4ysun’

microsystems

The Viking Microprocessor
(T.I. TMS390Z50)
User Documentation

(‘ ., Sun Microsystems, Inc. e 2550 Garcia Avenue e Mountain View, CA 94043 e 415-960-1300

-

Part No: 800-4510-02
Sun Microsystems Proprietary Revision 2.00 of November 1, 1990






Preface

This manual specifies the user’s view of the Viking microprocessor. It is
intended to provide all necessary information for the use of Viking, both
hardware and software. Detailed pin timing and other physical information may
be found in the TMS390Z50 Data Sheet from Texas Instruments.

The document is intended to fully specify the operation of Viking and includes:

An introduction to Viking

A simplified pipeline description

Guidelines for code generation

The programmer’s model

A description of JTAG-based In-Circuit Emulation facilities

A description of intemal software debugging facilities (breakpoints)
A detailed system interface definition

For background and supponihg information, the following documents are useful:

The Version 8 SPARC Architecture Manual, including

Reference MMU, Memory Model, and Suggested AsI appendices
The Viking Cache Controller (MXCC) Specification (Extemnal Cache Controller,
The SPARC MBUS Specification
The DynaBus and XBus Specifications
The IEEE P1149.1 JTAG Specification
The Sun4M System Architecture Specification
The SunDragon Architecture Manual
The Viking SRAM Test Documentation
T.I. TMS390Z50 (Viking) Data Sheet
T.I. TMS390ZS5 (MXxCC) Data Sheet

Effort has been made to make this an easy-to-use, accurate, and complete 'docu--: "
ment. It may contain errors and/or omissions. Please : repon any erratum or - a
requests for additional information to Greg Blanck (gblanck@ .S COM)

—iii—



Revision History

Revision Date * Comment
01 9-25-89 | First Release
02 11-1-90 | Second Release




A I A YYD RIS,

Contents

Preface iii
Revision History v
Chapter 1 Introduction to Viking 3
1.1. High Integration 4
1.2. Full Testability 5
1.3. High Performance 6
Chapter 2 Processor Pipeline Overview 11
2.1. Pipeline Fundamentals 11
2.2. Basic Pipeline Diagram 13
2.3. Pipeline Examples 14
Chapter 3 Code Generation Principles 33
3.1. Performance of Existing Code 33
3.2. Areas that Hurt Performance 33

3.3. General Guidelines

3.4. Instruction Grouping Rules

Chapter 4 Viking Programmer’s Model
4.1. Viking Processor

4.2. CC or MBUS mode

4.3. Reset Operation

4.4. Instructions

4.5. Memory Model

L3




Contents — Continued

4.6. Floating Point Unit
4.7. Instruction Cache
4.8. Data Cache
49. Data Prefetching
4.10. Control Space Access
4.11. Memory Management Unit (MMU)
4.12. Store Buffer
4.13. Traps
4.14. Software Debugging Facilities
4.15. JTAG and Emulation
4.16. ASI Map

Chapter § JTAG Serial Scan Interface
5.1. Overview

5.2. JITAG Requirements
5.3. ITAG Interface
5.4. JTAG Operations
5.5. TAP Controller
5.6. Accessible Scan Chains inside Viking
5.7. IR Format and Encodings
5.8. System Level Test

Chapter 6 Remote Emulation Support
6.1. Overview
6.2. Emulation Strategy
6.3. Emulation Register Set
6.4. Supported Emulation Primitives
6.5. Emulation Sequences
6.6. Emulation Execution Details
6.7. Emulation Instruction Sequences for Common Emulator

Functions
6.8. Approximate Latencies for Each Emulator Primitive ...
6.9. Details about Entering Emulation

65
68
74
80
80
81
109
113
120
131
133

139
139
139
140
140
142
144
146
152

155
155
155
156

- 163

164
165

168
177
178



Contents — Continued

7.1
7.2.
7.3.
74.
7.5.
7.6.

8.1.
8.2.

8.3.

8.4.

8.5.

| o 8.6.
- 8.7.
88

8.9.

9.1.
9.2.
9.3.

6.10. Emulation Exception Issues 178
Chapter 7 System Interface 183
Multiple System Interfaces - 183

Clock Operation 184

Reset Operation 185
Interrupts 186
Memory Model Support (PEND_) 186

Test Support 187
Chapter 8 MBUS Interface 191
Compatibility 191
Selecting MBUS Mode 191
Module ID 192

Cache Policy 192
Level-2 Consistency Operation 192

MBUS Transactions 154

Store Buffer Operation in MBUS Mode 197

Bus Arbitration 198

Error and Retry Handling 198

8.10. Port Register 199
8.11. MBUS Pin Connections 200
Chapter 9 Viking Bus Interface 203
Overview 203
Systems Without External Cache 204
External Cache Based Machines 218
Chapter 10 Signal Description 247
10.1. Electrical Issues 247
10.2. Pinout Descriptions 247
10.3. Pin Summary 255

Chapter 11 Electrical.and Mechanical Specification 259




Contents — Continued

11.1. Electrical Specification 259
11.2. A.C. Characteristics 259
11.3. Packaging Information 259

Index 261




«

3 R R O R R D L R R R BB SRS PR a0

Table 2-1 Floating Point Operation Execution Time - 3 cycle latency _._._.
Table 2-2 Floating Point Operation Execution Time - latency

Table 3-1 Break After Rules
Table 3-2 Break Before Rules

Table 4-1 State after hardware reset
Table 4-2 BIST Diagnostic Registers within ASI 0x39
Table 4-3 BIST status register values

Table 4-4 NaN Output Representation Values
Table 4-5 Floating Point Queue Format

Table 4-6 Instruction Cache Cacheability

Table 4-7 Data Cache Cacheability

Table 4-8 Data Cache Snoop Mechanism (MBUS mode)
Table 4-9 MMU Registers

Table 4-10 MFSR Overwrite Operations

Table 4-11 MFSR Error Priority

Table 4-12 Access Permission vs Access Type

Table 4-13 Exception Handler PC formation

Table 4-14 Table of Traps supported by Viking

Table 4-15 Unimplemented Trap Types ..

Table 4-16 Breakpoints - Control and Status

Table 4-17 MMU diagnostic (breakpoint) registers

Table 4-18 PIPE[9:0] definitions




Tables — Continued

. Table 9-1 Broadcast DeMap Data Format

Table 4-19 ASIs supported by Viking

Table 5-1 State after TAP reset

Table 5-2 Categories of Viking IR instructions

Table 5-3 TDR Scan Chain selection by IR Encoding
Table 54 Viking Boundary Scan bit definition

Table 6-1 Emulation register TDR Scan Chain selection by IR Encoding
Table 6-2 MDIN Scan Register Format

Table 6-3 MDOUT (Emulation Data Out) Register Format

Table 6-4 MSTAT (Emulation Status) Register Format

Table 6-5 Viking State upon entry into Emulation mode
Table 6-6 Valid compound emulation sequences

Table 6-7 Symbolic Constants for Emulation Sequences

Table 7-1 PEND_ operation

Table 8-1 Store buffer copyback snoop hit actions

Table 9-2 Reply Codes

Table 10-1 SIZE[(1:0) Encoding

Table 10-2 Viking Pin Summary

- X -

134

144
146
147
149

157
159
159

165

167
168

187

198

204
207

253
255

157

A



R R A Y R A A el

..........

Figures
Figure 2-1 Basic Pipeline Description 14
Figure 2-2 Basic load pipeline sequence ' 16
Figure 2-3 Store Pipeline Operation 17
Figure 24 Floating Point Pipeline 20
Figure 2-5 Untaken Branch Pipeline 24
Figure 2-6 Taken Branch Pipeline 25
Figure 2-7 Exception Handling Pipeline 28
Figure 2-8 Retumn from Trap Pipeline , 30
Figure 4-1 Generalized safe page table update algorithm | 64
Figure 4-2 Example of Instruction Cache Replacement Policy .........o.. 70
Figure 4-3 Address Translation Utilizing Four Levels of Page Tables ....... - 82
Figure 44 Address Translation With Maximum Page Size ... 85
Figure 4-5 Address Translation With 16 MB Page 86
Figure 4-6 Address Translation With 256 KB Page ' - 87
Figure 4-7 Root Pointer Physical Address Generation 98

Figure 5-1 One Bit JTAG Scan Chain Datapath Element
Figure 5-2 JTAG operations - CAPTURE, SHIFT, and UPDATE '
Figure 5-3 JTAG TAP Controller State Transition Diagram
Figure 54 Block Diagram of ITAG Scan Chains inside Viking
Figure 5-5 Example of System Level ITAG Test Hierarchy ..

Figure 6-1 MCI (Emulation Command and Instruction) Register
Format :

157



Figures — Continued

Figure 8-1 Cache consistency algorithm: Data cache on the MBUS ...

Figure 8-2 Cache consistency algorithm: Instruction cache on the
MBUS

Figure 9-1 Viking Non-Cached System

Figure 9-2 Read Single Protocol

Figure 9-3 SCRAM Read Block - Altemate Cycle Data

Figure 94 Read Block - Data on Consecutive Cycles

Figure 9-5 Read from SCRAM with Exception
Figure 9-6 Overlapped Read Blocks

Figure 9-7 Write Single to DRAM

Figure 9-8 Write Single to DRAM with Exception

Figure 9-9 Burst Write to SCRAM

Figure 9-10 Overlapped Read/Write Block

Figure 9-11 Swap with SCRAM

Figure 9-12 Processor Initiated Demap
Figure 9-13 Extemally Generated Demap and Reply

Figure 9-14 Viking with External Cache

Figure 9-15 E-Cache Processor Configuration (four system busses)
Figure 9-16 E-Cache Read Hits

Figure 9-17 Overlapped Read Hits

Figure 9-18 Write Single Hit

Figure 9-19 Shared Write Single

Figure 9-20 Write Burst Hit

Figure 9-21 Overlapped Read/Write Hits

Figure 922 Swap Hit (Shared, with invalidate)

Figure 9-23 Read Miss

Figure 9-24 Write Miss

Figure 9-25 Write Miss with Exception

Figure 9-26 Write Miss, Shared

Figure 927 Overlapped Write Miss and Read Hits

Figure 9-28 Overlapped Read Miss and Write Hits

Figure 9-29 Overlapped Read/Write Miss

193

194

205
208
209
210
211
211
212
213
214
215
216
217
218
219
220
222
223
224
225
226
227
228
230
231
232
233
234
235
236

3



Figures — Continued

Figure 9-30 Overlapped Write/Read Miss

237

Figure 9-31 Noncacheable Read

238

239

Figure 9-32 Noncacheable Write
Figure 9-33 Viking Cache Line Invalidation
Figure 9-34 Invalidation During Line Read
Figure 9-35 Slower Pipelined Reads

" 240

240

241

Figure 9-36 3 Cycle Non-Pipelined Reads

242

Figure 9-37 2 Cycle Non-Pipelined Reads

243




[Blank Page]

&)



