different memory timing. At the end of this section, 
~eral examples with different memory timing are provided. 

The following timing diagram shows two cache read hits: a read single and a 
read block. RGRT_ is assened throughout, allowing Viking to perform both reads 
witlK>ut arbitration delay. For all read transactions, WGRT_ is not required, only 
RGRT_ is needed. 

Revision 2.00 of November I, 199( 



222 TMS390ZS0 - ViJcing User Documentation 

Figure 9-16 E-Cache Read Hits 

-
oms. 

lID. 

-. 
t--__ --I _ x....:~...:...~~G-~G-;:t~-~::!!-~i~-.:..~~,~· l 

~~~~~~~;~~~:~! • I AIID1' • 

.-r.

-. --
I ... 11ftIle

..

.. y : _ ... 13 20:0.:.01 ...

-.-

To begin the read single. VUcing asserts CMDS_. ADOR[3S:01. SlZE(l:Ol. RO_. OE_ ..
ADOR and OE_ are directly connected to the SRAMs, which latch the signals on
the next clock rising edge.

After latching address and strobes. the cache controller performs a tag lookup
and compare to determine if the access hits in the E-cache. The SRAM read. takes
place in parallel with this. in preparation for returning the data to Viking. This
parallel access is possible since the E-cache is direct mapped. The data is latched
in the SRAM data output latch on the next clock rising edge. In the following ..
cycle. this data is driven on the DATA(63:O) bus to Viking. As the data is transmit­
ted. the cache controller asserts the RROY_ signal to indicate a cache hit It the
access were a cache miss. no ready would have been generated and Viking would
have ignored any data driven on the bus.

Since both outgoing address and received data are latched on rising edges. these
accesses can be pipelined to form a read block. In these examples. ARDY_ is
always asserted. allowing Viking to issue new addresses every cycle. Four
addresses are issued. each requesting consecutive doublewords from the same
32-byte block (with wraparound). To identify the access as a block. Viking
asserts BURST along with the first three addresses. then negates it for the last.
marking the last address of the block. All block reads transfer exactly four dou­
ble words. The RO_ and OE_ signals are asserted as long as addresses are driven . ..
The SRAMs latch all four addresses and OE-, and return data for each. delayed by ,.,-.,
two cycles. The cache controller also returns fourRRDY_'s. it only needs to actu-: .
ally check tags once. since all four are always from the same cache block. '

• 'sun
-,.-

Sun Mic:rosys1emJ Propriet.ry Revision 2.00 of NO\'ember 1. 1990

(
9.3.4.2 Overlapped Read Hits

r

9.3.4.3 Write Singles

Chapler 9 - Viking Bus Interface 223

The pipelined read mechanism employed for nonnal block reads also allows
multiple cache blocks to be read consecutively, without buffer cycles. Maximum
data read bandwidth is achieved using this overlap. The timing for two over­
lapped read blocks is shown below:

Figure 9-17 Overlapped Read Hits

.... -
.c::.lD. 0,

I -'-~~::;:::. --'-= --=. '-="'-= ..:....::" 'elL=' =' =~=:' ~:~:==':.:=·=-=~=~=~=_=_=_=~=~=_=_=_:::;·li
t- ,0

I----l ••• l----Gij----+-----------
_"",I.e -- ~--:---:---,--,-~~~......,--,--,--.,.......,..--I

_.--
Data : _.. I ~1:17:1'7 1'"

Each block consists of four addresses, which read four doublewords from their
respective 32-byte ·cache block. There is no relation between the blocks. The
cache controller performs tag compares for both· blocks, allowing them to be
from arbitrarily different addresses.

Cache writes require more time than cache reads. As shown above, read accesses
always read the cache, whether or not there is hit Writes cannot begin until the
cache tags have been checked. Otherwise copy back cache data could be cor­
rupted.'

Since the E-cache tags are external to Viking several cycles are required to per­
form the tag compare before Viking can actually write to the cache. Viking issues
CMDS_ and WR_. Viking drives address and data continuously, while the cache
controller performs the tag check. The controller may respond by asserting either
WRDY_ (for an E-cache miss), or WEE followed by WRDY_ (for a cache hit). In
this example, ARDY _ is always assened, but does not affect the assertion of new
write addresses. Write address generation is controlled by WRDY _. not ARDY_.

The cache controller asseltS'WEE __ (write enable enable), in response to the tag
check. This allows Viking to assert the appropriate WE.l7:O] signals to begin a
store to the cache RMB. There are eight separate WE_ strobes, one for each byte,
so that individual partial words can be stored without read-modify-write cycles ..
The write enables are asserted until WRDY_ is received from the cache controller.
which terminates the write.

Sun Miclosystems Propriewy Revision 200 of November 1. 199(

i

i ,

224 TMS390ZS0 - Viking User Documentation

Figure 9-18 Write Single Hit

-
oeI_ ~ I

aM--­
DlL'fa

Da : _ U U:.:Ull'"

•••

:~:

, [
wru.

Depending on the cache consistency algorithm used, certain writes (for example " j

to shared data) must be broadcast to the system before they are written into the
.external cache. In these cases, cache controller may respond with WRDY-,
without asserting WEE__ This tenninates the write as far as the processor is con­
cerned, just as if a miss had occurred. Once the transaction has been completed in
the system, the cache controller may gain bus ownership and actually perform the
write to the cache RAM. This operation is shown below, it is a combination of a
write miss followed by a snoop write-update. The write update ponion will ~use
Viking to invalidate any internal copies of the data.

..

lteYision 2.00 of November 1. 1990

r

9.3.4.4· Write Bursts

Chapter 9 - Viking Bus Intez-face 225

Figure 9-19 Shared Write Single

.-

aal_ ~

-- I--'--~:-,\:-,-,...-__ ,...-.,--_~O i
x------r--~~~--------I-------i tao

waT_

---..-
.ar_

DA'rJ.

t------------~-~---_;..1t.

wr1t

.. __ : _ a..., 11 a:u:s. IN'

The penalty for the write tag checks may be amonized among several conseCu­
tive writes. if they are to the same cache block.. Although each Store is generated
by a separate Store instruction, Viking's store buffer can recognize these neamy
stores. and group them. The length of the write burst is ari:>itrary. It will continue
as long as store transactions to the same cache block continue. The example
below illustrates four consecutive transfers in a write burst Four double word
(64-bit) stores. four transfers is the most likely duration. since that covers the
entire 32-byte block. Each transaction in the burst may have a different size, and
does not need to be in any order.

Sun Miclosystems PtoprielIry R.evision 2.00 of November 1. lex

226 TMS390ZS0 - Viking User Doctunenwion

'" .--"

Figure 9-20 Write Burst Hit

-
OCII_

--

~ III _&l_Ub U [

:~: .

--
-­UD't_

'-c,. ..

u,

Date , _..... • 11,20,. 1 ...

:~:

:~:
_.,-'U_U - -- . [

Once the cache controller has determined that the access has hit it issues WEE_, as
for normal write hits. Since this qualifies the whole 32-byte cache block for writ­
ing, Viking may perform multiple writes in consecutive cycles. This win con­
tinue until either the writes are exhausted, or tbe controller requires the bus and
negates WGRT_. See section 9.2.2 - AIbitration for more details on arbitration.

9.3.4.5 Overlapped Read/Write the penalty for ~ store tag check can be completely eliminated in many cases.
Hits In the same way that reads are overlapped, Vildng allows a preceding cache read

block to overlap the tag-check for a write block. This takes advantage of the fact
that, for read blocks, the address bus is free before the data bus. Since only the
address is required for the write's tag check, it may be driven out immediately,
even though data is still returning from the previous read block. The three-cycle
pipelined read timing is well suited to this mechanism: the read block and write
tag compare both finish at exacdy the same time, allowing the SRAMs to be writ­
ten with no additional delay. Viking will drive valid data after a one cycle bus
turnaround delay after the last RRDY_ for the read burst. The cache controller
should asselt WEE_ no sooner than one cycle after the last RRDY __ The first
WRDY _ asseltion should be in the cycle follOwing WEE_.

In this example, a write burst is shown following a read block.

..

• ~,.!! Sun Mic:roIystans Proprieury Revision 2.00 of November 1.1990

(

[
9.3.4.6 Swap

Chapter 9 - Viking Bus Interface 227

Figure 9-21 Overlapped Read/Write Hits

-.......
. i

... -
a: cycle

" ~'-:-....,.--:-,--:---:--:--,----:----,JO'
I---r----i to, I--~-@-------""-------

-- .' -:lD
~'

~I' i

~~~--~~~~1G~1I' ~;:-----,~ 

~ : red : ~d :~. ::------, ~ 
..... aloet wrU .•• nt J 

Day .. _ : _ .JIa 27 11:&1:" U" 

To support packet-switched system busses, Viking performs Swaps (atomic 
read/writes) by issuing the write before the read. Otherwise, an atomic swap 
would require two bus transactions and a locking mechanism on the packet 
switched bus. 

The swap begins much like a write single. Vildng drives out CMDS_, along with 
ADDR, DATA, WR_, LDST_ and RD_. The LDST_ signal is equivalent to the logical 
AND ofRD_ and~. The OE_ is oot driven by Vildng at any point during the 
swap. The cache conttOller latches the data and returns WRDY_, ending the write 
portion of the Swap. The cache conuoller should check the cache tags to deter­
mine how the remainder of the swap must proceed. In the simplest case, the 
external cache is the exclusive owner of the referenced data, allowing the swap to 
complete locally. If the data is shared, the swap must be broadcast to the system 
prior to local completion, which complicates the bus cycle. 

Once the write portion is complete, the cache conuoller should negate the bus 
grant signals, RGRT_ and WGRT_. This will force Viking to relinquish the bus, 
allowing the cache controller to control the SRAM and complete the reference as 
required. 

If the access can be completed locally, the cache controller reads the SRAMs, by 
asserting addresses and OE_. When the data is valid from the SRAM, the cache 
conuoller should signal the processor to accept this data by asserting the RRDY_ 
signal. Once this read is complete. the cache controller can retain ownership of 
the bus, and perform the modify portion of the swap to the SRAMs, by asserting 
the stored data, address, and the appropriate WE[7:OL signals. 

Sun Mic:rosyst.ems Proprietary Revision 2.00 of November 1. 1991 



228 TMS390ZS0 - Viking User Documentation 

9.3.4.7 Demap 

9.3.5. External Cache Misses 
(and Non-Cacbeables) 

If the cache block is shared with other processors the cache controller must 
broadcast the store across the system bus before supplying Vilcing with the previ­
ous data. This is done to ensure proper system synchronization. Once the broad­
cast has completed, Viking can return the correct data to the processor by driving 
the data bus and asserting RRDY_.1be write update portion of the swap can then 
proceed as above. An example of this case is shown in the figure below. 

Figure 9-22 Swap Hit (Shared, with invalidate) 

- rUlJLSl.JLJLJLJ"L1LJLJLJ'JL.1"LJ'LJ 
. . . . . . .. ................ .. l 

AI 1 I. AI 1 .-T--.. '~' ....... " .. " .......... ' .. 

--
... ------- . . . . :t;l.D; 

~~~~.; \~;±~~Jt·======~·~·~· ~.~ ..... . . ~~~-. . . ' ;-:::..Jj. 
~~------------~------------------~~.~.~---

• • If' • • I • I • t ••••• _1_ l ... a_IU_1
... _ 1 __ '.1

........ :

Note that WEE_ must never be asserted, even if the access is not shared. WEE_
would allow Viking to write diJectly into the SRAM, overwriting the old data,
which must be returned to Viking during the read phase of the swap.

Demap transactions, both processor and system initiated, operate in the same
manner as described for non-extemal cache systems. They will not be described
funher heJe.

In most applications, the external cache will have an outstanding hit rate,
approaching or even exceeding 99%. Still, long miss penalties can have substan­
tial effects on perfonnance. Some of this perfonnance loss can be reclaimed by
efficiently using the Viking bus in the presence of cache misses. 1be effect is to
reduce and sometimes to eveR eliminate the penalty of cache misses.

Basic read and write miss protocols are described below. Overlapping bus
accesses to increase perfonnance during cache misses will be presented in detail. "-'
1bese overlapped accesses may result in Viking generating two concurrent cache
misses, one from a read miss. the other from a write miss. This can makes good

• !!I,.!! Sun Mic:rosystcms Proprieury Revision 2.00 of November 1. 1990

(

9.3.5.1 Read Misses

Chapc« 9 - Viking Bus Interface 229

use of packet switched buses. which can support multiple outstanding requests.
Non-cacheable reads and writes are commonly used to access IJO devices. and are
described to conclude this sectiOIt

A read miss begins as a normal read access. Because the E-cache tag compare
indicates a miss. RRDY _ is not asserted. Any data that may be returned by the E­
cache RAM during this time is ignored. Viking must wait while the cache con­
troller accesses main memory to obtain the required cache block. During this
time. the controller negates RGRT_. preventing Viking from issuing any additional
reads.

While waiting for a response from memory. the WGRT_ signal may remain
asserted, allowing write operations to overlap the read miss. When data is about
to return from memory. the cache controller should deassert WGRT_ (taking into
account any pending write operations). TIlis action allows the cache controller to
control the SRAM. and initiate a write operation when the read data arrives from
memory. The sequence for this is shown below. Examples of overlapped tran­
sactions are presented later.

As data returns from main memory. the cache controller writes it into the exter­
nal cache. Note that the "CC Cycle" and "SRAM Cycle" lines are skewed by one
cycle. because of the one cycle delay imposed by the pipelined SRAM. To per­
form the writes. the cache controller drives ADDR. DATA, and WE.10:7]. one cycle
for each double word.

At the same time that data is written to the cache, the RRDY _ signal is asserted,
which will allow Viking to sample the data at the same time it is written in to
memory.

...

Revision 2.00 of November 1. 1991

230 TMS390ZS0 - Viking User Documentation

9.3.5.2 Write Misses

--
-------­.,.

Figure 9-23 Read Miss

1---.---1 t ••

..........
- -, _. • p'tMa

: ~ J 17:11:21 1 ...

Exceptions can be reported on any of the four incoming doublewortls. The tim­
ing diagram above shows an error on the third doubleword. All such exceptions .
cause both the CC and Vildng's on-chip caches to invalidate their respective
cache line. A trap is only reported to the pipeline if the exception occurs on the
first word. and is a demand access. Exception handling is described in more
detail in section 4.5.6.

Write cache misses are handled quite differently from read misses. When a miss
is detected, the write operation is aborted by asserting the RETRY_ signal. By
deasserting the write grant signal (WORT J, the processor is prevented from
attempting this retry until the bus is once again granted for writes. Once the write
alIocau to the E-cache has been completed by the cache conttoller, the write is
retried, and now hits in the external cache. This protocol is required to prevent
Vilcing from driving ADDR and DATA until it received a WRDY_. which would
prevent the CC from being able to write the required cache line. The timing for
this is shown below.

..

. l

.§!lJ! Sun Microsystems Propriewy Revision 2.00 of November 1. 1990

r

[

--.......
01)1. -.

-.
lIIID'l.

Chapter 9 - Viking Bus Interface 231

Figure 9-24 Write Miss

DaU -"9M : _ ... U 10:27:07 1 ...

The write is started by driviJig ADDR, DATA, CMDS_, and WR_. The cache con­
troller performs a tag compare. After determining the write is a miss, the cache
controller assens RETRY_ and negates WGRT_, and begins to handle the miss. The
RETRY_ assertion tells Viking to end the transaction, and retry it later. The
WGRT_ negation tells Viking that it cannot attempt to retry the write yet. WGRT_
stays negated until the CC bas finished fetching the missed cache block.

As the missed block arrives from memory, the cache controller writes it into the
cache, shown above as "Write Fill". The is similar to read fill operations for
read misses. One major difference is that RRDY_ is not asserted as the double­
words come in. The write fill operation is invisible to Viking.

When the write fill is done, the cache controller assens WGRT ... allowing Viking
to retry the write. The retried write is shown in the timing diagram as "Write
Retry (Viking)". This time it hits in the cache, and completes normally.

The memory conttoller may encounter a memory exception on any of the four
incoming doublewords. Since the write fill is invisible to Viking, the error cannot
be reported immediately to the processor. The preferred action for the cache con­
troller to take is to delay reporting the error, and allow Viking to retry the write.
The cache controller can then repon the error synchronously to the write, by
asserting MEXC_ with WRDY_. The write is guaranteed to be associated with the
error, since Viking always performs writes in order. This matches Viking's store
exception handling policies, for both buffered and synchronous writes. Synchro­
nous write exceptions are reported directly to the processor pipeline, while errors
on buffered stores cause a store buffer exception to occur. See section 4.12.5 -
Store Buffer (Data Store) Exceptions for a more detailed description. An

SUD Microsystans Propriewy Revision 2.00 of November 1. 199£

I­

I
I

I

232 TMS390ZS0 - Viking User Documentation

example of this is shown below. The cache controller must invalidate the tags for
the data being fetched in this case.

Figure 9-25 Write Miss with Exception

;DJj

-- '--_---'J; Or; -"" ""'-'-' .:..' "'--!.' -""""''-'-' ..:..' ..:.-..:.--=-:.....;...""'; 0 Or-'-:""';""""'l
r-~~ ---~-~---~--,[

wz_ -- ~~~~~~-'-'-'-.:....:..~~~~"'--!.-"'-'~~""':GC.~~~ -. -:::iL '
r£.~j),.~~~~.:--'71

I tIr1h.... I _ •• Pill CCCI

ilia , ,.. .. U 1.,21:11 1 ...

In some systems, depending on the state the fetched data, additional system tran­
sactions may be required before the write miss is completed. An example below
illustrates broadcasting a shared write to the system immediately following the
write miss. This transaction combines a write miss with a shared write hit, as
described earlier. Notice that the WEE_ signal is not assened. This allows the '
write to complete from the processors perspective, while it has still not pro­
pagated through the system. When the system operations are complete, the cache
conuoller will update the external cache by performing it's own write operation.
The exact operation of this type of sequence is system dependenL

..

San Miclosystems ProprieUry Revision 2.00 of November 1. 1990

(

[

9.3.5.3 Overlapped Hits and '
Misses

Chapter 9 - Viking Bus Interface 233

Figure 9-26 Write Miss, Shared

.......

--ex: CYcle

-- ~~~~~~~~~~~~~~~:lJJr;~~~~~--

~.~~l:4t.~~~~;.-.,..-,-,---• .,....; -...--'':'(~
-CYCle

, a: WrU •

.no -...

The shared write broadcast may also encounter an error, it would be reponed
synchronously, by assening MEXC_ with WRDY_.

Cache misses may require many cycles in some systems. Previous examples
have shown the Viking bus to be idle while misses are being processed. In many
cases, Viking can maice use of this idle cache bandwidth. Except for cenain syn­
chronization points, Viking's reads are issued independently of writes, and vice
versa. By separating RGRT_ from WGRT_, and RRDY_ from WRDY_, the Viking
bus can also treat these independently. As a result, when writes are blocked by
an external cache miss, Viking can still issue reads to the cache. This prevents a
store, which is usually buffered in Viking's store buffer, from potentially block­
ing the IU-pipe by interfering with external cache reads. An example is shown
below.

..

Sun M~ Proprier.y Revision 2.00 of November 1. 199

234 TMS390ZS0 - Viking User Documentation

Figure 9-27 Overlapped Write Miss and Read Hits

-
--
a: CYCl.

-­IUIIIT_

11&7&

I.". til •• 1 I lI1t(Vll1.1

_i / -lafItM _ Ut

M ... _ : _ ,... 12 1'7:15:12 1

I I

1 I Ih'U. Fill tee) t I.Ute aetry tVI

After a write miss occurs, the cache controller negates only the WGRT_ signal.