Introduction to Viking

Introduction to Viking 3

1.1. High Integration

Integer Unit

Memory Management Unit
Floating Point Unit
Instruction Cache
- Data Cache
(\, ‘ " Store Buffer ‘
o External Cache Support
Multi-Processor Cache Coherence support
Hardware Breakpoints
JTAG Emulation
1.2. Full Testability
1.3. High Performance
Clock rateftechnology
HArchitecture
Multiple Instructions Per Cycle Execution
Fast LOAD and STORE instructions
Floating Point Implementation

IR - - S S S PN VT VU TR S U U U Y U Y




[Blank Page]

&/'a\\



[

Introduction to Viking

Viking is a highly integrated, high performance implementation of the SPARC
RISC architecture. It is a single chip processor implemented in full custom
BiCMOS technology by Texas Instruments. It is intended for use in a broad
spectrum of system environments: from large scale multiprocessor systems, to
low cost single user workstations and high performance embedded control
applications. A simplified functional block diagram of Viking is shown below:

Floating Point Control Floating Point Execution
Double Precision Adder Array
—
g gueue Fongol : l¢—>1 Double Precision Multiplier Array
g E"“"gm :’""° Integer Multiply & Divide
Xec (ontro 5-Port, 32-entry FP Register File
y .
Integer Unit Control SuperScalar Integer Execution
Prefetch Jueue : Two independent, or cascadable ALU's, One Shifter
Branch/Pipcline Control ¢—>]  Load/Store Address Generator
Instruction Grouping & Decode 64-bit Loads and Stores
Exception Handling 8-port, 8-window (136 registers) Integer Register File
Emulation & B int Control __] —_ o
7 S 75
A J
Instruction Cache MMU Data Cache
] —> -
20 KByte 64-Entry TLB 16 KByte J]L' B/
5-way set associative Fully Associative 4-way set associative
Physical Cache Reference MMU Physical Cache
(128-bit access) w/ PTP Cache (64-bit access)
CC or MBUS mode Bus Interface @ e e
. Bus Cycle Controls and Busses Controls{35] Power Supply Testability Access
Address(35:0] Dsta{63:0] Parity[0:7] T/O(5] In{12] Out[18] 146 Clock |JTAG[S) PIPE[10] TEST
@ 'SJL_ Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



4  TMS390Z50 — Viking User Documentation

1.1. High Integration

1.1.1. Integer Unit

1.1.2. Memory Management
Unit

1.1.3. Floating Point Unit

1.1.4. Instruction Cache

1.1.5. Data Cache

1.1.6. Store Buffer

Integrated within the processor are most of the support functions normally
required to build a SPARC based system. These features total approximately three
million transistors, and include:

A fully SPARC compatible integer unit is provided on chip. This integer unit is a
high performance superscalar (multiple instructions per cycle) design. Eight
register windows are provided. Integer multiply (IMUL) and integer divide (IDIV)
instructions are implemented in hardware.

An implementation of the SPARC Reference Memory Management Unit (MMU) is
included within Viking. The MMU provides a 64-entry TLB (Translation Looka-
side Buffer) to translate virtual to physical addresses. A second-level Page Table
Pointer (PTP) cache and a root pointer cache are included to reduce TLB miss
penalties.

A standard SPARC floating point unit and controller are included on chip. This
FPU provides high performance single and double precision floating point arith-
metic functions. Integer multiply and divide instructions are also performed by
the FPU.

In order to increase performance and reduce the demands on an external memory
system, a large instruction cache is included. This instruction cache is a 5-way
set associative cache with 20KB total storage. The sets are independent; instruc-
tions at any physical address can be stored in any of the 5 set. The cache is a
physical address cache. The instruction cache is non-writable, but is kept con-
sistent with the data cache, and external memory, through extensive cache coher-
ence support.

Fast execution of LOAD and STORE instructions is critical to high performance
RISC processors. To achieve single-cycle execution of these instructions, a data
cache is included on chip. This data cache is a 4-way set associative cache with
16KB total storage. These sets are independent; data at any physical address can
be stored in any of the 4 sets. This cache enforces cache coherence with other
caches in a system. The coherence mechanism is described in the System Inter-
face chapter. The data cache is a physical address cache. Depending on the sys-
tem environment, the data cache works in either write-through or copy-back
mode. The behavior of each mode is explained in the Programmer’s Model and

the System Interface chapters.

An 8-doubleword entry store buffer is provided to reduce the latency on ST. This
is a FIFO queue which holds the data until resources allow data to be written out
to the external cache and/or memory. This buffering allows the pipeline to con-
tinue execution, thereby increasing performance.

@sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

}\V/’

‘o



Chapter 1 — Introduction to Viking 5

8

1.1.7. External Cache Viking provides a flexible external cache imerfaf:e. An external cache controller
e Support chip, such as the MXCC, can provide a complete implementation of a large, direct
pp mapped, physically addressed external cache. This interface is described in detail
in the System Interface chapter. The MXCC provides a single chip interface to the
SPARC MBUS standard (level-2). It also provides a general purpose packet
switched interface (the XBus) that can be used to interface to a variety of bus
standards.

Both Viking and the MXCC are independently optimized to work with fully pipe-
lined cache RAMs, and they both support SPARC’s TSO (Total Store Ordering)
and PSO (Partial Store Ordering) memory models. See SPARC Architecture
Manual for more details.

1.1.8. Multi-Processor Cache Viking provides built-in cache coherence. The protocols are described in detail
Coherence support in the System Interface chapter. The protocol supports multiple cached copies of
shared data for reading and in some systems for writing.

Physical address bus snooping is used to implement the coherence algorithms.

1.1.9. Hardware Breakpoints To simplify software debugging, and reduce system development time, Viking
provides on-chip hardware breakpoints. Code and data access breakpoints are
provided. Virtual and Physical addresses can be selected.

(( \ A 16-bit instruction counter and a 16-bit cycle counter are provided for debug
- and performance analysis.

These breakpoints all have programmable actions when they occur. They may
generate exceptions, interrupts, or toggle an external pin to help trigger external
analysis equipment. :

1.1.10. JTAG Emulation Viking provides the equivalent of traditional ICE (In-Circuit Emulation) support
internally in hardware. Through the JTAG (IEEE P1149.1) asynchronous scan
interface, the state of the processor may be viewed or modified without changing
other processor state. The processor may be single stepped through a program,
with all processor states being observed after each cycle. This interface may be
used to view or modify system memory as well.

Emulation operates at full processor speed, without affecting any pin timings, or
loading. No test pod, nor other specialized hardware is required (except a JTAG
control device with appropriate software).

1.2. Full Testability Viking is a 100% testable device. All intemnal datapath and control logic can be
tested using JTAG scan. Large intemal arrays are not directly in the scan chain,
but may still be tested through the serial JTAG interface.

An automatic power-up selftest (software) can be initiated with or without any
external scan hardware. This, along with functional test of the arrays, gives high
confidence that the device is correct, with minimal effort.

[\/‘ Boundary scan is implemented to perform system level testing.
@ Sun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990



6  TMS390Z50 — Viking User Documentation

1.3. High Performance

13.1. Clock rate/technology

13.2. pArchitecture

1.3:2.1 Multiple Instructions
Per Cycle Execution

1.3.2.2 Fast LOAD and STORE
instructions

All tests can be performed in-circuit, only a JTAG control device is required.

Viking achieves high performance in many ways. These are broken down into
two categories: High clock rate due to technology, and low sustained cycles-per-
instruction (CPI) due to parchitecture. -

A full custom BiCMOS implementation allows for a target frequency of 5OMHz or
greater. Advanced process technology makes possible many of the parchitectural
features described below. The system interface is designed for operation at these
high speeds. An internal Phase Locked Loop is included to reduce system clock
skew.

In order to push beyond the improvement from clock rate, the parchitecture has
been optimized to execute multiple instructions simultaneously and critical
instructions quickly. These parchitectural features increase the average number
of instructions executed per cycle by a factor of two for integer programs. A
much greater improvement is found for floating point bound programs.

Viking typically executes programs from its cache at about 1.35 instructions per
cycle (IPC), or about 0.74 clocks per instruction (CPI). This figure derates to about
1.1 IPC for large programs not fully contained in the cache. Floating point perfor-
mance is generally much higher.

The optimizations are outlined below:

Viking can issue up to three instructions simultaneously. Certain rules are fol-
lowed to determine how many of the available instructions may be executed in

" any particular cycle. These are fully described in section 3.4 — Instruction

Grouping Rules.

All LOAD and STORE instructions operate in a single clock cycle when the refer-
enced data is present in the on-chip data cache. This includes 64-bit transfers and
floating point transfers. When the data is not present in the on-chip data cache, a
S5 cycle penalty is imposed to access the extemal cache. Each cache miss reads a
block (32-bytes) of data from the external cache. These bus transactions are fully
pipelined. The processor can use this data ‘‘on the fly”’, as the data arrives from
the bus.

When in CC mode, no miss penalty is incurred for normal store misses. An inter-
nal store buffer holds the store transaction and allows the pipeline to continue.

No load-use interlocks are imposed on LD instructions. The instruction immedi-
ately following may use the data without incurring any delay. There are some
cases of interlocks between the LD instruction and the following address calcula-
tions. (Described in section 2.3.1.1 — LD (Load operation) ). The external bus
is capable of nearly one transfer per cycle in the steady state (A mix of data and
instruction fetches). .

Because Viking uses fully physical cachés with cache coherence, no flushing of '
cached entries must be done, and no virtual address aliasing conditions exist. s
Eliminating flushing overhead can boost performance significantly.

sun Sun Microsystems Proprictary  Revision 2.00 of November 1, 1990
microsysiems



«

Chapter 1 — Introduction to Viking 7

1.3.2.3 Floating Point
Implementation

The Viking Floating Point Unit is tightly coupled to its integer execution pipe-
line, and allows one floating point operation and one memory reference to be
issued in every clock cycle. Viking supports single and double precision opera-
tions, but not extended nor quad precision. The FPU maintains a 4 entry FIFO
queue from which FPOPs are executed. Some operations require more execution
cycles than others, for example FDIV (floating point divide) and FSQRT (floating
point square root) take many more cycles than FADD. Viking FPU also handles the
integer multiply and divide. FPOPs and FPEVs are executed in the order they are
issued by the processor, allowing no out of order completion. Register depen-
dencies can delay execution stream, and exceptions can interrupt the pipeline,
sometimes requiring instruction aborts. Viking handles all cases of normaliza-
tion, and register alignments for double precision arithmetic, directly in
hardware. No unfinished exceptions (which consume extra cycles) are required.