RGRT _ remaim assened, allowing Vildng to issue read transactiom. When the
cache controller has received me write miss data from l,Ilemory, it disallows
further reads by finally negating RGRT_. While both WGRT_ and RGRT_ are
negated, the cache controller writes the incoming line into the cache SRAMs.
Then, Viking can retry the write at its convenience (other intervening transactiom
can occur). .

Conversely, while Viking is waiting for a read miss to be processed, it can issue
stores to copy its store buffer to the external cache. This allows the store buffer
to drain to the external cache while a read miss is being processed, using other­
wise idle bus time. An example of this is show below .

..

Revision 2.00 of November 1. 1990

9.3.5.4 Overlapped Read/Write
Misses

Figure 9-28

-"-
""-

--
cc eyel.

--.... ,-
DATA

Chapter 9 - Viking Bus Interface 235

Overlapped Read Miss and Write Hits

J
..:-:...""-'-...:.-;....:., .• ~~ , . , ... , . , . "

I Mi .. CV1Uftlli I I tfru. 111' CYlk1 ... J

_ , _~ 1lU.t:e .~

llet:e : _ _ I 1~:1.: •• ~

After a read miss, the cache conuoller negates RGRT _ to indicate the miss. WORT_
remains assened, allowing Viking to initiate write transactions. Although read
misses generally stall the processor pipeline, Viking's store buffer is unaffected,
and may issue stores. nus example shOws one such store, which hits in the
cache. Once the ~ controller receives the read miss data, it disallows fwther
writes by finally negating WGRT_. With both RGRT_ and WGRT_ negated, the
cache controller completes the read miss, writing the data into the cache SRAMs
and passing it onto Viking by asserting RRDY_ for each doubleword. The con­
troller then asserts both RGRT_ and WGRT_. allowing Viking to proceed nonnally.

The previous examples described cache hits that can occur while the external
cache conuoller is processing a cache miss; specifically, read hits during a write
miss, and write hits during a read miss. These overlapped "hits" could also
result in cache misses, which must be properly serviced. Since reads and writes
are handled independently, the protocol is not altered if both accesses generate
cache misses. 1be following two examples show a read miss followed by a write
miss, then the reverse .

..

• !!!!! Revision 2.00 of November 1. 199<l

236 TMS390ZS0 - Viking User Documentation

Figure 9-29 Overlapped Read/Write Miss

.....

--

--

, ('" I._C' (VI I I 1"111 (CC) I IItrtt. FlU (Q:) I .. rite IU.t (VI I

__ , tIft __ •• / _lap

Deu ... t _ J 17.11 •• , l..o

'---------------------------- "--.-... /

This example shows Viking issuing a read miss. then attempting to copy out a
store buffer entry while the read was being processed. as before. After checking
tags for the read. the controller negates RGRT..; but leaves WGRT_ assened. TIlis
allows writes to be issued while the read miss is taking place. The write also
misses. forcing the cache controller to negate WGRT_. as for a normal write miss.
All further Viking accesses are blocked at this point

Eventually read miss data is returned from memory to the cache controller. As
the controller writes data to the cache SRAMs. it passes it onto Viking by assening
RRDY_. At this point RGRT_ is reasserted. unblocking funher Viking reads. Later.
when the write miss data anives from memory. the cache controller retakes the
bus by negating both RGRT_ and WGRT_. and writes that line into the cache.
Fmally. the cache controller asserts both RGRT_ and WGRT ... allowing Viking to
perform reads and writes as it desires. In this example. Viking chose to retry the
write immediately. which completed normally.

The example can be reversed. Viking can generate a read miss while a write miss
is already in progress. This case is handled the same way. and is shown in detail
below.

..

Sun Mic:rosystems Proprieury Revision 2.00 of November 1. 1990

[

9.3.5.5 UO and Reads and
Writes

Chapter 9 - Viking Bus Interface 237

Figure 9-30 Overlapped Write/Read Miss

I

.l -
""-
--

, ... , \.~

.... ~ .": ~ . . . ;(\; . : . : . : . ~ .. ~: (/ . : . : . : . :~
-- I I :: ·~!.r;...; .. ··; .. ·l .. ;;.:............. " "';';"wwrl

; • . • • I , •.•. ; •. ;.. ,,' . ':;jJ; . . ; ; . :
.. t

• ~-DD!J~----D*D...---;
···································;·;······O~~

~.~.~ .. -.~ .. ~ .. ~.~ .. -.~ .. ~ .. ~.~ .. ~ .. ~-.. -.-.~
. , . . ., ,.. ,...........,................. , ~

llA'ra

.,ne_ Ill.. I I -... Mi.. I I .r.n. FJ.ll I I Mr1.u lilt I I rill I

_i.u __ • _/ _lap

Date : .. ~ _ ~ 1'7:1.:. 1 ...

Note that the read and write misses can be serviced out of order. Even if the read
miss happened first, it is possible that the write miss line CQuId have returned
before the read does. This ordering is completely legal. Viking simply proceeds
with whatever access the cache controller allows, as signaled by the RGRT_ and
WGRT_lines.

Non-cacheable and UO reads are similar to read misses for both Viking and the
cache controller. They always initiate system bus transactions to transfer the
needed data. The cache controller can differentiate between cacheable and non­
cacheable reads by sampling the CCHBL_ pin for any transaction. The CCHBL_ sig­
nal is determined by the state of the C (cacheable) bit in the correspondingTLB
entry, or by theMCNTL.AC (alternate cacheable) orMCNTL.TC (tablewalk cache­
able) bit if no TLB entry applies. If CCHBL_ is asserted, the access is cacheable;
otherwise, it is considered non-cacheable. During system reads the cache con­
troller can allow Viking to perform cache writes by negating RGRT_ while keep­
ing WGRT_ asserted. When the incoming data arrives, both RGRT_ and WGRT_ are
negated, and the incoming data is driven onto the Viking bus, qualified with
RRDY_. Only one "packet" of data is transferred. comprising one, two, four, or
eight bytes. UO enors are reported synchronously with RRDY_.

All non-cacheable references are single word transfers. Cache controllers may
implement other caching policies than those indicated by the CCHBL_ pin .

• !!!!! Sun Microsystans Propricary Revision 2.00 of November 1. 1990

238 TMS390ZS0 - Viking User DQc:umentation

-na

.,..,1_

""--.
..-r • -.
.-DY.

Figure 9-31 Noncacheable Read

! .

o

~ 1IiaI1e, _ C ..,Me

Dau .. _ : .. ~ _ a 11:'2:" 1 ...

va and non-cacheable writes are handled differently than other write misses.'
When the cache cOntroller sees a non-cacheable write (identified by CCHBL_
negated). it negates WGRT-t as for a write miss. This causes VikIng to stop driv­
ing ADDR and DATA. nie controller should not assen RETRY -' so Viking contin­
ues to wait for the write to be acknowledged. even though it is not driving the
busses. 1bis condition exists until the needed data is received. and ack­
nowledged (although the va write may simply be placed the targets store buffer) .

..

Sun Micmsyaema Propriel.ry Revision 2.00 of November 1.1990

!

(,

9.3.5.6 Cache Invalidations

Chapter 9 - Viking Bus Interface 239

Figure 9-32 Noncacheable Write

, . ' ... ' . ' ... , . '. . .'.' '.'.'. 'l

liD! .'- .

D

--l1li.,,-
" A,.. . '

wa.te Iiafla, _ c '.

"u .. _ : .. ~ _ ,u:.a: .. 1 ...

The cache controller negates WGRT_ during this time·to allow it access to the
cache, to satisfy system requests.

Frequently, the cache controller must invalidate a block of data that is cached in
Viking's internal caches. This can occur when the cache controller replaces a
line in the external cache. To maintain cache inclusion, Viking must also remove
this line. Invalidation is also required when the the cache line is updated due to
another processor's write. .

The invalidation protocol is very simple. When the cache controller is bus mas­
ter. Viking snoops external bus traffic, using the same signals that it nonnally
uses to perfonn accesses. The controller becomes bus master by negating RGRT_
and WGRT_. It then asserts CMDS_, and WR_, telling Viking to invalidate the cache
line, if any match the current address on ADDR.

Revision 2.00 of November 1. 1991

240 TMS390ZS0 - Viking User Documentation

Figure 9-33 Viking Cache Une Invalidation

--
--

a.te : ~ ... IC 10:C5:17 1 ...

Invalidations can be issued every other clock cycle.

In most cases. the cache controller can invalidate Viking's internal cache line at
the same time it is updating the E-cache SRAM. For example. when the CC is
copying out a modified line. it can also force Viking to invalidate the same line,
as shown in the example below.

Figure 9-34' Invalidation During Une Read

- 110-..'-. AZ-. U I .. " '-;-'-'. ---­.. -

--------Daft

:-'\'
~~:
..vtav 1- 1- 1- . .

- x- 1- 1-

,. . IIO_.'_U_U

,
........ : ~ ... u 10:U:C01'"

~--~r
Before proceeding. the cache controller obtains the bus from Viking by negating
RGRT_ and WGRT_. Then. it reads a block from the SRAM much like Viking. by

.~!! Sun Mic:IoIyItems Proprielllry Revision 2.00 of November 1. 1990

I

9.3.6. SRAM Timing
Variations

9.3.6.1 Accesses to Slower
Pipelined SRAM

Chapter 9 - Viking Bus Interface 241

driving ADDR and the SRAM output enable, OE_. The controller asserts WR_ to
qualify the current ADDR value, telling Viking to invalidate the internal cache line
that matches it, if any.

Viking's protocol supports many variations of cache timing, in addition to the
one-cycle pipelined SRAM described above. Two classes are discussed here; the
first relaxes the internal SRAM access time. The second example shows how Vik­
ing would be interfaced to more traditional SRAM, which do not have address
and data registers.

The most common type of pipe lined SRAM perfonns actual memory accesses in
one cycle. However, slower pipelined memory can be used. The following
example increases the SRAM access time to two cycles, while maintaining the sin­
gle cycle assertions of the standard interface.

Figure 9-35 Slower Pipelined Reads

u l . .l -
IID_

at_

--
cq '~~'--------------~i~i-----....

:r
·1

.[

'r
~==t::::;:1 '~~~:.I

'OJAvAVA\Li .
~~~~'jjj" 'CLtAvAvA~r;~'~~1 -. 
~~------~~,,:------'~~~~T;-'------'! MIA . . . . . .. ... , . 

I ... 11fti1le .... aloe_ 'I 

To slow down the rate at which Viking generates pipelined addresses, the cache 
controller must toggle ARDY_ rather than asserting constantly as before. Pipe­
lined SRAMs generally have single registers for address (~d data); thus, Viking 
must keep ADDR valid for two SRAM cycles. The controller accomplishes this by 
toggling ARDY_ as shown. Viking keeps driving its current address until ARDY_ is 
asserted. Similar timing is also needed for RRDY _. to qualify the returned data 
every other cycle. 

+!!!! SIDl Microsystans Proprietary Revision 2.00 of Novetnber 1. 1~ 



242 TMS390Z50 - Viking User Documentation 

9.3.6.2 Accesses to 
Nonpipelined SRAM 

The use of non-pipelined SRAM for the cache usually implies lower perfonnance. 
The SRAMS must be able to see the incoming address, read the internal memory 
array, and generate data. all before the next address can be asserted by Viking. 
This dramatically increases the time required to read a block from the cache. This 
variation is described here primarily to demonstrate the flexibility of the bus pro­
tocol. 

Figure 9-36· 3 Cycle Non-Pipelined Reads 

--

--a: Cycl. I--i::=:;: .... =:::.:=: .... , [ 
I-l"---,,-,;;;;;;....---,, - X - X-I - , .... c,cl. 

t-'-~-'-'-I'\:J£J~:':""'" ~L"\F~~~-V-~~: • :\ 
,~~:, .. :D.r~V~V~~ ~: : 
,~~, ,~ ..... ~~: r 

, _11.,.10 I --- ., " 

_ ...... : ..... IS 1.7:.':11 UI. 

To inhibit address pipelining during reads, the cache controller must negate 
ARDY _ until a given read is complete. TIlen, ARDY _ is again asserted with RRDY_ 
as the SRAM data appears. Write timing is not as dramatically affected, since 
write addresses are generally not pipelined. 

Higher speeds can be obtained with very fast SRAMs, and extremely careful sys­
tem design. An example is shown below . 

.. 