More details of the FPU can be found in section 2.3.2 — Floating Point Pipeline.

sun Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



[Blank Page]

N



O AP

Processor Pipeline Overview

Processor Pipeline Overview 11
2.1. Pipeline Fundamentals 11
FO/F1 (Fetch) 11 R ;:ii:'::- ,
DO (Grouping) 11 T e
D1 (Resource Allocation) 12
D2 (Read Operands) 12
[ . EO (Execute first stage) 3 12
E1 (Execute second stage) 12
WB (Wﬁtg Back Results) , 13
2.2. Basic Pipeline Diagram 13
2.3. Pipeline Examples ... ' 14
Memory References 15
LD (Load operation) 15
ST (Store operation) 17
Floating Point Pipeline 18
Floating Point Instructions ' 20
Floating Point Queue 20
Floating Point Execution Times 20
Conditional Branch Pipeline 22
Untaken Branch 23
Taken Branch 24
Branch Couple 25
JMPL 26

~




Procedure Call and Retum

CALL

CWP Pipeline

SAVE

RESTORE

Exceptions

Exception Pipeline
Interrupts

RETT (Return From Trap) Pipeline

26
26
26
26
27
27
27
28
29

o



T

Processor Pipeline Overview

The Viking pprocessor pipeline is presented in this chapter. This information is
used throughout the document to describe Viking’s operation. The next chapter,
Code Generation, suggests code generation strategies to attain maximum perfor-
mance from Viking's SuperScalar pipeline.

2.1. Pipeline Fundamentals  Viking's pipeline comprises eight stages, which execute in four clock cycles.
Each stage has a unique function, which varies depending on the group of
instructions being executed. In general, they follow the standard Fetch, Decode,
Execute, Write Back model. The Viking pipeline stages are:

[ . R, F1, DO, D1, D2, EO, E1, WB
- and each stage is defined in detail below.

2.1.1. FO/F1 (Fetch) All instructions must be fetched before they are executed. However, not all
instructions are fetched in the cycle immediately preceding their execution. They
may be prefetched, and placed in the instruction queue. The Fetch stages (FO/F1)
of the pipeline manage the instruction queue, including fetching and prefetching
required instructions from memory. Not all instructions fetched are executed.
Some may be discarded if a control transfer instruction (branch) changes the flow
of execution. Up to 128 bits (four instructions) may be read from the instruction
cache in every cycle. These instructions are entered into the instruction queue,
and can be removed at a maximum rate of three instructions per cycle.

2.1.2. DO (Grouping) The DO stage selects from 0 to 3 instructions from the instruction queue to form
an in-order instruction group. This selection depends on the set of instruction
candidates that are available at the head of the instruction queue prefetch buffer,
as well as the current state of the processor pipeline. The grouping rules used to
form this selection are described in section 3.4 These instructions must be taken
in order from the queue, Viking does not execute instructions out of order.

Once a group of instructions is selected, DO identifies the first memory reference
instruction in the group, and latches the comresponding register index. DO forms
i extension words based on the immediate values for memory reference and con-
3 trol transfer instructions’ displacements. DO identifies cascade conditions
" (integer instruction data dependencies within and between instruction groups),
and inserts pipeline bubbles when necessary. A bubble or pipeline stall of dead

sSun Sun Microsystems Propri Revision 2.00 of November 1, 1990
0“ un Microsystems Proprietary evision 2.00 of



12  TMS390Z50 — Viking User Documentation

2.1.3. D1 (Resource
Allocation)

2.1.4. D2 (Read Operands)

2.1.5. EO (Execute first stage)

2.1.6. E1 (Execute second
stage)

cycle is a cycle where no instruction is executed. This cycle is necessary when
there is a pipeline hazard, or if required data is not available.

D1 assigns available resources within the integer unit to individual instructions in
the group selected during DO. All cases of data forwarding (or bypass) are ’
resolved in this stage. All operand register index are selected and assigned to
individual register file ports. These resources stay constant throughout the execu-
tion of the instructions.

The two address registers selected during DO are read via two dedicated register
file ports during D1. This data is used in D2 to compute a LD/ST virtual address.
The data for these may also be forwarded from currently executing instruction
groups.

Branch target addresses are generated in D1, taken from the extension words
selected in DO and the Program Counter (PC) value of the branch instruction
within the group. Next PC values are also generated.

Stage D2’s primary function is to read the operand registers selected in the

preceding D1 stage. In addition, the address operands read during D1 will be

combined in the virtual address adder. The result is a 32-bit virtual address which

will be used to reference the MMU and data cache in subsequent stages. During

D2, any bypass paths required for execution will be set up to transfer data in ,
cycles that follow. e

Viking has two execution stages. EOQ is the primary execution stage. Most arith-
metic operations complete in EQ. During EO, the data operands read from the
register file during D2 are passed through one of two ALUSs, or the shifter. Up to
two integer results can be generated in EQ. Only one may be generated by the
shifter. These results are then presented as input to the E1 cascaded ALU, and
sent into many forwarding paths.

For memory references, the virtual address generated in D2 is used in EO to begin
accessing the TLB and the data cache. Only the low-order 12 bits of the virtual
address are needed to begin cache lookup. The high order bits are supplied by the
MMU in the E1 phase for tag comparison with the physically cached data. The
MMU must inform the data cache unit in EQ if there is an access exception in the
current group of instructions. The IU is-also informed in E1 stage about the
access exception. If it is not yet known whether an exception must be reported to
the current group (due to TLB or cache misses), the pipeline is stalled at this stage
until all exception sources have been resolved.

Floating point operations are dispatched to the FPU during EQ.

The second stage of execution can generate at most one additional integer ALU

result. This result is generated in the cascaded ALU. The computed results from

the EO ALU or shifter are used as inputs to this ALU. All execution results from A
the current instruction group are available by the end of the E1 stage. This R
includes data returned from the data cache.

sun Sun M i Revision 2.00 of November 1, 1990
@ un Microsysiems Proprietary evision o



Chapter 2 — Processor Pipeline Overview 13

2.1.7. WB (Write Back
Results)

2.2. Basic Pipeline
Diagram

Results generated in E1 are delayed a cycle before they can be used as address
operands. Address dependencies for a load from memory result in one cycle of
pipeline bubble. Condition codes generated in E1 are delayed a cycle before they
can be used in resolving conditional branches.

When stage E1 has completed, all results are guaranteed to be available. The pri-
mary action in the WB pipeline stage is to "Write Back’ these results into the
register files based on write enable signals generated earlier in the pipeline and
potentially modified due to exceptions. The WB stage executes at the same time
as the EO stage of the next instruction group. Forwarding paths are used to
transmit data between successive groups. The integer unit and FPU update the
register files during WB, and normally the data cache updates its contents when a
ST instruction has appeared in EO-E1.

Viking can operate in either CC mode or MBUS mode. The choice of mode has a
major impact on the behavior of ST instructions. In CC mode, Viking assumes
the existence of an external cache. In this mode, the Viking data cache behaves
as a "Write Through’ cache, which means that all ST instructions that modify the
internal cache also write their data through to the external cache.

In MBUS mode, the Viking data cache operates as a "Copy Back’ cache, which
means that ST data is not written out to the external system until the line contain-
ing the data is replaced in the cache, or a snoop on the bus forces a copy back.
Also, in MBUS mode the cache implements a "Write Allocate’ policy, which
means that if a ST misses in the cache, the line containing that data is brought in
from memory, and then the ST is performed locally (i.e. memory does not get’
updated, consistent with the *Copy Back’ strategy). MBUS mode does not assume
the presence of an external cache.

As in CC mode, there are conditions that will force a ST in MBUS mode to be
treated as a synchronous ST.

Throughout the document, pipeline diagrams are used to represent the flow of
instructions ar:.. data through the processor. The most basic pipeline diagram is
shown in the figure below. This diagram is generic, and is intended to show the
relation of groups in the pipeline.

"S“!.l Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



14  TMS390Z50 — Viking User Documentation

Figure 2-1  Basic Pipeline Description
Time > .
CLOCK e - 7 7 7 I 1|
Instruction Group FO {F1 |DO {D1 |D2 { EO |El1 {WB
One
Instruction Group FO { F1 |DO {D1 |D2 {EO | E1 {WB
Two
Instruction Group FO { F1 | DO § D1 1D2 { EO | E1 }WB
Three
Instruction Group R0 {F1 | DO {D1 |D2 {EO |El |WB
Four ~
All pipeline stages are identified. The bold vertical lines indicate major (rising)
clock edges. The shaded vertical lines are minor (falling) clock edges. In general,
the contents of the instruction group will be indicated in the left-side heading.
Significant operations and interactions are included in the boxes for individual
stages.
2.3. Pipeline Examples Viking's pipeline is straightforward for simple instruction sequences (e.g., integer
: arithmetic). The complexity rises quickly for memory reference and control
transfer instructions. This section describes these cases in detail. Standard LD and
ST sequences are presented first, followed by floating point operations (fpops).
Then SAVE, RESTORE, and all forms of control transfers are described. The final
section describes how the pipeline deals with exceptions.
This section describes only the simple cases of these sequences. In particular,
pipeline stalls caused by a variety of sources are not considered here. In general,
pipeline bubbles or idle cycles may be injected into the pipeline at any point for a
variety of reasons.
o

@SUH Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990
microsysiens



Chapter 2 — Processor Pipeline Overview 15

2.3.1. Memory References

2.3.1.1 LD (Load operation)

LDs and STOREs are very frequent operations in SPARC code. In a typical program,
as many as 30% of the instructions are loads or stores. Since Viking executes up
to 3 instructions per cycle, it may be required to execute a memory reference
nearly every cycle. This presents significant challenges to the processor design.

To maximize performance, Viking has removed restrictions that have existed in
prior RISC designs. In particular, many sources of interlocks on load instructions
have been removed. This allows Viking to execute a LD instruction, immediately
followed by a dependent ALU instruction in the next instruction group (an ALUOP
with a register dependency with the LD).

Al LD and ST instructions that Ait in the internal data cache execute in a single
cycle. This includes all byte, half-word, word, and double-word references. Up to
two other instructions may be included in the instruction group with the memory
reference. Stores are generally buffered. In CC mode, they take a single cycle to
execute whether or not they hit in the cache.

The diagram below (load after ALUOP example) shows a LD instruction execut-
ing, surrounded by arithmetic operations. For simplicity, the sequence uses sin-
gle instruction groups, forced by the dependencies in the code. The code
sequence being executed demonstrates the use of many data forwarding paths for
reference. The sequence is:
( A

add %10,%11,%12 ’

'---Break (Can’t cascade into shifter)

sll %12,2,%12

!---Break (address dependency)

1d [$12+0x10],%13

!---Break (Load data dependency)

add %13,%14,%15
. J

Note the use of a dependent shift instruction to force a break between the add and
shift. If the shift were replaced by an add, it would be considered a cascaded
instruction and the two would be grouped together. This would have resulted in a
pipeline bubble between the second add and the load, as shown in the example
below. The total execution time would have been identical. '

( D
add %10,%11,%12

add %12,2,%12

!---Break (address dependency)

bubble

t---Break (address dependency)

1d [%12+0x10],%13

'---Break (Load data dependency)

add %13,%14,%15

. L J

The execution of this code sequence through the pipeline is shown below:

sun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990



16

TMS390ZS50 — Viking User Documentation

Figure 2-2  Basic load pipeline sequence
. Load after ALUOP
Time >
CLOCK l I [ | L L | | l |
Group One: FO {F1 |DO {D1 |D2 {|EO |El1 {WB
: Read { Add Write
add %10,%11,%12 10,11 1041 '%)L 12
*0'
Group Two: FO | F1 |DO | D1 [D2\{E0 | El |WB
Extend [Read 12 § Shift Wri
shl %12,2,%I12 2 Lo 2 by2 e
\&
Group Three: FO { F1 | DO { DI YD2 | E0O | El |WB
) Read ] Hit! } wr
1d [%12+0x10],%13 Adava o
Group Four: El xg
add %13,%14,%15 !

@sun

The add and shift instructions execute, pass data through forwarding paths from

the add result, into the shifter; then from the shifter result into the virtual address
adder for the load. The *‘Ox10°’ offset is extended into a 32-bit value in the D1
stage. The offset extension word, and the forwarded version of register %12 are
added, and the result passed to both the data cache and the MMU, which are
accessed in parallel. When a hit is identified in the TLB, the physical page number
is extracted and passed on to the data cache. In the meant time, the cache has
completed reading all data and tags for the four possible sources of the memory
location (4-way set associative cache). The tags are compared with the physical
page number from the MMU. When the proper set is identified, the data is routed
back and forwarded into the next EO execute stage for the last add instruction, it
is also written into the register file.

Had a cache or MMU miss occurred, pipeline bubbles would have been inserted.
The EO and E1 stages of the load would be repeated until all the misses had been
satisfied. If any errors occurred, they would be reported to the EO stage (which is
being repeatedly executed).

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 2 — Processor Pipeline Overview 17

Store operations are similar to loads in many ways. The address computation,

cache lookup and MMU access are done in exactly the same manner for loads.

The primary difference is the handling of the data. The sequence below demon-

strates a store operation. The instruction sequence is more complex than the pre-

vious example to illustrate multiple instruction handling.

f h
add %10,%11, %12

sub %o0l, %02, %03

!~--Break (two write ports)

and %03, %04, %05

st %05, [%$12+%13]

'---Break (only one memory reference)

1d [%$12+0x10], %13

!---Break (load data dependency)

add %13,%14,%15

\_ : J

2.3.1.2 ST (Store operation)

The first and last two instructions of the sequence are identical to those in the last
example (load after ALUOP). The shift from that example is replaced by an AND
and ST instruction. A SUB instruction has also been added. Note that the store
requires data from the and. This is executed with no delay, as the data to be
stored is not required until the stage when it is actually written out.

[ Figure 2-3  Store Pipeline Operation
. Store after ALUOP
Time >
cLock L LI 7t 1
Group One: FO {F1 |DO { D1 | D2 59 El {WB
add %10,%11,%12 on poanl, (o
sub %01,%02,%03 ole2 |°°
Group Two: FO | F1 | DO RB}
and %03,%04,%05 le.n
st %05,[%12+%13] el
Group Three: Fo
Id [%12+0x10),%13
Group Four:
add %I13,%14,%15
r\ I—
[
@vsun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990
microsysiems



18 TMS390Z50 — Viking User Documentation

2.3.2. Floating Point Pipeline

This diagram is very similar to the previous example, with the addition of
another memory reference instruction. Many of the forwarding paths used in the
previous diagram are no longer used, while others are illustrated. The store
address is computed in the D2 stage, then used to check the MMU and cache tags
in EO/E1. Assuming all protection checks pass, the write is actually performed
during WB. The physical write to the data cache is delayed another phase past
WB, but this is not visible to the program execution.

Operation of the data cache on a ST miss depends on whether Viking is operating
in CC or MBUS mode. In CC mode, if the store operation had missed the data
cache, the timing would be identical. The store data would be written only to the
store buffer, and not to the data cache. In this case Viking's data cache does not
write allocate on misses. In MBUS mode, however, if the store operation had
missed the data cache, Viking’s data cache would write allocate, by bringing the
data from memory, retrying the ST (which would now hit), then writing the new
data onto the cache line. This new data would be copied back to memory when
the cache line is to be replaced.

In some cases, a load needs to read data which has been written recently. If this
data is in the cache, it is returned immediately. In CC mode, this data may not be
in the cache, since it may still be in transit to the external cache, or to main
memory. The drain rate of the store buffer depends on the external system. In
such cases, the store buffer is checked for a copy of the needed data (store buffer
snooping). If it is found to be present, the processor requests that the store buffer
be drained (store buffer copy out). The processor then waits until the requested
data is no longer in the store buffer, then continue and read the data back in from
memory, as for a normal load. Viking does not forward data from the store buffer
to satisfy read requests. In MBUS mode, a ST guarantees that the data cache has
the new data. See section 8 — MBUS Interface for more details.

Viking's on chip floating point is tightly coupled to the integer pipeline. A float-
ing point operation may be started every cycle. The latency of most floating point
instructions is three cycles. The FPU pipeline has the following stages: -

FD, FRD, FE, FL, FWB
(Decode, Read, Execution, Last, WriteBack)

Floating point instructions are dispatched late in the processor pipeline. They are
not issued to the FPU until the EO stage of the integer pipeline. Once issued, the
floating point instruction proceed through the FPU’s pipeline. The stages in the
FPU pipeline are also fairly standard: decode, read, execute, and writeback. For-
warding paths are provided to chain the result of one floating point operation to a
source of a subsequent operation.

The floating point pipeline becomes visible to the integer pipeline in several
cases. When an FBRCC (Branch on floating point condition codes) instruction is
issued, the processor may need to wait until a preceding FCMP instruction has
completed. When a floating point store instruction is executed, the pipeline also
becomes visible. The integer pipeline waits in the EQ/E1 stage until the requested
data is available from the FPU. In some cases, the floating point queue may
become full, typically when many long latency floating point instructions

0 sun Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

5



Chapter 2 — Processor Pipeline Overview 19

(divide, square root, or highly dependent operations) are issued.

Since floating point instructions are issued late in the pipeline (E0), and the
actual arithmetic is not begun until one cycle later (WB), Viking may issue a load
and a dependent FPOP simultaneously. This is demonstrated in the following code
fragment. A pipeline diagram of a simpler case is shown below. )

\
(7 1dd [$10],%£2

faddd $£2,%£0,%£6

add $10,0x8,%10

!~~~ Break (Three instruction max)

ldd [%10],%£4

add %£10,0x4,%10

frmuld $£4,%£0,%£8
!{--- Break (Three instruction max)

1ldd [$10+4]),%£10
cmp $10,0x100
be Loop

!~--- Break (Branch, Three instructions)
faddd $f6,%£8,%£0

. J

The example above may not contain a particularly interesting sequence, but it
shows many of Viking’s strengths. All but the last group contain three instruc-
tions. The floating point operations are grouped with load instructions on which
they depend. The data returns from Viking's data cache at the end of the E1 stage,
and is immediately used by the Floating Point Unit’s FRD stage, and then by its
FE stage.

The pipeline diagram below shows the following code fragment being executed:

ldd [$10+%11],%£2
faddd $£2,%£0,%£4
!-=-- Break

by its For simplicity, other instructions in the pipeline are not shown.

S_ un Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



20  TMS390Z50 — Viking User Documentation

A

{ i
| /
A
7

Figure 24  Floating Point Pipeline

CLOCK

Time Floating Point Pipeline o

L LI LT LT LT L1

Group One:

1dd [%10+%11],%12
faddd %f2,%f0,%f4

FO {F1 |DO { D1 | D2 {E0/ |El/

Read |Add { FD
1041 {1041 Resd | Write

Group Two:
(Don’t Care)

23.3. Floating Point
Instructions

2.3.4. Floating Point Queue

23.5. Floating Point
Execution Times

FO { F1 { D0 ¢ D1 D2 {E0 | E1 {WB

There are two types of floating point instructions:

FPOPs (floating point operations) and
FPEVs (floating point events).

The FPEVs (floating point events) are executed by the FPU but they do not enter
the FPU queue, and these include: :

LDF/STF (load and store to floating point registers)
LDFSR/STFSR (load and store to floating point status register)
STDFQ

Integer Multiply and Integer Divide operations

The FPOPs include all falus, fbfcc etc., and they specifically enter the FPU queue.

The FPU queue is a FIFO, holds up to 4 FPOPs, stalls the execution stream when
the it is full, and signals FSR.QNE to indicate whether/not it is empty. FPEVs do
not enter the FPU queue, these operations use the FPEV logical port. Recall that
IMUL IDIV are included in FPEV. The FPOPs use the FPOP port.

IMUL and IDIV can start execution only when the FPU queue is empty, unless the
FPU is in exception mode (See section 4.4.1 — Integer Multiply (IMUL) and 4.4.2
— Integer Divide (IDIv) for more details).

Different FP operations require different number of cycles to complete. The fol-
lowing table summarizes the performance of Viking FPU for its FP operations.
falu includes fadd, fsub, fmov, fneg, fabs, fcmp, and all of the conversions
between integer, single and double precision numbers. Single is denoted *‘s’’, it
means single precision operation carried on 32 bits. Double is denoted “‘d”’, it
means double precision operation carried on 64 bits. Viking supports neither

s
-

n Sun Mi i ision 2.00 of November 1, 1990
qu un Microsystems Proprietary Revision ol



Chapter 2 — Processor Pipeline Overview 21

Table 2-1

extended ‘‘x’’ precision (80 bits) nor quad ‘‘q’’ precision (128 bits). fmul is {-
multiply, fdiv is f-divide, fsqrt is f-square-root, each of them allowing either sin-
gle or double precision operation. fsmuld is multiply a single precision number
to a double precision number. imul is integer multiply and idiv is integer divide.
imulcc is integer multiply that affects the condition codes icc, and idivec is
integer divide that affects the condition codes icc. These operations as stated ear-
lier are performed by the FPU. Each of these FPOPs is a SPARC instruction, only
the implementation is Viking specific.

The following table lists FPOPs with a 3 cycle latency.

Floating Point Operation Execution Time - 3 cycle latency

Instruction

(]
»
Q,
a

fadds
faddd
fsubs
fsubd
fcmps
fcmpd
fcmpes

fcmped
fstoi

fstod
fdtoi
fdtos
fitos
fitod
fmovs
fabss

WWLWWWLWWWLWWWLWWWLWWWWLW

fnegs

S u ll Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



22 TMS390Z50 — Viking User Documentation

Table 2-2

2.3.6. Conditional Branch
Pipeline

The following table lists other FPOPs and their latencies. The execution time of
each of these FPOP depends on the source(s) and destination data formats. The
notation used in this table designates:

n: floating point normal number.

s: floating point subnormal number.

ns=n Identifies source 1, source 2, and destination data formats
respectively.

F loating Point Operation Execution Time - latency

Instruction | nn=n | nn=s | sn=n | sn=s | ns=n | ns= ss=n | ss=s
fdivd 7 8 10 11 11 - 11 -
fdivs 6 7 9 10 10 - 10 -
fmuld 3 4 6 7 7 8 8 -
fmuls 3 4 6 7 7 8 8 -
fsqrtd 10 - 13 - - - - -
fsqrts 8 - 11 - - - - -
fsmuld 3 - 6 - 7 - 8 -
idiv 15 - - - - - - -
idivee 15 - - - - - - -
imul 4 - - - - - - -
imulcc 4 - - - - - - -

Branches are a fundamental performance limiter in most processors. This is par-
ticularly true in RISC machines, where basic block sizes are usually small. It is a
serious problem in superscalar machines, which reduce the number of cycles
taken to execute the already small number of instructions between branches. In
normal operation, Viking could see a branch every three to five cycles.