SlDl Miclosystems Proprietary Revision 2.00 of November 1. 1990 



Chapter 9 - Viking Bus Interface 243 

f 
Figure 9-37 2 Cycle Non-Pipelined Reads 

--
""-
--
.... Cycl. ..... 
~~~~~~~~I 
t-'-..:......:....~§!;~~-k~-k~-k~,.......~ -,--,--!l
~~--~~~~~~~~~----·-I.·

I a.ac " .. Ie 11 ...

~~ ___ a.u

.. u _ : ... AlII 2. 12:'1:" 1 ...

.. .

• ~!! SIDl Microsyst.ems Proprieury Revision 2.00 of November 1. 199

[Blank Page]

r
10

Signal Description

Signal Description _.. 247

10.1. Electrical Issues .. __ _._._._ ... _ __ _ _ _... 247

10.2. Pinout l)escriptions ._._._._ _._ _._... 247

Bidirectional Signals .. _......... 247

ADDR[35:00] _ .. _.. 247

DATA[63:0] ._ ... _ _ _ _ _ _.. 248

DEMAP _ ... _ __ ___ _. __ _ ... __ . ___ __ 248

DP AR[0:7] _ ... _ ... __ _ ... _ _ _ _ _..... 248

OWNER_ (MDi-.> _ _._: _ ... _. ___ _. __ 248

RD _ . _____ ... _ _ .. ___ ... ___ . __ _ _. ___ __ .. _ ... ___ __ ._._ _.. 249

SHARED _ (MSH-'> __ ___ . ____ _ .. __ _ _._ ___ ._ ___ 249

WR_ ... _ ... _ ... ____ . ____ ... ___ . __ . _____ . __ ._._ ... ___ ._ _. __ . ___ _.. 249

ARDY_ (and MAS~ _. ___ ... _ __ _ _ ... _ .. _ _ _ _.. 249

WEE_ (MBB~ ._ __ __ ._ ___ .. _ ... _ ____ _........ 250

WRDY _ (MRDY ~ ._ __ _ _._._ _ __ ._ __ _..... 250

CMDS_ .. _____ __ ... ____ ... _ __ ... _ _ .. _._ ___ 250

OE __ ... ____ ... _____ ... _. ___ ._ .. __ ... _ ... _._._. __ ... _ .. ___ _ __ 250

Input Signals _______________ .. ______ _ ... ____ . _________ 250

CCRDY _______ ... __ ... _ _______ ... _ _ ___ _ .. __ . __ ... _.. 250

IRL[3:0] . _____ ._:.. _________ .. ____ . __ .. __ ... _._. ____ ._ ___ .. 251

MEXC _________ ._ ... _ ... _____ _ .. _ _ _._. ____ 251

PEND_ . _____ _ _ _ ... __ ... ___ _._ ____ ... _ ... ____ ... ___ ... _ 251

RE1'RY_ (MRTY~ __ __ __ _ _ _ _ _.. 251

RESE'T_

RGRT _ " "." ... "." .. "

RRDY _ ."_ " _ .. " ..

WGRT_ (MBG...) " ... "

Output Signals _ __ ... _ _ ... ____ __ ____ "_

B URST ___ .. _." _ _" __ ..

BUSREQ-. (~R.J .. "

COIBL _ __ _ ... _ "

CSA_

ERROR_ (AERR...)

LDST _ . __ ... "." " ... _ .. " .. .

SIZE[1 :0] ._ ... _"._ " " "." " _ ..

WEJO:7] " __ " " "." " ... _"

SU _ .. __ ... _ ... _ ... _ _ _ _ " " "

Clock Pins _ ... _ ________ _" " _ " ..

VCK (CI..K) .. _ ... " _ ... _ "" .. _ ..

VPLLRC ___ ... ___ ... _ ... _ __ __ _ _ ... _ _

PLLBYP _ ... ___ _ ... __ ___ ___ _ ... __ __ "

Test Pins ______ ... __ ____ ... _ ... __ ... _ "_ _ _ _ ... __ ..

TEST _ .. ___ _ _~_ ... _ ... _ ... __ ... __ " _ ... _ _ __ _ ..

TcK . _______ ... ___ ...:.... ___________________ __
TOI ______________ ... ____ ... ___ ... ____________ .. ____ ..

TOO ______________ ... _________________________ ..

TMS ______ ... _________________ ... _ ... ______ ... _ ..

'fRS1' _ ._ ... ________________________ _______ ..

ESB .. _______ , ___ _ _ ... _ _ ... '
PIPE[9:0] ________________________

SRMTST_ .. ,---------------_ ... _----------_
10.3. Pin Summary _________________ ... _____________ ..

..

251

251

251

252

252

252

252

252

252

252

253

253

253

253

253

253

253

254

254

254

254

254

254'

254

254

254

254

254

25S

(

.
10.1. Electrical Issues

[

10.2. Pinout Descriptions

10.2.1. Bidirectional Signals

10.2.1.1 ADDR[35:00]

10
Signal Description

TIlis section will describe the characteristics of Viking's pins .

Viking has been designed to operate in a transmission line environment. Care
must be taken to carefully match the system physical design to Viking's I/O cir­
cuitry. I/O levels are defined in the TMS390ZS0 data sheet (TI). In general, the
circuitry is designed to provide controlled rise and fall times, as well as restricted
voltage swing. '

Viking assumes the existence of /wIding drivers on all bidirectional. or input only
signals. 11lese drivers must be provided externally. typically in an external cache
controller, or in an MBUS device.

, Internal pull-'up resistors are provided on a number of signals. these are iden~fied
in the sections that follow.

sPICE'simulations are recommended to guarantee proper operation at high fre­
quencies.

Detailed signal timing is specified in the TMS390ZS0 Data Sheet

This section lists and describes all Viking pins, grouping them as bidirectional.
input. and output signals. A summary table is provided at the end of the section.

Package pin outs are described in the TMS390ZS0 Data Sheet

All inputs are latched on rising clock edges. All outputs are sent out latched on
rising edges, and are driven for a whole cycle. Setup and hold time requirements
are different for each signal. Individual pin descriptions are given below.

As an input. this bus provides snoop addresses to Viking. When qualified by the
proper signals (See Vikjng bus description). the address will be used to invalidate
internally cached copies of data at the specified address.

As an output, Viking drives addresses onto this bus on all external reads and
writes. ADDR[35:0] is sent out registered on rising clock edges. and is valid from
one clock~utput time after the clock edge, until one hold time after the next

Revision 2.00 of November 1. 1 ~

248 TMS390ZS0 - ViJcing User Documentation

10.2.1.2 DATA[63:0]

10.2.1.3 DEMAP_

10.2.1.4 DPAR[0:7]

10.2.1.5 OWNER_(MIHJ

rising clock edge. The signal is designed to meet the set up time requirements of ,­
the MXCC cache controller arid pipelined SRAM. The bus is tristated one
clock~disable time after the rising edge. One unused transfer cycle is required
to change direction, and owner of the bus.

In MBUS mode, the address bus in largely unused, and should not be connected.
The least significant three bits are used to sample the module identification value
from the MBUS.

These pins are pulled to a logic one state with weak internal resistive pullups in
MBUS mode only.

On reads, this bus is an input, and synchronously supplies data to Viking. On
writes, data is output synchronously to the system. DATA[63:0] is sent out
registered on rising clock edges. and is valid from one clock--K)utput time after
the clock edge, until one hold time after the next rising clock edge. The signal is
designed to meet the set up time requirements of the MXCC cache controller and
pipelined SRAM. The bus is tristated one clock~disable time after the rising
edge. One unused transfer cycle is required to change direction. and owner of the
bus.

In MBUS mode, this pin functions as the multiplexed address and data bus.
MAD[63:0).

Byte ordering is always big-endian. byte 0 in memory will be stored on bits .
DATA[63:S6).

This pin is an input whenever Viking is not the bus master. As an input, this pin
is assen.ed along with cMDS_ signal, to indicate an incoming demap request This
signal qualifies the input value on the DATA[63:0) bus as demap request informa­
tion.

This pin is pulled inactive with a weak internal resistive pullup in MBUS mode
only.

Data bus parity. These pins carry parity in both directions. As an input, this bus
is used to check. data parity on Viking reads. As an output, Viking drives gen­
erated parity onto this bus whenever it drives data.

Parity checking and generation is conttolled by the MCNTL.PE bit When parity is
disabled. Viking generates inco"ect parity. to allow simple parity bit diagnostic
testing.

Parity bit ordering corresponds to the big-endian convention used throughout
ViJdng. Parity bit 0 COJTesponds to memory byte zero. which is stored on data bus
bits [63:56].

This signal is used in MBUS mode only, and corresponds to the MIH_ signal. Vik­
ing drives this signal when it is-the owner of a cache line currently being
requested on the bus with a CR or CRl transaction. It is used to inhibit memory
from responding to the pending transaction.

.!!I,.!! Sun MicrosyIfems Proprietary Revision 2.00 of November I, 1990

(

10.2.1.6 RD_

10.2.1.7 SHARED_ (MSH..)

r
10.2.1.8 WR_

10.2.1.9 ARDY _ (and MAS...)

Chapter 10 - Signal Description 249

As an input, Viking samples this pin while performing a CR or CRI transaction on
the MBUS. It is used to qualify any MRDY_ responses that may come at the same
time, or several cycles after another cache responds with M1H_.

'This pin is pulled inactive with a weak. internal resistive pullup in Viking bus
mode only.

As an output, Viking drives RD_ to qualify all valid addresses on the bus as read
cycles. It is also asserted, along with WR_ for swaps, as well as along with
DEMAP _ for external demap replies.

'This signal is used as an input onJy for internal SRAM test mode. It is not used in
MBUS mode.

'This pin is pulled inactive with a weak internal resistive pullup in MBUS bus
mode only.

'This signal is used in MBUS mode only, and corresponds to the MSH_ signal. Vik­
ing drives this signal when it has a copy of any cache line currently being
requested on the MBUS. It is used to inform other caches that the information is
shared.

Viking samples this signal when it is requesting an MBUS transaction. If the signal
is active, the data received will be considered shared in the cache (which
prevents writes until other copies are invalidated).

'This pin is pulled inactive with a weak. internal resistive pullup in Viking bus
mode only.

As an output. Viking drives WR_ to qualify all valid addresses on the bus as write
cycles. It is also asserted, along with RD_ for swaps, as well as along with
DEMAP _ for demap requests.

WR_ is used as an input to qualify external invalidation requests. If WR_ is
asserted, along with CMDS_. by another bus master. the address on the bus will be
used as an invalidation request address.

WR_ is not used in MBUS mode, and is used in SRAM test mode to qualify external
write requests.

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus
mode only.

This signal is used as an input in Viking bus mode. to indicate that system logic
is prepared to accept another address or bus cycle.

In MBUS mode, the signal is used as both an input and output, connected to the
MAS_ (Address strobe) signal. When Viking is granted access to the MBUS, it
may initiate bus cycles by asserting the MAS_ signal. When other processors own
the bus. Viking sampleS-the MAS_ signal to determine the beginning of bus cycles
which it must snoop .

• ~,.!! Sun Miaosystems PIOprieury Revision 2.00 of November 1. 1990

250. TMS390ZS0 - Vilcing User Documentation

10.2.1.10 WEE_ (MBB..J

10.2.1.11 WRDY _ (MRDY..J

10.2.1.12 CMDS_

10.2.2. Input Signals

10.2.2.1 CCRDY_

This signal is used as an input only in ViJcing bus mode. It is used to control