Viking’s branch implementation can execute untaken branches somewhat more
efficiently than zaken branches. The peak performance through an untaken
branch is 3 instructions per cycle. Peak performance through a taken branch is
2.3 instructions per cycle. The difference comes from the delayed branch instruc-
tion which must be executed as a single instruction group in the taken case. Due
to usual code scheduling restrictions, this peak performance will not generally be
attained, and the difference between taken and untaken branches will be less visi-
ble.

Viking implements branch prediction in the prefetch logic. It always attempts to
fetch the target of the branch. However, the pipeline assumes that the branch is
untaken. This relies on the instraction queue having several sequential instruc-
tions available. The target instructions are fetched into the target queue. Once the
direction of the branch has been resolved, the appropriate instructions are routed
into the instruction queue.

sun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990

e



Chapter 2 — Processor Pipeline Overview 23

2.3.6.1 Untaken Branch

When a branch occurs, the pipeline continues to execute normally for one cycle.
In this additional cycle, the delay instruction is executed, possibly along with
other instructions in the untaken stream. This implies that, if the branch is taken,
some instructions have begun execution that should not have. Viking terminates
the execution of these instructions for a taken branch as soon as the branch
sequence has been resolved. This is called squash. The instruction must be can-
celed before any machine state has been modified.

Viking executes the typical branch sequence by grouping together the branch
instruction, and the previous instruction(s) that normally set the condition codes.
This is a form of branch folding. Up to two other instructions may be executed
in the group with the branch. The delay instruction is executed in the next group.
A typical instruction sequence might be:

s )
subcc $10,0x100, %g0
bz TakenTarg
add $11,%12,%13
st %13, [¥g1+0x100]
and %00, %01, %02
TakenTarg: ‘st %90, [$g1+0x100)
\_ y,

This same basic code sequence is used to demonstrate both taken and untaken
branches. The same basic control transfer mechanism is used for all forms of
branches, jumps, and calls.

The untaken branch is the simplest case. The example sequence above is grouped
as follows in the untaken case:

-
subcc  %10,0x100, ¥g0 ) W
bz UntakenTarg
!---Break (Break after CTI)
add $11,%12,%13
st $£13, [$g1+0x100]

{---Break (No more write ports)
and %$00,%01, %02
(others)
. J

The instructions at UntakenTarg will not be executed, since the branch is not
taken. Notice that two instructions (add, store) are executed in the delayed
instruction group. The instructions beyond the third group are not significant.
The pipeline behavior is shown below:

x

S_ un Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



24

TMS390Z50 — Viking User Documentation

Figure 2-5  Untaken Branch Pipeline
i Untaken Conditional Branch
Time - )
CLOCK Mo 0 7 = I I $1
Group One: gJFO F1 |DO | DI RIZE EQ |El WB
subce %10,0x100,% ) -
bz UntakenTarg ' "\ ignore)
Group Two:(delay) FO | F1 1DO Edl 33 EO nI::ul :XE |
add %11,%12,%13 B8 || E-I TR g )
add ead tib . jcache,
st %I13,[%g1+0x100] *‘::: 100 ks eache] "™ -
Group Three: Ffipl DO { D1 |D2 | EO | E1 {WB
Fetch Read | And Wri
and %00,%01,%02 Taedug | mand  fover |0t e i
(Others....) code
Group Four: F1 |DO {D1 |D2 {EO |El |{WB
(Don’t care)

2.3.6.2 Taken Branch

The diagram shows the fetch that is being done because the branch is assumed to
be taken. The condition codes (from the subcc instruction) are resolved in the
branch groups EO pipeline stage. This condition code is used immediately to
determine the branch direction, in the delay groups D2 stage, the target group's
DO stage (by selecting the correct queue), and the following group’s FO stage (by:
selecting the correct prefetch program counter). Thus, after one cycle of uncer-
tainty, the branch is resolved. Fetches once again follow the correct execution
stream.

The taken branch case is somewhat more complicated. The most significant-
change is that instructions which begin execution in the delayed instruction
group are ‘‘squashed’’, and never complete execution. Squashed instructions are
indicated with gray shading in the pipeline diagrams. The apparent grouping of
instructions in the taken case is:

sun

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

.

L



Chapter 2 — Processor Pipeline Overview 25

~ ™\
subcc %$10,0x100, ¥g0
bz TakenTarg
!---Break (Break after CTI)
add $11,%12,%13
!---Break (Squash: st %13, [$g1+0x100])
TakenTarg: st %90, [$g1+0x100]
| Qe
_ J

The instruction grouping is the same as for the untaken branch case, up to the
delay group. In the delay group, the grouping begins in the same as for an
untaken branch, but the grouping is modified (squashed) when the branch is
resolved as taken.

The taken branch pipeline is:

Figure 2-6  Taken Branch Pipeline

. Taken Conditional Branch =7
Time
CLOCK o 4 LI L
[ 4 Group One: FO |F1
subce %10,0x100,%
bz TakenTarg

Group Two:(delay)
%l11,%12,%]13

Group Three:
st %g0,[%g1+0x100]
(Others)

Group Four:
(Don’t care)

2.3.6.3 Branch Couple SPARC allows for a limited set of CTI (Control Transfer Instruction) couples.
These cases are quite complex to understand and implement. They execute in the
same general manner as normal branches. Viking executes all the legal CTI cou-
ples correctly and, conforming to SPARC V.8, choose not to support the imple-
mentation dependent case of B*CC and DCTI couple (Case 6 in the SPARC V.8

"Su!‘.l n Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



26  TMS3%0Z50 — Viking User Documentation

2.3.64 JMPL

23.7. Procedure Call and
Return

2.3.7.1 CALL

2.3.7.2 CWP Pipeline

2.3.7.3 SAVE

Manual). The B*CC instructions are Bicc and FBfcc (including BN, FBN, but
excluding B*A and FBA). DCTI instructions are CALL, JMPL, RETT, B*CC taken, and
B*A (with a=0).

The JMPL instruction is an unconditional branch which uses a register as the
source for the branch target. Other branch instructions compute the target
address from an immediate operand and the.current program counter value.
JMPL's suffer a delay since they must read the register file before issuing a branch
target fetch. The extra cycle is injected into the pipeline after the delay instruc-
tion of the IMPL, that is, before execution of the target instruction.

SPARC defines a set of instructions for procedure entry and exit. CALL is used to
branch to a subroutine. It saves the PC value in register %07 which is used to
compute the return address. JMPL is used to do a return, using a register to sup-
ply the target of the branch. By convention, for a return, IMPL uses the register
written by the last previous CALL.

SAVE and RESTORE instructions work as a pair to allocate and deallocate a regis-
ter window and a stack frame for a procedure. SAVE decrements the CWP, while
RESTORE increments it. Both instructions do an implicit ADD operation, which is
used to allocate/deallocate the stack frame.

CALL executes in exactly the same manner as a taken branch, including execution
of the delay instruction, except that the current PC value is written into register
r15 (%07). The value is written in the EO stage of the group containing the CALL

instruction.

CALL is grouped with pn;,vious instructions in the same manner as branches. It
does, however, require a register file write port, so the grouping may be some-
what constrained by available resources.

SAVE and RESTORE instructions modify the processor’s CWP. This causes a regis-
ter window to be allocated, or deallocated. These instructions also perform an
ADD operation. The sources for this add are from the old register window, while
the destination is in the new window. For simplicity, Viking executes both these
instructions as single instruction groups. To make instructions before and after
SAVE and RESTORE operations reference the correct windows, multiple CWP's are
maintained in the pipeline. Depending on an instruction’s position relative to the
CWP change, the appropriate CWP value is chosen.

SAVE is always a single instruction group. Except for changing of CWP during the
decode phases, it is identical to an ADD instruction. SAVE takes a single cycle to
execute.

qun Sun Microsysiems Proprietsry  Revision 200 of November 1, 1990



Chapter 2 — Processor Pipeline Overview 27

¢

2.3.7.4 RESTORE

23.8. Exceptions

2.3.8.1 Exception Pipeline

RESTORE is also a single instruction group. It also behaves just as an add instruc-
tion, except for the CWP update. The RESTORE takes a single cycle to execute.

Exception handling is an extremely complicated part of Viking. The precise
exception architecture of SPARC must be maintained. The most difficult excep-
tions to handle are those which cause partial execution of a group of instructions,

e.g.,

!{--- Break (Start of group)

add $11,%12,%13
ldd [$00+0x100], %£2
and $13,0x20, %13

!{-—=- Break (3 instructions)

The two arithmetic instructions form a cascade. The load instruction (which hap-
pens to be to floating point registers) is between the two arithmetic instructions.
Also, the destination registers of the two arithmetic instructions are identical. The
problem arises in this case if the load instruction induces an exception (say, due
to a page protection violation, or a misaligned memory address). In this case, the
first instruction (ADD) must complete and write back its result. The second
instruction (LDD), however, must not complete.

If the instruction were scheduled to complete without incurring an exception, the
result of the add would not have been written to the register file - it would simply
be used as a temporary value passed on to the and. When the exception occurs,
this is no longer true and the result must be written to the register file. Viking
correctly handles complex cases such as this and many others.

The case above, with some surrounding instructions, is used below to illustrate
the exception handling pipeline. The diagram assumes that an exception is
reported for the load double instruction. The exception forces the write enable of
the current group to be modified, allowing only the first add instruction to write
its result. The exception handling logic then takes control of the pipeline. All
subsequent instructions in the pipeline are squashed. The store buffer is flushed,
and the pipeline stalls until the flush is complete. In the next cycles, the PSR and
CWP are modified to reflect the exception state of the processor. An instruction
fetch to the proper interrupt handler in the trap table is requested. The exception
PC and nPC are written into r17 and r18 (%11,%I2). Finally, the instructions in the
handler begin execution.

QSUH Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990
cIosysiens



28  TMS390Z50 — Viking User Documentation

Figure 2-7

Exception Generated

CLOCK

Group One:
add %I11,%I12,%I3
ldd [%00+0x100],%f2

_and %I13,0x20.%13

Exception Handling Pipeline

Exception Handling

Group Two-Four
(Three cycles to enter
exception handler)

Write Write
PSR, 11=PC

Group Five:
(Enter Handler)

2.3.8.2 Interrupts

FO} F1|DO0 | D1 | D2 { EO

Interrupts are handled in the same manner as exceptions. The interrupt request
pins are sampled on the rising edge of the clock. In the next cycle, the highest
priority interrupt is selected. This may be from the pins, or from an intemally
generated interrupt (breakpoints). The request level of the selected interrupt is
compared against the enable and processor interrupt level fields in the PSR
(PSR_ET and PSR_PIL). If the interrupt request level (IRL) is higher than PSR_PIL,
an exception is generated in the next cycle, to the instruction group at the EO
pipeline stage.

In order for the interrupt to be accepted, there must be a valid instruction in the
EO stage. If there is no valid instruction, the interrupt is not taken until an instruc-
tion arrives at EQ. This ensures that there is a valid PC to report as the interrupted
program counter.

The last valid instruction in the EQ stage is normally squashed. If there is only a
single instruction in EQ, it is squashed, and the saved PC value points to that
instruction. All instructions in the pipeline after this squashed instruction are
also squashed. Breakpoints are reported to the instruction that caused the break-
point detection, rather than the Iast valid instruction.

The interrupt pipeline is identical to the exception pipeline (see above). It
behaves just as if an exception were reported to the last valid instruction in the
EO group. See section 7.4 — Interrupts for more details.

@Slll’l Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 2 — Processor Pipeline Overview 29

2.3.8.3 RETT (Return From
Trap) Pipeline

The return from trap instruction executes in cooperation with a JMPL that must
immediately precede it. (See the SPARC Architecture Manual). Execution of a
RETT is very similar to a JMPL. It is required to restart instruction sequences
which were trapped on the delay instruction of a branch. In this case, the IMPL
returns to the delay instruction and the RETT retums to the target of the branch. If
there was no previous branch, NPC is set to PC+4.

A RETT executes as a single instruction group. It incurs no additional pipeline
cycles. The preceding IMPL provides a free pipeline hold cycle for the RETT to
change CWP and PSR, and to issue a fetch to the saved NPC.

The typical code sequence used to retumn from a trap is as follows:

jmpl $rl7,%g0
rett $rl8

The instructions at the target of this return are don’t care’s. The instruction at the
target of the JIMPL must be executed as a single instruction group, since it may not
be contiguous with the return address in the RETT. The pipeline operation for the
sequence is shown below:

sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



30 TMS390Z50 — Viking User Documentation

Figure 2-8  Return from Trap Pipeline

Time Return from Trap N

CLOCK M 7 7 I LI L_J7 L

) FO {F1 |DO {D1 |D2 {E0O |El {WB
Group One: ot oy

jmpl %r17,%g0 7 1740

Group Two:(delay) FO
rett %rl8

“ Group Three:
(JMPL induced 1-
cycle bubble)

Execution at first ‘ WB
target (from JMPL)
(single instruction)

Execution at second
target (from RETT)

, @,,S,,!;l,,,n,, Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

woi{Fl |D0{D1|D2 | EO,



Code Generation Principles

Code Generation Principles

3.1. Performance of Existing Code

3.2. Areas that Hurt Performance

3.3. General Guidelines
Reduce Branches
Allocate delay instructions carefully
Reduce floating point register dependencies

More floating point code examples
FP code example: Throughput
FP code example: One Stall
FP code example: fcmp/fbfcc latency
FP code example: fcmp/fbfcc Stall
FP code example: freg dependency +out -> ST

FP code example: freg dependency +in -> LDin
FP code example: freg dependency +out -> +in

easecsssesccnceensesrensaseassencne

FP code example: freg dependency - +in->+out ...
Spread address calculation and Memory reference ... ...
Arithmetic dependencies

Ports to memory

Ports to the FPU

Integer register write ports

Integer Arithmetic units

3.4. Instruction Grouping Rules




Break Before

Break After Rules
Break After First Valid Exception
Break After Any Control Transfer Instruction
Break After Condition Codes set in Cascade

Break After MULSCC destination not equal to source of next
MULSCC

Break After first instruction after Annulled Branch ...........................

Break After first instruction midway through a branch
couple

Break Before Invalid Instruction
Break Before Out of Integer Register Ports
Break Before Second Memory Reference
Break Before Second Shift
Break Before Second Cascade
Break Before Cascade into Shift
Break Before Cascade into JMPL
Break Before Cascade into Memory Reference Address ...
Break Before Load Data Cascade Use

Break Before Previous Group Cascade into Memory
Reference Address

Break Before Sequential Instruction
Break Before Control Register Read after Previous SetCC ...
Break Before MULSCC unless first one or two instructions ............

Break Before Extended Arithmetic from CC set in Current
Group

Break Before Delay Group CTI unless first

Break Before CTI in JMPL delay unless RETT

43
43
43
43

43
43

Tl G S

45
45
45
45
45
46
46
46

46
46
46
47

47
47
47



3.1. Performance of
Existing Code

3.2. Areas that Hurt
Performance

Code Generation Principles

All pprocessors benefit from code sequences generated with intimate knowledge
of the processor’s operation.

This section describes some guidelines that can be used to construct optimal, or
nearly optimal code sequences for Viking. They can be applied to compiler code
generation, as well as manually generated code for highly performance sensitive
routines.

Viking is designed to execute code from existing SPARC compilers efficiently. In
general, Viking executes this code at about 1.35 instructions per cycle (IPC), or
0.74 cycles per instruction (CPI). This number is derated to about 1.1 IPC for gver-
age large programs when cache effects are considered. Floating point intensive
programs typically execute at a higher IPC.

This performance level can be increased significantly with code generated expli-
citly for Viking. In addition, compiler improvements not targeted explicitly at
Viking also offer substantial improvements. This text considers only low-level
code scheduling issues.

Viking performance is sensitive to many factors. The significant performance
limiters vary greatly between programs. Classes of limiters include: branch fre-
quency and direction; memory reference patterns; floating point operation
scheduling; instruction ordering and data (register) dependencies.

In floating point programs, branch performance is rarely a limiter. This is mostly
because loops are often unrolled. In most cases, floating point programs are
memory reference limited, rather than arithmetic limited. Since only a single
memory reference can be executed per instruction group, interleaving memory
references with nearly anything else improves performance.

Most programs are limited by either branch performance or load/store bandwidth.
In particular, taken branches can only execute a single instruction in the branch
delay group. Load and store operations are often ‘‘bunched’’ together. This
prevents other instructions from being executed in parallel with the memory
references.

Cache performance is also critical to achieving maximum performance. Many
routines are small enough to have their entire code and data set contained in
Viking's on-chip caches. Only (usually) insignificant cold-start penalties will

"S“ll n Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



34  TMS390Z50 — Viking User Documentation

3.3. General Guidelines

degrade the performance of such routines. Most larger programs, however, do (/’/
not fit entirely in the on-chip caches. These programs typically lose 20% to 30%

of their performance from cache miss penalties. Prefetching logic serves to limit

the degradation in some cases. Localizing code and data references within a pro-

gram can lead to substantial performance improvements.

A general rule for Viking optimization is to interleave as many different classes
of operations as possible. A good simple measure of the minimum execution
time of any routine is:

MemoryReferences
FloatingPointOperations

IntegerOperations
2

BranchOperations x2

MIN Cycles = MAX

The rule holds when one, and possibly two of the terms are close to the max-
imum. As more terms get larger, the likelihood of approaching the minimum
number of cycles decreases.

In order to approach the minimum above, all of the classes of operations must be
interleaved as much as possible. In the worst case, the equation can become:

Cycles = Memory References + FloatingPointOperations + (MFM) + (BranchOpgrau’ons x2)

Viking hardware tends to locally compensate for minor scheduling variations. As
an example, the sequence

r 2
ldd ([%10],%qgl

!=--- Break (only one memory reference)

1dd [%11], %g4

add %gl,0x100, %g3

!{--- Break

. J

executes in the same number of cycles as the following sequence:

-
1dd (%10],%qgl W

!--- Break (dependent Ld-Use)

add %gl1,0x100, %g3

ldd [%11], %g4

o J

This is a trivial example, but it demonstrates the Self-Aligning nature of execu-
tion on Viking. The pipeline tends to align itself based on the positions of the
critical operations in the code (the memory references, FPOP'’s, and branches).
Local variations rarely affect performance.

Again, the important consideration is that the critical operations do not become

additive, but rather are interieaved to increase parallel operation. Along these B
lines, most codes have many optimal schedules. o
sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

microsysterrs



Chapter 3 — Code Generation Principles 35

3.3.1. Reduce Branches

3.3.2. Allocate delay
instructions carefully

33.3. Reduce floating point
register dependencies

In the equation above, each branch increases the execution time of a sequence by
about two cycles. Thus, it is far more significant to remove a branch than to
remove a memory reference.

Code should be unrolled wherever possible. This is a performance boost on all
machines, and especially on Viking. The addition of as many as four other
instructions is generally better than a single branch. Where possible, arithmetic
logic, rather than sequences of branches will offer improved performance.

Viking will benefit from unrolling all types of code, not just floating point.

Since the delay instruction of a taken branch is forced to be a single instruction
group, it is very important to make the best use of that instruction. For example,
in the unrolled LINPACK case, optimal performance cannot be achieved unless a
memory reference is placed in the delay instruction.

The guideline, is to make certain that the delay instruction is used to execute one
of the critical performance limiting operations in the code.

Reorganizing code to properly fill the delay instruction may require adding
instructions to the code. This is a tradeoff that must be made carefully. Even
though adding instructions can increase Viking’s performance, it is guaranteed to
decrease performance on any non-superscalar machine. In addition, it does
expand the code space. One alternative is to use Software Pipelining which often
allows the same performance levels without increasing the number of instruc-
tions. This is accomplished by spreading the execution of each loop iteration
over several actual trips through the code. The resulting code in the loop would
execute the final operations of the previows loop, the core of the current loop, and
the prologue of the next loop.

Annulled Branches should not be used unless there is no altemative. An annulled
branch saves only the code space used for the delay instruction. The cycle in
which the annulled branch would have been executed is still required.

This can be a very significant performance limiter in some benchmarks. No
floating point register can be modified until all pending operations in the floating
point queue which either produce or simply wuse that register have completed.
This is often violated in an attempt to reduce temporary FP register usage. It may,
in fact, increase Viking performance to use more loads and stores to move float-
ing point data back and forth between memory and registers, than to overuse a
single register and introduce dependencies.

This is true of arithmetic operations, as well as loads and stores. The Floating
Point Unit has a fairly long execution pipeline. Performance suffers when there
are frequent FP data dependencies.

These guidelines do not apply to integer operations. Integer register dependencies
are handled much more effectively. The following two code fragments show
good and bad examples of FP register dependencies:

sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



36  TMS390Z50 — Viking User Documentation

33.4. More floating point
code examples

3.3.4.1 FP code example:
Throughput

f Bad Example )
1ld [$i0]),%f1
!--- Break (Only one memory reference)
1d [%i0 + 4),%£2

fmuls $£0,%£f1,%£0
!--- Break (Only one memory reference)

1d [$10 + 8], %f1
fadds $£0,%f1,%£2
!--- Break
!=-—- PIPELINE STALL FOR 4 CYCLES'!
\. J

Note that the last load operation reuses register %f1. This prevents the load
operation from being executed until after the FMULS has completed. Also the
FADDS uses %f0 as source operand, and can only start execution when FMULS has
produced a result for %f0. A much better schedule is:

f Good Example )
1d [%i0]),%f1
!~-- Break (Only one memory reference)
ld [$i0 + 4],%£f2

fmuls $£0,%£1,%€0
!--- Break (Only one memory reference)

1d [$i0 + B8], %£3
fadds  %£3,%f1,%f2
! --- Break '
\ J

By changing the register used in the last load and add operations, the four pipe-
line bubbles are removed completely. Of course, there are other optimizations
that might be applied to this code, namely, using a load double to replace the first
two memory references. Such optimizations can sometimes violate high-level
language execution rules if not done carefully. In the example above, a load dou-
ble would only be valid when targeted to an even-odd register pair, not odd-even

pair.