assertion of the WE[7:0L signals to external cache RAM.

In MBUS mode, it is connected the the MBB_ (MBUS busy) signal. and used as both
input and output Viking drives this signal while it retains MBUS ownership, and
samples the pin to determine when other bus masters have released their use of
the bus.

In ViJcing bus mode, this signal is used as an input only, indicating completion of
the current write transaction on the bus. It may be connected in parallel with the
RRDY_ signal, if only a single global data ready signal is required.

In MBUS mode, this pin serves as the MRDY_ signal. and is both an input and out­
put It is an input when ViJcing has a current bus cycle pending; an output when
Viking is responding with data that it owns for a CR or CRI transaction..

This signal is only used in ViJcing bus mode. It indicates the beginning of a Vik­
ing bus transaction. It is an output when Viking is bus master to initiate transac­
tions.

When Viking is not the bus master, as indicated by both WGRT_ and RGRT_ being
deassened, CMDS_ is used to initiate all external snoop transactions, including
invalidates and demaps.

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus
mode only.

This signal is used as an I/O in Viking bus mode only. Generally, it is used as an
outpUt to conttol the pipelined output enable of external cache SRAM. As an
input, it is sampled to prevent certain bus collisions. See section 9.2.2 - AIbitta­
tion for complete details.

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus
mode only.

This input tells Viking whether to operate in native Viking bus mode (CC mode),
or to operate in MBUS mode. The signal must be statically assened, and not
changed during nonnal operation.

When CCRDY_ is assened, Viking will use its'native bus protocol. deassened will
seI~t MBUS mode.

This signal is pulled inactive with a weak internal resistive pullup .

..

Sun MicrosyslemS PraprietIry Revision 2.00 of November 1.1990

[
10.2.2.2 IRL[3:0]

10.2.2.3 MEXC_

10.2.2.4 PEND_

10.2.2.5 RETRY _ (MRTY .J

[

10.2.2.6 RESET_

10.2.2.7 RGRT_

10.2.2.8 RRDY_

Chapter 10 - Signal Description 251

Intenupt Request Level. This field tells Viking the level of the highest priority
intenupt request that is currently pending. IfIRL(3:0]=OOOO. no intenupts are
pending. The highest priority is JRLl3:O]= 1111. which is a non-maskable (except
by PSR.ET) intenupt All other priorities are maskable. within the integer unit
Since the system could be asserting multiple intenupts. an external intenupt con­
troller must select the highest priority intenupt. and drive its IRL onto these pins.

This signal is used exclusively as an input in both bus modes. This signal is
encoded. along with the ready and retry signals to indicate the exact type of error
response. See the MBUS specification. and section 9.2.3 - Error Reponing for
full details.

This signal is an input only. used generally in Viking bus mode only. but may be
used on the MBUS mode as well. It is sampled. depending on the memory model
in use to detennine whether certain bus cycles may stan or not See 7.5 -
Memory Model Suppon (PENDJ for complete details of this signals operation.

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus
mode only ..

This signal is used exclusively as an input in both bus modes. This signal is
encoded, along with the ready and exception signals to indicate the exact type of
error respOnse. See the MBUS specification, and section 9.2.3 - Error Reponing
for full details.

Reset. This signal is assened when an external reset request occurs. such as on
power-up. The action that Viking takes in response to reset is defined in section
4.3 - Reset Operation, as well as section 7.3 - Reset Operation.

This signal tells Viking that it may perform a read on the system bus. This signal
may be comected to the ·WGRT_ signal if only a single global bus grant signal is
required. See section 9.2.2 - Arbitration for more details.

RGRT_ is unconnected in MBUS mode. This pin is pulled inactive with a weak
internal resistive pullup inMBUS bus mode only.

Read Data Ready, Viking bus mode only. This signal qualifies incoming read
data. When RRDY_ is assened, Viking will sample incoming data, on the same
clock edge as RRDY_. This signal may be directly connected to the WRDY_ signal
if only a single global data ready signal is required.

This pin is pulled inactive with a weak internal resistive pullup in MBUS bus
mode only.

Revision 2.00 of November 1. 1991

252 TMS390ZS0 - Vi/cing User Documentation

10.2.2.9 WGRT_ (MBG.J

10.2.3. Output Signals

10.2.3.1 BURST

10.2.3.2 BUSRECL (MBR.J

10.2.3.3 CCHBL_

10.2.3.4 CSA_

10.2.3.5 ERROR_ (AERR.J

,~, -
In both bus modes, this pjn is'used exclusively as an input and grants bus ac
to Viking. In Viking bus mode, it is used to allow write transactions on the b
only. In MBUS mode, it is the only bus grant.

In Viking bus mode, it may be connected to the RGRT_ signal if only a single
grant signal is required.

This signal is used in Viking bus mode only, as an output It indicates that tJ
current address on the bus is pan of a burst bus cycle. If this signal is active,
there will be at least one additional transfer request in the burst

For read bursts, there are exactly four transfers in every burst The BURST si~
will be asserted for the first three of them, and deasserted for the last to indie
the end.

FOr write bursts, the number of transfers in a burst varies from two to infinitl
BURST will be asserted for all but the last transfer in a burst.

This signal is used as an output only in both bus modes. It has the same mea
in both modes, to request the bu$ for use by Viking.

This signal is used as an output, and only in Viking bus mode. It indicates tJ
the current transaction is iruemally cacheable. Cacheability is determined b
state of several bits iruemal to Viking. (See programmers model for full det
on cacheability).

CSA_ is an 01Jtput only, and is used only in Viking bus mode. It indicates thl
current bus cycle is a control space transaction. It is asserted for ASI transa(
to ASI space Ox02.

This signal is an output only. and is used in both bus modes. When ERROR_
asserted, it indicates that Viking entered an error mode state, and will take a
watchdog reset ttap. See section 4.3 - Reset Operation for full details on I
operation.

This signal is driven (not tri-stated) while in Viking bus mode. In MBUS mo
since the AERR_ signal is common to all processor modules, it is only driVel
when asserted, and tri-stated otherwise.

1be signal will remain asserted until the MFSR.EM (error mode) bit has beell
cleared.

Sun MicrosySfelIil Proprieury Revision 2.00 of November

(
10.2.3.6 LDST_

10.2.3.7 SIZE[I:0]

10.2.3.8 WE.J:0:7]

[

10.2.3.9 SU_

10.2.4. Clock Pins

10.2.4.1 VCK (CLK)

10.2.4.2 VPLLRC

Chapter 10 - Signal Description 253

nus signal is an output, and is only used in Viking bus mode. The signal is
asserted when Viking is performing an atomic swap operation on the bus. It is
equivalent to the logical OR of the RD_ and WR_ signals.

nus signal is used in Viking bus mode, only as an OutpUL It indicates the
transfer size of the current bus transaction, encoded as follows:

Table 10-1 SIZE(l:O} Encoding

Value Size

00 Byte
01 Halfword
10 Word
11 Doubleword

These signals are used in Viking bus mode only to directly control the write
enable signals of synchronous SRAM used for an external cache. They are output
only. These signals are driven active to match the valid byteS during a bus write
transaction, when the WEE_ (write enable enable) signal is asserted.

The signals are hi-stated whenever WEE_ is not asserted, to allow an external
cache controller to to connol the cache RAM. nus pin is pulled inactive with a
weak. internal resistive pullup.

WE_ bit ordering corresponds to the big-endian convention used throughout Vik­
ing. WE[O] corresponds to memory byte zero, which' is stored on data bus bits
[63:56]. WE{7] corresponds to memory byte seven, which is stored on data bus
bits [07:00]. .

The su_ pin is an output. used in Viking bus mode only. When asserted, it indi­
cates that the current bus transaction is a supelVisor transaction.

The following pins define the clock interlace to Viking.

This pin provides Viking with its primary clock source. Full details on clock
requirements are presented in section 7.2.2 - Input Clock Requirements.

In general, only the positive edge of this clock signal is significanL Duty cycle is
not significant since the clock is intemally multiplied, and divided based on the
incoming rising edges.

PU..RC InpuL This pin is connected to an external 0.1J.LF capacitor connected to
ground.

Sun Microsyst.ems Proprietary Revision 2.00 of November 1. 19'X

254 TMS390Z50 - Viking User Docwnentation

10.2.4.3 PLLBYP

10.2.5. Test Pins

10.2.5.1 TEST_

10.2.5.2 TCK

10.2.5.3 TOI

10.2.5.4 TOO

10.2.5.5 TMS

10.2.5.6 TRST_

10.2.5.7 ESB

10.2.5.8 PIPE[9:0]

10.2.5.9 SRMTST_

This pin is an input only, used to bypass the internal PlL. When this pin is
asserted, the external clock input will be routed directly to internal clock distribu­
tion, with no delay compensation. Operation in this mode is not recommended,
or fully specified. It is intended primarily for debug and test purposes.

This pin is pulled inactive with a weak internal resistive pullup.

The following pins are used to simplify component and/or system testing. Many
are related to ITAG-based scan testing. The PIPE signals are for observability.

Operation of the ITAG signals is described in the ITAG chapter.

This signal is an input only, used for board level testing. When TEST_is asserted,
Viking de-asserts all its outputs except ESB and TOO.

This pin is pulled inactive with a weak internal resistive pullup.

ITAG test clock input This pin is pulled to logic one with a weak it:lternal resis­
tive pullup.

Jtag test data input This pin is pulled to logic one with a weak internal resistive
pullup.

ITAG test data output Also used to observe internal clock operation when the
SEEPLL ITAG instruction is executed (non-standard IT AG) .. The signal is tri -stated '­
under the control of the IT AG controller. The TEST_pin will not cause TOO to tri­
state.

ITAG test mode select input This pin is pulled to logic one with a weak internal
resistive pullup.

ITAG test reset inpuL This pin is pulled inactive with a weak internal resistive
pullup.

Execution SU'Obe output See section 4.14.5 - External Monitors. It is not tri­