The following section provide examples of floating point codes that illustrate the
many Viking FPU operation details. Each example is preceded by a brief explana-
tion about the significant details.

The following example shows how to take full advantage of FPOP latency (for
example 3 cycle latency of fadds), and execute each FPOP without any pipeline
stall. This arrangement achieves the highest throughput.

sun Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990



Chapter 3 — Code Generation Principles 37

fadds $£0,%£1,%£20
!~-- Break ---=-----
fadds $£2,%£3,%£21
!~-- Break =-=--=-=---
fadds $£4,%£5,%£22
!--- Break ==-==-----
fadds $£6,%£7,%£23
st  %£20,[%11)

!--- Break =---==----
fadds $£8,%£9,%£24

_ J
3.3.4.2 FP code example: One The following example is similar to the previous code (section 3.3.4.1 — FP code
Stall example: Throughput ), except that the ST is attempted a cycle earlier. Because

of the 3 cycle required latency of fadds, a bubble will be inserted to stall the
pipeline before the ST can be completed. Viking's grouping logic places "fadds
%f4,%£5,%f22" together with ST in the same group, (this is done prior to the FPU
detecting any dependency), hence when ST is stalled, the group is as well. Since
the pipeline will stall in either case, there is no performance difference.

( N\
- ‘ fadds  £0,%fl,%£21
[ ' !=-- Break --=--=—=---
fadds = %f2,%£3,%£22
!~-- Break -=-===-==--
fadds $£4,%£5,%£23 (issued)
st $£21, [%11] (issued)
(bubble)
!~=~ Break -=-=-====--
fadds $£4,%£5,%£23 (completed)
st $£21, [%11] (completed)
!--- Break ---------
\_ J
3.3.4.3 Fp code example: The following example demonstrates the latency of an fcmp-fbfcc pair. An fcmp
fcmp/fbfce latency requires 3 cycles before the fcc (condition codes) are resolved for an fbfcc use.
Arranging the code as given in this example allows each cycle to complete
without any pipeline stall.
“g’bsilﬂL!l Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



38  TMS390ZS50 — Viking User Documentation

3.3.4.4 FP code example:
fcmp/fbfce Stall

3.3.4.5 FP code example: freg
dependency +out -> ST

[ )
! ==~ Break =-==—-===---

fcmps $£6,%£7

!~~~ Break =--=-------
fadds $£0,%£1,%£21
!~~~ Break ===-==----
fadds $£2,%£3,%£22
!--- Break =--===-=---
fadds $f4,%£5,%£23
!--- Break ----==----
fbne tl

!--- Break —------—--
\ i J

The FPU detects if there is a pending fcmp, and stalls the pipeline if it encounters
an FPOP that may need fcmp’s resolution. In the following example, an fbfcc is
issued immediately after an fcmp. Viking issues the fcmps, but then stalls the
pipeline for 3 cycles until the fcmp has completed, before executing the fbne.

-
!{--- Break
fcmps

(bubble)
{=--= Break
(bubble)

!--~ Break
(bubble)

!--- Break
femps
{—-=- Break
fbne tl
!--- Break

$£6,%£7

- - - - - -

¥£6,%£7

- - -

(issued)

(completed)

)

The following example shows how a floating point register dependency with a ST
may stall the pipeline. The code issues fadds and ST, Viking groups them

together and tries to execute. Because of the 3 cycle latency of fadds to compute
results, the pipeline is stalled for 3 cycles before those instructions can complete.

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

A



Chapter 3 — Code Generation Principles 39

( )
!{--- Break =—=====-=--
fadds $£0,%f1,%£21 (issued)
st $£21, [$11) (issued)
cmp %i7,2 (issued)
(bubble)
{~== Break =-—--—-=-===--
{bubble)
|--~ Break —--—-=—--=---
(bubble)
!--- Break ----—-----
fadds $£0,%f1,%£21 (completed)
st $£21, [$11) (completed)
cmp $i7,2 (completed)
!~-- Break =——==—==—-
- J

Note that a floating point exception from fadds will be reported to the ST in the
above example. fp_exception is a deferred trap and is always reported to the next
FPOP or FPEV (Idf or stf).

3.3.4.6 FP code example: freg The following example shows how a floating point register dependency before a
dependency +in -> LD may stall the pipe. The code issues fadds and LD, Viking groups them
LDin together and tries to execute. The LD can not complete before the fadds com-
™ pletes, and the fadds takes 3 cycles to complete, hence the pipeline is stalled for
— . that period. This is required to avoid destroying the source registers for current

FPOPs.
( h
=== Break --—=====-- )
fadds $£0,%£1,%£21 (issued)
1d [$11]),%£21 (issued)
cmp $i7,2 (issued)
(bubble)
!--- Break ----=----
(bubble)
{--= Break ==—======-
(bubble)
===~ Break =-=======-
fadds $£0,%£1,%£21 (completed)
1d [%11],%£21 (completed)
cmp $i7,2 (completed)
{--- Break =--—-—-----
\ . J

Note that a floating point exception from fadds will be reported to the LD in the
above example.

@ sun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990



40  TMS390Z50 — Viking User Documentation

3.3.4.7 FP code example: freg
dependency +out -> +in

3.3.4.8 FP code example: freg
dependency - +in ->
+out

3.3.5. Spread address
calculation and
Memory reference

The following example demonstrates how a floating point register dependency
between 2 FPOPs activates the data forwarding, and does not cause the pipeline to
stall. The destination register of FPOP1 is a source register for FPOP2, both FPOP
are able to enter the FPQ immediately, but FPOP2 will not start until FPOP1 reaches
FWB stage. However, FPOP2 does not wait until FPOP1 has written the data into
the register, because FPOP2 receives the data from the forwarding path.

-
!--- Break =--=--==---
fadds $£0,%£f1,%£21
!--- Break =--===--==--
fadds $£21,%£2,%£22
!~~~ Break -----===--

The following example demonstrates that a floating point register dependency
between 2 FPOPs does not cause the pipeline to stall. Both instructions are able to

complete immediately.
( )
!{--- Break =--====-=--
fadds $£0,%£1,%f21
!«=- Break ==-====--
fadds %$£2,%£3,%£0
t-—- Break ---------
. /

In order for Viking to implement single cycle memory references, it is necessary
for the address registers to be stable by the D2 pipeline stage of the memory
reference. This implies that address computation must be completed in the EO
stage of the previous instruction group. A typical example is:

sll %10,0x3,%10
{-=-- Break (ALUOP into Memory reference Address)
1d [%00+%10],%11

Since the result of the shift is needed for the load address calculation, they must
be executed in separate groups. If the shift were not producing data for zhat load,
they could have been grouped together. This example is not particularly bad. In
general, the shift will be grouped with previous instructions, and the load will be
grouped with subsequent operations.

The next case is less common, but can be significant in some codes. This arises
when the address is calculated irt a cascaded instruction group. The results of a
cascade are not available until the end of the E1 execution stage. Since the
memory reference requires data at the end of EO, a wasted pipeline cycle must be
inserted. Example:

Sun Microsysiems Proprietary Revision 2.00 of November 1, 1990

sun
microsysieTs

“_



Chapter 3 — Code Generation Principles 41

33.6. Arithmetic
dependencies

3.3.6.1 Ports to memory

3.3.6.2 Ports to the FPU

3.3.6.3 Integer register write
ports

s1ll %10,0x3,%10

add %10, %00,%10

{--- Break (Cascade into memory reference)
!--- PIPELINE STALL for one cycle

1d [%10],%11

Note that this example is functionally identical to the previous example, (except
for the actual content of %10). However, it requires three cycles to execute rather
than two. In the more general case, a sequence such as this will be used only
when more complex address arithmetic is required.

A third, and quite common case occurs during (for example) linked list traversal.
This happens when the results of one load are xmmedxatcly used as part of the
address of the next load.

1d [%10],%11

!--- Break (load into memory reference)
!-—-~ PIPELINE STALL for one cycle

1d [%11}),%12

The pipeline stall is required for the same reason as the previous example- the
results of a load instruction are not available until the end of the E1 pipeline
stage.

If any of the above cases can be spread apart, by moving other instructions which
can be executed between these dependencies, performance will be increased.

Viking must group instructions according to available hardware resources. Some
of these restrictions are more severe than others. The effect of each of these res-
trictions varies greatly depending on the code being run.

The most basic hardware resource limitations is a single port to memory. This is
what restricts Viking to one load or store per cycle. Similar to this, a single port
to the instruction cache restricts branch performance.

Although Viking has independent floating point adder and multiplier, only one
floating point operation per cycle can be dispatched. A load or store between a
floating point register and memory can be done in the same cycle as a floating
point operation, however.

The most restrictive of these resources are the write ports into the integer register
file; 2 are available. All arithmetic instructions use one of these ports. Load
instructions use one write port, and load double instructions use both write ports.
Note that floating point load operations do not use any integer register write
ports. So, for example, the following code segment (which loads double floating
point registers) executes in two cycles:

sun Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990



42  TMS390Z50 — Viking User Documentation

3.3.6.4 Integer Arithmetic units

3.4. Instruction Grouping
Rules

@

add %10,%11,%12

and %12,%0xff, $13

1dd [%$00+0x100],%£2

!~~~ Break (Three instructions)

add %14, %15,%16

and %16,0xff, %17

1dd [%00+0x108]),%£f4

!~~~ Break (Three instructions)

\. J

While the next example (which is similar, but loads into integer registers), exe-
cutes in four cycles:
e A
add %10, %11,%12
and %12,%0xff, %13
!--- Break (No more write ports)
1dd [%$00+0x100],%i2
!--- Break (No more write ports)
add %14, %15,%16
and %16,0xff, %17
!--- Break (No more write ports)
1dd [%00+0x108),%i4

Viking has two logical integer ALU’s. This is implemented internally with three
separate ALU’s and a shifter, for speed reasons. Each of these can produce one
result each cycle. One of the ALU's can use the output of either the other ALU or
the shifter as its input. '

The number of ALU's cannot limit the machines performance, since no more than
two results can be stored by the register file. However, only a single shifter
exists. This means that a result cannot be cascaded into a shift operation.

Viking forms groups of instructions by examining the available, or candidate
instructions from its instruction queue. A set of rules are applied to decide which
of the instructions will be selected for inclusion in the next group to be executed.

The group size can be limited by the number of instructions available in the
queue. The number of available instructions depends mostly on the number of
branches executed recently, and the instruction cache performance. When a pro-
gram is executed for the first time, most of the instructions will not be present in
the cache, and performance will be dominated by the time taken to fetch instruc-
tions from external memory. '

There are several classes of rules. The most basic classes are break after, and
break before. This determines whether the instruction group will be terminated
before a particular instruction, or after it. These two classes are further broken
down into rules based on the available instructions, rules based on the previous
instruction group, and rules based on exceptions.