stated in response to the TEST_ signal.

Pipeline monitoring signals used improve internal operation observability. See
section 4.14.6. and section 4.14.5 for a description of these signals.

The SRMTST_ signal is an input only. used to initiate a special internal SRAM test
mode for manufacturing purposes. It should be connected to vee for nonna!
operation. This pin is pulled inactive with a weak internal resistivj: pullup .

..

S1Dl Miaw)I." Proprietary Revision 2.00 of November 1, 1990

(

(:

10.3. Pin Summary

Chapter 10-Signal Description 255

Viking's pins are swnrnarized below. All signals are latched either as inputs or
outputs -latched outputs are valid for one cycle, minus a set-up time for the
driver.

Table 10-2 Viking Pin Summary

Pin Type Signal Name Direc:lioo LaId! Edge MBVS Pullup7 VBus Pullup7 MatIS Use Active Slate
ADDR[3S:O) IJO Rising Yes No (3:0) are MID High

Busses DATA(63:0J IJO Rising No No MAD[63:0J High
[108J DPAR[O:7J IJO Rising No No n/e High

DlIlaSize BURST 0 Rising No No n/e High
[3) SIZE[l:O) 0 Rising No No n/e High

Request RGRT_ I Rising Yes No n/e Low
Strobes WGRT_ I Rising No No MBG_ Low

[3) BUSREQ. 0 Rising No No MBR_ Low
ARDY_ 00 Rising No No MAS_ Low

CCRDY_ I Rising Yes Yes vc:c Low
RRDY_ I Rising Yes No vc:c Low
WRDY_ 00 Rising No No MRDY_ Low
CCHBL_ 0 Rising No No n/e Low

Access CMDS_ 00 Rising Yes No n/e Low
Strobes CSA_ 0 Rising No No n/e Low

[13J lDST_ 0 Rising No No n/e Low
SU_ O Rising No No n/e Low

DEMAP_ 00 Rising Yes No ole Low
RD_ 00 Rising Yes No ole Low

WEE_ 00 Rising No No MBB_ Low
WR_ 00 Rising Yes No n/e Low

IRL[3:0) I Rising No No lRL[3:O) High
. MEXC_ I Rising No No MERR_ . Low

Exceptioo PEND_ I Rising Yes No PEND_ Low
Signals RESET_ I Rising No No RSTIN_ Low

[9) RETRY_ I Rising No No MR1Y_ Low
ERROR_ 0 Rising No No AERR_ Low
va I - No No CLK -

Cock VPLl.RC I (analog) - No No VPURC -
PILBYP_ I Risinl Yes Yes pu..syp_ High

Cac:be OE_ 00 Rising Yes No n/e Low
(9) WEJO:7] 0 Risinl Yes Yes n/e Low

Copyback OWNER_ 00 Risinl No Yes MIH_ Low
(2J SHARED 00 Risina No Yes MSH_ Low

TCK I RisiDl Yes Yes TCK High
11>1 1 Risinl Yes Yes 11>1 High

TrAG TMS I Risinl Yes Yes TMS High
Sips 11tST_ 1 Rising Yes Yes 11tST_ High

(6) ESB I Risinl No No ESB High
roo 0 Rising No No roo High

Tell SRMTST_ 1 Rising Yes Yes SRMTST_ High
Sipal. 1'EST_ 1 Rising Yes Yes 1'EST_ High

(12) PIPE(9:0J 0 Rising No No PIPE(9:OJ High

.~!! S\Dl Mic:rosystems Proprietary Revision 2.00 of November 1. 1990

[Blank Page]

(,

11
Electrical and Mechanical Specification

Electrical and Mechanical Specification .. 259

11.1. Electrical Specification .. _ 259

D.C. Characteristics ... :... 259

11.2. A.C. Characteristics ... 259

General TiIning Specification _ __ ___ _

Viking Bus pin timing .. .

MBUS pin timing ... _ _ .. _._

11.3. Packaging Information < ••••••••• _ ••••••••••••••••••• _ ••••••••••••• _ ••••••••

259

259

259

259

PGA Pinout .. _....................... 259

PGA Dimensions _ : : __ 259

PGA Thermal Specification ... _ _.. 259

[Blank Page]

-""'---

[

11.1. Electrical
Specification

11.1.1. D.C. Characteristics

11.2. A.C. Characteristics

11.2.1. General Timing
Specification

11
Electrical and Mechanical Specification

This infonnation will be provided separately in data sheet form.

11.2.2. Viking Bus pin timing

11.2.3. MBUS pin timing

11.3. Packaging
Information

11.3.1. PGA Pinout

11.3.2. PGA Dimensions

11.3.3. PGA Thermal
Specification

.~!! Sun Miaosystems Proprietary Revision 2.00 of November 1. 19'

[Blank Page]

..

(

Index

A
Aliasing. 6
Altemll1e Cacheable. 55
ASI

Ox02. 80. 97. 102, 133.252
Ox03. 90. 133
Ox04.95. 101. 105. 111. 133
Ox06. 106. 133
OxOS.55.61.64.94.95.97. 100. 102, 133
Ox09.55.61.95.97. 100. 102. 133
OxOa, 61. 97. 100. 102, 133
OxOb.61.97. 100. 102. 133
OXOC. 72, 133
OxOd, 73. 133
OxOe. 78. 133
OxOf. 59. 79. 133
Ox20-Ox2f. 61. 97. 100. 102. 133
0x30. 110. Ill. 133
0x31. 110. 111. 112, 133
0x32, 110. 111. 113. 133
0x36.72, 133
Ox37.77. 133
0x38. 123. 124. 133
Ox39, 56, 57,133
Ox40-Ox41. 131. 133
Ox44, 132, 133
Ox46. 132, 133
Ox47, 132, 133
Ox48, 132, 133
Ox49, 127. 133
Ox4a. 128. 133
Ox4b. 128. 133
Ox4c.129,133
Assignments. 133
Map. 133

B
Big Fndian. 195
BIST.51.55
Boot Mode, 55. 69. 97
Branc:h.12

Couple, 25
Folding, 23
Taken. 24

Breakpoint, S. 121. 124
Action Register, 129
Code Address. 160
~IRe~.I24. 126

-261-

Breakpoint. COnlinued
Cowtter Control. 128
COWlter Value, 127
Data Address. 160 ,
Priority. 120
Status Register. 127
Zero Cycle COWlt, 160
Zero InslrUction COWlt, 160

Built-In Self Test., 55
Burst., 222
Burst Write, 80
Bus

Arbittation, 207
Bandwidth. 203
Burst Write, 80
Configuration. 183
Errors. 198, 232
Exception. 208. 230
InterrUpts. 186
Loading. 205
MBUS.183
Monitoring. 218
Overlapped Accesses, 229
Overlapped RIW. 215
Overlapped Reads. 211
Parity,97
Read Block. 208
Read Single, 208, 221
Snooping,218
Swap. 215. 216, 227
Transactions. 203
Viking, 183
Write Burst. 227
Write Single, 212

Byte Ordering. 195,248,253

c
Cache

Alternate Cacbeable, 97
Coherency,218
Consisumcy. 203, 239
Conttoller,218
Copy Back, 74. 97
Data, 12, 74
Flash Clear, 77
Flush, 239
Hit. 16. 222 .
Inclusion. 203, 220, 239

Index - COfIIimud

Cache. conlinll4d
InslrUction, 68
InslrUction Cache Acc:ess, 11
Invalidates. 239
Lookup. 12
MBUS mode. 97
Miss Penalty. 228. 230
Miss Rate, 228
Physical. 12
Physical Tag (PTag). 72
Read, 16
Set Tag (STag). 72
Shared Write Miss. 232
Size, 221
Write Back, 74
Write Through, 74. 203

Cache Coherence. 4. 5
Cacheability.97. 195
Clock, 253
Compiler. 33

Code Generation, II
Loop Unrolling, 35

Context, 98
Conb'Ol Space Error. 95. 100

D
Data

Bypass, 12
Forwuding. 12, 13. 15. 40

Data Cache, 74. 97
Cacheability.75
CCmode, 18
Consistency. 76
Copy Back, 74
Data, 79
Enable, 97
Flash Clear. 77
MBUS mode, 18
Replacement Policy. 75
Store Miss, 18
Tags. 78
Write Through. 74

DeMap. 204.216
Diagnostic:. 5S
DRAM

Interleaved, 209
Nibble Mode.. lOS
Static Column Mode, 205,209

E
Early Out, 230
Electrical

Cloclc Skew. 6
Emulation, 5,124. 131, ISS

CBKM,16O
Data In. 162
Data Out, 162
DBKM.16O
ECHOTMR. 159
ERRMODE. 160
FQE.161
In-c:ircuit, ISS

-262-

Emulation, conlinll4d
INITM. 157
IPND.16O
MACK, 159
MCI. 157
MDIN.162
MOOUT.162
MENTER. 157
MEXEC.157
MIOONE,161
MlFLTD.16O
MINST.157
MRESCI'.157
MTMP,162
NPC. 162
pc. 162
PFPX.161
Registers. 161
Sequences. 164
Temporary Register. 162
TMRM.159
virtual in~ircuit, 155
ZCCM.16O
ZlCM.16O

Error
Control Space. 100
Data Access. 100
InstlUCtion, 99
Intemal, 95. 100

Error Handl.ing. 230. 232
Error Mode, 64. 99.100.252
Errors, 198
Exception, 21. 64. 208. 230. 232

Data Store Error. 61
Floating Point, 67
Pipeline, 12
Prefetch. 65
Priority. 120
Store Buffer. 61
Table Walk Error. 91

Extension Words. 11

F
Faults, 198
Fetch

Demand, 65
Non Demand, 6S

Flash Clear, 72, 77
Floating Point, 6S
Floating point

Code Examples, 36
Floating Point

Conversion, 66
Dispatch. 12
Exception, 67
Execution, 20
FPEV.20
FPOP.20
Instructions, 20
Larenc:y. 20
.NIN.66
Pipeline. 18

(

(

Last update:
Reference:

Contents:

1.0 Summary

Date Item

re12 enita.rrieX
.. .. "

The Viking Microprocessor Errata Document
2/20/91
The Viking User Documentation rev 2.00 Nov 1 1990
(Sun pIN 800-4510-02)

1.0 Summary
2.0 Errata List
3.0 Known Design Bugs
4.0 Document History

Fix? How Fixed Future Plans/Comments
=-=-=-=-=-=-=-= ---=-=-=-=-=-=- =-=-=-=-=-=--- =---=-=-=-=-=-=-=-=-=-=

Jan27 Doc Typos Yes, next doc Doc fixed
Jan27 Doc Clarify Yes, next doc Doc fixed
Jan27 Doc XRef Yes, next doc Doc fixed
Feb03 Fbfcc no SeqErr No, permanent Doc added
Feb07 lax vs Fpx Order No, permanent Doc added

Doc FPX Section 4.6.4
Doc Traps 4.13

2.0 Errata List

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-~-=-=-------=-=-=---=-=---=-~-=-=-=-=-=-=-

Reference Description/Correction
=-=_=_=_=_=_=_=_==_= ___ a_== ___________ = __ -=-= ___________ =_=_=_= _____ =_=_=_=_
Errata Class
Page 19

Errata Class
Page 22

Errata Class
Page 36

Errata Class
Page 54

Doc Typo
(Section 2.3.2 The last sentence at the bottom of the page)
"by its For simplicity, other instructions in the pipeline
are not shown."
Should be:
"For simplicity, other instructions in the pipeline are

. riot shown."

Doc Typo·
(Section 2.3.5, page 22, Table 2-2)
The performance numbers for some instructions are quoted
wrong. The table listed below is complete and correct,
the changed rows are indicated with *.
Should be:
Table 2-2 Floating Point Operation Execution Time - Latency
Instruction nn-n nn-s sn-n sn=s ns"'n ns·s ss=n ss=s
fdivd 9 10 12 13 13 13 *
fdivs 6 7 9 10 10 10
fmuld 3 4 6 7 7 8 8
fmuls 3 4 6 7 7 8 8
fsqrtd 12 15 *
fsqrts 8 11
fsmuld 3 6 7 8
idiv 18 *
idivcc 18 *
imul 4
imulcc 4

Doc Typo
(Section 3.3.3, Floating point register dependency,
the first example on the page, title~ Bad Example, states
PIPELINE STALL FOR 4 CYCLES !
Should be:
PIPELINE STALL FOR 2 CYCLES

Doc Clarify
(Section 4.3.2 Watchdog Reset, 2nd to last paragraph,
discussion on Viking behavior during error mode)

..

(

{

Errata Class
Page 62

Errata Class
Page 69

Errata Class
~age 75

Errata Class
Page 75

Errata Class
Page 95

Errata Class
Page 97

Should add:
In CC mode, when error mode is encountered, Viking asserts
ERROR for one cycle, allowing the cache controller (or
external system logic) to record the occurence of error mode.
The completion of this bus cycle causes watchdog reset.
In MBUS mode, Viking asserts AERR_ until MFSR.EM is cleared.
For example, a read on MFSR clears it. This is then
followed by a watchdog reset.

Doc Clarify
(Section 4.5.3 Load and Store Alternates)
The 2nd paragraph discusses about which ASIs do not flush
the store buffer before starting execution.
Should clarify:
Nearly all ASI operations cause a store buffer copy-out
(both LOA and STA) before starting execution, except:
ASI Operation
Ox20-0x2F STA
Ox40-0x4C LOA/STA
OxS,Ox9,OxA,OXB STA
OxS,Ox9,OxA,OXB Cacheable LOA

Doc Clarify
(Section 4.7.2 Instruction Cache Replacement Policy)

Whenever a memory reference hits in the cache, the history
bit is written to one.
Should be:
Whenever an instruction fetch hits in the cache, the history
bit is written to one.

Doc Clarify
(Section '4.S.3 Data Cache Replacement Policy)

Whenever a memory reference hits in the cache, the history
bit is written to one.
Should be:
Whenever a LO instruction hits in the cache, the history
bit is written to one.

DoC Typo
(Section 4.S.2 The 2nd sentence in the 1st paragraph after
Table 4-7)
"When the cache is enabled, the C bit from the MMU n

Should be:
"When the cache is enabled, the C bit from the PTE n

Doc Clarify
(Section 4.11.10, discussion about the exceptions that are
not disabled by setting MCNTL.NF)
Should add:
Unassigned ASIs will trap regardless of MCNTL.NF

Doc Clarify
(Section 4.11.11.1 Description of MCNTL.PE bit)
Should add:
When set, even parity is generated by Viking. When
zero, odd parity is generated. , --

Errata Class
Page 104

Doc Typo
(Section 4.11.11.3

Access Type")
Table 4-12 "Access Permissions vs

had errors.
Should be:
AT PTE.V-O PTE. V-I, PTE. ACC­

o 1 2 3 4 5 6 7

..

{

(

Errata Class
Page 109

Errata Class
Page 110

Errata Class
Page 110

Errata Class
Page 114·

Errata Class
Page 123

Errata Class
Page 127

Errata Class
Page 127

Errata Class
Page 127

.•.•••.•.••...•..••.... :.: •••..•.•.•......•.•.••.•.••..•.•••.••..•.••.••••••..•.......... / ·:·········)<>.re12·.·.··errauLrnex·:········)·\········ ...
.:< ~.......••••• :-....• ;: ,

0 1 2 3 3
1 1 2
2 1 2 2 2 3 3
3 1 2 2 2
4 1 2 2 2 2 3 3
5 1 2 2 2 2
6 1 2 2 2 2 2 3 3
7 1 2 2 2 2 2 2

Doc XRef
(Section 4.12.1 General Operation of the Store Buffer)
Should add:
Reference to Section 9.2.4.5 Burst Writes, and index
entries added.

Doc Clarify
(Section 4.12.5 Store Buffer Exceptions)
Should add:
In CC mode, during a store buffer exception, Viking asserts
ERROR for one cycle. In MBUS mode, during a store buffer
exception, Viking asserts AERR until MFSR.SB is cleared.
For example, reading MFSR clears it.

Doc Typo
(Section 4.12.5 Store Buffer Exceptions)
(1st paragraph, last sentence)
••• and the MFSR.NF bit should be deasserted
Should be:
••• and the MCNTL.NF bit should be deasserted

Doc Typo .
(Section 4·.13, 1st paragraph on page, 2nd sentence)
Viking can executes .••
Should be:
Viking can execute •.•

Doc Clarify
(Table 4-16 Breakpoints - Crontrol and Status)
Should add:
When writing into the control registers BKC, ACTION, CTRC,
care must be taken to avoid overwriting unintended fields.
It is best to exercise a read-modify-write programming
sequence to overwrite only the intended bits and not disturb
the other bits/fields.

Doc Typo
(Section 4.14.4.1 Description lines of register BKS)
nCBKIS Indicates that an interrupt was generatedn
Should be:
nCBKIS Indicates that an interrupt was takenn

Doc Typo
(Section 4.14.4.1 Description lines of register BKS)
nCBKFS Indicates that an interrupt was generated II

Should be:
nCBKFS Indicates that an interrQpt was taken ft

Doc Typo
(Section 4.14.4.1 Description lines of register BKS)
nDBKIS Indicates that an interrupt was generated n
Should be:
nDBKIS Indicates that an interrupt was taken ft

...

(

(

Errata Class
Page 127

Errata Class
Page 128

Errata Class
Page 128

Errata Class
Page 191

Errata Class
Page 191

Errata Class
Page 192

Errata Class
Page 193

Errata Class
Page 199

Errata Class
Page 199

····· •••••..• • ••••.••••.• • •.•.•.• ·~~l~.·.·.·.~!±~~.fuex. .•...........•.•••..••..•.............
Doc Typo
(Section 4.14.4.1 Description lines of register BKS)
"DBKFS Indicates that an interrupt was generated ..
Should be:
"DBKFS Indicates that an interrupt was taken "

Doc Typo
(Section 4.14.4.4 Description
"ZICIS Records the status
Should be:
"ZICIS Records the status

Doc Typo
(Section 4.14.4.4 Description
"ZCCIS Records the status
Should be:
"ZCCIS Records the status

Doc Clarify

lines of register CTRS)
was generated ..• "

was taken •.. "

lines of register CTRS)
was generated ... "

was taken ... "

(Section 8.1 MBUS Compatibility)
Should add:
Virtual address 19 through 12 (multiplexed on MAD(53:46])
is used to carry virtual address bits 19 through 12 of a
read or write block transfer for virtually indexed caches,
also known as the "superset" bits. In compliance with the
MBUS Specification, Viking drives these virtual address
superset bits (VA(19:12] or MAD(53:46]) high.

Doc Clarify
(Section 8.1 MBUS Compatibility)
Should add:
This bit is the supervisor access indicator bit, multiplexed
on MAD(59). For MBUS mode operation, during user-mode
operation, it is recommended to operate with the store buffer
enabled. When the store buffer is enabled, Viking drives
MAD.SUP high, compliant with the MBUS Specification.
When the store buffer is disabled, however, the MAD.SUP bit
is not driven high. Instead, during copyback operations,
MAD.SUP bit will be obtained from the state of the current
transaction which caused the copyback to occur.

Doc Typo
(Section 8.5 the last sentence the in first paragraph)
"This protocol is described int he MBUS "
Should be
"This protocol is described in the MBUS "

Doc Typo
(Figure 8-1, arc from "Clean Exclusive" to "Owned Exclusive")
"Vik Wr. (Bus CI)"
Should be:
"vik Wr."

Doc Clarify
(Section 8.10 Port Register, the 2nd sentence in the last
paragraph on the page)
This indicates device 0, revision 0 for the vendor (Texas
Instruments) .
Should be:
This indicates device 0, revision 0, and 10 4 for the SPARC
Licensee (Texas Instruments).

DoC Clarify
(Section 8.10 Port Register, MBUS Interface)

..

(Errata Class
Page 238

Errata Class
Page 240

Errata Class
Page 255

Errata Class
Page 255

Should add:
,

This MBUS port register is read-only.

Doc Typo
(Figure 9-31 Noncacheable Read)
label WRDY_
Should be
label RRDY_

Doc Typo
(Figure 9-33 and 9-34)

CMOS was not asserted
Should be:
CMOS should be asserted at the same time as WR

Doc Typo
(Section 10.3
(Signal Name)
DI?AR[O: 7]
WE_[0:7]

Viking Pin Summary, Table 10-2)
(MBUS pullup) (VBus pullup)

No No
Yes Yes

The correct entries should be:
DI?AR[O: 7] Yes No
WE_(0:7] No No

Doc Typo
(Section 10.3 Viking Pin Summary, Table 10-2)
(ESB was listed as Input instead of Output)
The correct entry should be:
(Signal Name) (Direction)
ESB 0 "

3.0 Known Design Bugs

=-=-=-=-=---=-=-----=---=---------------~-=-------------=-=-=-=-=-=-----=-
Reference Description =-= _______________________ ~ _______________ = _________ = _______________ a_=_=_

Errata Class
Page 67

Errata Class
I?N2860 2/7/91

Known Design Bug (Fbfcc in fpx does not cause Sequence Error)
(Section 4.6.4 Floating Point Exception Details)
The last paragraph discusses how a sequence error will be
triggered if a new FP request is made when the FI?U is in
exception mode.
Should add:
There is a special case of this floating point request
which does not trigger a sequence error, and that is the
FBFCC instruction. When an FBFCC-instruction is issued
while the FPU is in exception_mode, Viking does not cause
a sequence_error.

Known Design Bug (aix vs fpx order of traps taken)
(Section 4.13 Traps, page 114, should add the following)
Suppose we have"the following instruction group:
------ break group ------
fdiv %fO,%fO,%fO (fpop, generates fpx)
st %fO, [%10) (stf, generates iax, reports fpx)
------ break group ------
where
fpx - fp_exception, priority-ll, tt-Ox08
iax - instruction_access_exception, priority-5, tt-OxOl
Scenario:
The FPOP generates fpx
The STF generates iax, and accepts fpx generated by FPOP
There must exist a dependency between the fpop and stf.

{ .• , ..

(,:'

(

[,

Register. cOlllilllUd
SBCNTL.Fptr, 113
SBCNTL.SE,113
SBTAGS.SP.59
SCNTL.Dptr. 111
Shadow FSR. 96
Windows, 4
Write, 13

Reset, 51
Hardware, 52
Hardware Effects. 53
Wa~hdog.54;64.252

Retry, 230,231

S
Shared, 192
Signal

ADDR[35:0].247
AERR ... 252
ARDY_.249
BURST. 252
BUSREQ..,252
CCHBL_.252
CCRDY_.250
CLK. 253
CMDS ... 250
CSA_.252
DATA[63:0].248
DEMAP-J248
DPAR[O:7].248
ERROR __ 252

. ESB, 121. 130
IRL[3:0].251
LOST ... 253
MAS-J 249
MBB-,250
MBR-,252
MEXC_.251
MIH_.248
MRDY_.250
MRTY __ 251
MSH_.249
OE_.250
OWNER-,248
PEND-, 186.251
PIPE[9:0). 130. 254
PLLBYP.254
RD-,249
RESET-,251
RETRY-,2S1
RGRT ... 2.S1
RRDY_.251
SHARED-, 249
SJZE[I:0),2S3
SU-,253
TCI{.254
TDL254
TDO,254
TEST 254
TMS.254
TRST 254
VCK..2S3
VPl.l.RC, 253

Signal, COlllitwed
WE.lO:7]. 253
WEE-,250
WGRT_.252
WR_.249
WRDY-, 250

Snoop. 218
Enable. 97

Squash. 23. 28
SRAM

Configurations, 241
Non-Pipelined. 242
Timing, 230, 241
Wrile Enable, 253

STag, 72
Store

Non-Cac:heable, 195
Synchronous. 232

Store Buffet. 4.109, lll. 225
Enable. 97
Exception. 232
Rush. 18
Hits. 18

Strong Ordering. 60. III
Supersc:a1ar.4.6.11
Supervisor Pin. 253
Swap. 215. 216. 227

Tag
T

Check, 227
Compare. 223
Hit. 222
Lookup. 222

Test. 254
Testability, 5
TLB

Replacement Policy. 88
TMS390ZSO - Vilcing User Documentation
Total Store Ordering. 60
TSO. 60. 186

V
VICE, 155

w
Walchdog Reset. 99
Write

Burst. 80, 227
Enable. 223
Fill. 231
GrIll1, 231
Miss. 230
Retry. 231 •
Shared Miss, 232
Single, 212. 223

" Write Enable, 253

-265-

Index - COIIIitwed

[Blank Page]

", ~ ~~ r" .,\
;t,

"," ~.

.' ," ~. .

.. ,

'.r ..

..
. .::."' .,,', ~S

Boating Point. COnlimu!d
Quad, 66
Queue. 20. 66
Special Numeric:. 66

Forwarding
Data. 40
Operand, 40

G
Grouping Rules. 42

I
I/O. 195

Consistency. 238
Controller. 205
Read, 237
Write, 237

InslnlCtion
AS!. 62
Atomic, 61
Branch. 22. 24
Branch Couple. 25
Can. 26
C~11.15.40
Control Transfer. 11
en 11.12. 22
Decode, 11
Boating Point. 18
Grouping Rules. 42
IDlV.57
!FLUSH. 58
IMUL,57
Integer Divide. 20. 57
Integer Multiply. 20. 57
JMPl.,26 .
ID.15
LD/ST.62
lDSTUB.61.195
Queue. 11
Restore. 26
RE'IT.29
Save, 26
SIGM.59
Squash. 23. 24
STBAR. 59. 60
Store. 59
Store Bmier. 59
SWAP. 61. 195
Viking-specific, 57
WRPSR.S8

Instruction C8dae. 68. 97
Cacheability.68
Consistency. 71
Data, 73
Enable. 97
Flash Clar. 72
Replacemenl Policy. 69
Tags. 72

Integer Divide. 4. 20
Integer Multiply. 4. 20
Inaerioc:k

Casclded ALU-Load. 13
. Condition Codes. 13

-263-

Interlock. COfIliNuut
Lo8d-Load, 13

Internal Error. 95. JOO
Interrupt, 28

Priority. 120
In~t~y. 114
IntemJpU. 186

Latenc:y.114

J
ITAG. 5.131. 155.254

Insttuction Register. 155. 156
IR. 155. 156
MCI. 155
MCI Register. 157
MDIN.155
M[K)UT. 155. 158
MSTAT. ISS. 159
TOR. ISS
Test Data Register. 155

M
Memory

Controller. 205
Exception. 210
Interleaved, 209
Non-Cacheable. 237
Parity. 210

Memory Management Unit. 81
Memory Model

PSO.6O.186
Strong, 60,
TSO.60.186

MFSR.198
MIlC 192
MMU.81

BreIlcpoint, 124
Coherence, 204
Context, 96, 98
Control Register. 96
CTP.98
DeMap. 204. 216
DeMap TrlllACtion. 204
Diagnostic:. 124
Enable, 98
Error Handling. 91
Hit, 16
MCNTL. 74. 96
MFAR.96
MFSR. 96, 198
MSFSR.96
No Fault, 94. 97
Page Descriptor Cache. 106
Page Tlblc Entry. 82
Page Tlblc PoinIc:r. 82
Rcferatc:ed and Modified bits, 87
RegislelS. 96
Replacement Policy. 88
Shadow FSR. 96
TLB.4. 106.204
TrlllSpll"erlt Mode, 133

Mode
Boot, 55

Index - COnlinMed