Su Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

microsysterrs



Chapter 3 — Code Generation Principles 43

3.4.1. Break After Rules

Table 3-1

3.4.1.1 Break After First Valid
Exception

3.4.1.2 Break After Any
Control Transfer
Instruction

3.4.1.3 Break After Condition
Codes set in Cascade

3.4.1.4 Break After MULSCC
destination not equal to
source of next MULSCC

3.4.1.5 Break After first
instruction after
Annulled Branch

&sun

The following sections will provide a description of all these rules.

The following rules ‘‘Break After’’ an instruction based on relations among the
first three instructions in the queue. These rules will prevent any further instruc-
tions from being included in the current group. The best example of this is a
branch instruction. Instruction groups are always terminated when a branch is
included.

Break After Rules

Break After First Valid Exception

Break After Any Control Transfer Instruction

Break After Condition Codes set in Cascade

Break After MULSCC destination not equal to source of next MULSCC
Break After first instruction after Annulled Branch

Break After first instruction midway through a branch couple

This rule prevents instructions from entering the pipeline after an exception
(instruction access exception) has been signaled. The exception will travel
through the pipeline, and only actually occur when it reaches farther into the

pipeline.

This rule breaks the current group between any branch, and the delay instuction
which follows the branch. Any instructions which are to be grouped along with a
branch must appear before it m the code.

This rule prevents any additional instructions from being accepted after an
instruction cascade in which the second ALU operation sets condition codes. It is
used primarily to simplify implementation. This rule also terminates groups
when two properly formed MULSCC instructions are grouped.

This rule detects poorly formed MULSCC cascades. It prevents multiple MULSCC
instructions from being executed in parallel unless the second uses the result of
the first. This condition will never happen in normal multiply sequences, but is
architecturally legal.

This instruction prevents multiple instructions from executing in the delay group

- of an annulled branch. The instruction in the delay group of an annulled branch

will normally be executed only if the branch is taken. When this occurs, only the
first instruction after the branch is expected to be executed. If the previous branch
is untaken, the instruction in the delay position is not executed at all. Viking will
begin executing this delay instruction, assuming the branch will be taken, and
squash it later if need be. Restricting the grouping to contain only a single
instruction in this position simplifies the implementation.

»

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



44  TMS390Z50 — Viking User Documentation

3.4.1.6 Break After first
instruction midway
through a branch couple

3.4.2. Break Before

Table 3-2

u Sun Mi i Revision 2.00 of November 1, 1990
'{Eab!; I‘ un Microsystems Proprietary evision of Novem

This rule prevents multiple instructions from being executed when a branch cou-
ple is being processed. SPARC allows for a restricted number of branch couple
conditions. To simplify implementation, Viking will only execute single instruc-
tions during branch couples.

The following sequence demonstrates this rule:

ba destl

!{--- Break after CTI
be dest2

!--- Break after CTI
(Never Executed)

destl: add %10,%11,%12
!~--- Break midway through branch couple
add %13,%14,%15

dest2: add %14,%15,%16

4 )

Most rules are ‘‘Break Before®’ rules. They are typically used to break a group
when one of Viking’s limited resources has been completely used. For example
all instruction groups are terminated (a break is generated) before a second
memory reference. ”

There are many grouping rules which are required to handle pipeline hold condi-
tions. These rules will not be listed here.

All the ‘‘Break Before’’ rules are listed below:

Break Before Rules

EN



Chapter 3 — Code Generation Principles 45

3.4.2.1 Break Before Invalid
Instruction

3.4.2.2 Break Before Out of
Integer Register Ports

3.4.2.3 Break Before Second
Memory Reference

3.4.2.4 Break Before Second
Shift

3.4.2.5 Break Before Second
Cascade

3.4.2.6 Break Before Cascade
into Shift

Break Before Invalid Instruction

Break Before Out of Integer Register Read Ports

Break Before Second Memory Reference

Break Before Second Shift

Break Before Second FPOP

Break Before Second Cascade

Break Before Cascade into Shift

Break Before Cascade into IMPL

Break Before Cascade into Memory Reference Address

Break Before Load Data Cascade Use

Break Before Previous Group Cascade into Memory Reference Address
Break Before Sequential Instruction

Break Before Control Register Read after Previous SetCC

Break Before MULSCC unless first one or two instructions

Break Before Extended Arithmetic from CC set in Current Group
Break Before Delay Group CTI unless first

Break Before CTI in JMPL delay unless RETT

Viking uses this rule to wait for instructions from the instruction queue and
instruction cache. Even instruction access exceptions are considered valid
instructions. It is possible for fewer than three instructions to be valid from the
queue. This limits the maximum number that can be executed at a given time.

This rule prevents a group from using too many register file ports. Four operand
read ports and two operand write ports are available. Memory address register
ports are independent, and do not affect this rule.

Viking has only a single port to memory. This rule prevents a group from
attempting to use it twice. This rule does not discriminate between floating point
or integer LD/ST. :

Though Viking has several ALUs, only a single shifter is provided. It must be used
in the first execute stage, so it may not be the second operation in a cascade. The
result is produced early enough that it may be the source of a cascaded operation.
This allows for common operations like shift&add, and shift&compare.

Only one operand may be cascaded into the E1 of the integer pipeline. This rule
prevents using two EO results to form a cascaded operation.

All shift operations must execute in the EO stage. This rule enforces that restric-
tion.

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



46  TMS390Z50 — Viking User Documentation

3.4.2.7 Break Before Cascade
into JMPL

3.4.2.8 Break Before Cascade
into Memory Reference
Address

3.4.2.9 Break Before Load Data
Cascade Use

3.4.2.10 Break Before Previous
Group Cascade into
Memory Reference
Address

3.4.2.11 Break Before
Sequential Instruction

3.4.2.12 Break Before Control
Register Read after
Previous SetCC

@sun

JMPL reads from the register file to calculate the target of its branch. The value is
required before the EQ stage. This requires that the register not be changed in the
group with the JMPL. This rule detects when such a condition exists, and forces a
break before the IMPL.

In order to perform single cycle memory references, the registers forming the
address for a load or store must be available before the D2 stage of the memory
reference. This requires that they be changed no later than the EO stage of the
previous instruction group. This rule, and the Break Before Previous Cascade
into Memory Reference Address rule enforce this restriction.

A full cycle is required to access the on-chip data cache. The data from a load is
available after the E1 stage of the load. Therefore, it may not be used before the
EO stage of the next instruction group. This rule prevents an instruction from
using that data in the group with the load instruction (during EO or E1).

This rule enforces an extension of the Break Before Cascade into Memory Refer-
ence Address rule. It requires that the address registers stabilize by the end of the
previous instruction groups EQ stage.

Viking defines a set of instructions that can only be executed as single instruction
groups. In addition, Viking can be forced to execute all instructions as single
instruction groups through an AslI visible control bit,

The set of instructions which are always single instruction groups is:

SAVE and RESTORE

LDD and STD operations to integer registers

All Alternate Space stores (STA STDA STBA STHA) |
Atomic operations: SWAP and LDSTUB

All control register accesses: Read and Write PSR ASR WIM Y
RETT

FLUSH

All software traps (Ticc)

Integer Multiply: UMUL UMULCC SMUL SMULCC

Integer Divide: UDIV UDIVCC SDIV SDIVCC

Tagged Operations that can trap (TADDCCTV TSUBCCTV)
Load or Store FP status registers (LDFSR STFSR STDFQ)
FBFCC (Branch on floating point condition code)

Integer condition codes are part of the processor status register (PSR). To prevent
them from being read while they are being modified, the processor forces an
extra cycle between RDPSR instructions and a previous arithmetic operation that
may have changed the condition codes.

%

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

N

%



Chapter 3 — Code Generation Principles 47

3.4.2.13 Break Before MULSCC
unless first one or two
instructions

3.4.2.14 Break Before
Extended Arithmetic
from CC set in Current
Group

3.4.2.15 Break Before Delay
Group CTT unless first

3.4.2.16 Break Before CT1in
JMPL delay unless
RETT

Viking executes MULSCC either as a single instruction group, or it executes two
MULSCCs as a group. MULSCC is never grouped with any other instructions.

Viking cannot use condition codes calculated in EO as input to extended precision
arithmetic in the same group. This rule inserts a break between the condition
code computation, and its use in extended arithmetic (ADDX ADDXCC SUBX
SUBXCC).

This rule prevents additional branches, other than true branch couples, from
being executed in the delay group of a branch. This simplifies implementation by
never having to squash the later branch when the previous branch is taken.

This rule allows an optimization of IMPL/RETT pairs, and simplifies the general
case of IMPL couples. A full cycle is required in the pipeline between a IMPL argi
any other CTI, except RETT. :

¢ m Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



[Blank Page]

£y



Viking Programmer’s Model

Viking Programmer’s Model 51
4.1. Viking Processor 51
4.2. CC or MBUS mode 51
4.3. Reset Operation 51

Hardware Reset 52
Watchdog Reset 54
Single Instruction Execution 55
-.Boot Mode 55
Built-In Self Test (BIST) : 55
Intemnal BIST operation S5
BIST coverage 55
Signature 55
Initiating BIST 56
BIST ASI operation 56
Wamings regarding BIST operation 56
4.4, Instructions 57
Integer Multiply (IMUL) 57
Integer Divide (IDIV) 57
Write PSR (WRPSR) 58
Flush (IFLUSH) 58
Store Barrier (STBAR) 59
Signal User Emulation Request (SIGM) 59

4.5. Memory Model 60




4.6. Floating Point Unit

. No FAST (non-standard) Mode

4.7. Instruction Cache

Three models of memory: Strong Ordering, TSO,PSO .....................
Strong Ordering
Total Store Ordering (TSO)
Partial Store Ordering (PSO)

Atomic Operations- SWAPs and LDSTUB
Atomic Operations in CC mode
Atomic Operations in MBUS mode
Altemnate Space Atomics

Load and Store Alternates

Non-Cacheable Loads and Stores

Page Table Memory Operations
Hardware use of page tables

System software use of page tables
Hardware/Software page table consistency
Memory, Exceptions and No-Fault operation
Prefetch Exception Handling

FSR Version and Implementation Fields
Special Numeric Cases
NaN — Integer Conversion
NaN Output Representation .
Rounding Operations and Underflow Detection S
FxTOiR Not supported
Quad Precision
Floating Point Queue
Floating Point Exception Details

FsMULd
Integer Multiply
Integer Divide

Cacheability
Instruction Cache Replacement Policy
Snoop Hits and Lock bits
Instruction Prefetching

2238383

61
61
61
62
62
62
62

- 63

63

65
65
66
66
66

66

66
66
67
67
67
67
68
68
68
69
70
70



Instruction Cache Consistency

Instruction Cache Diagnostics & Controls

Instruction Cache Flash Clear

Instruction Cache Tags

Instruction Cache Data

4.8. Data Cache

cc and MBUS Modes (Write-Through and Copy-Back) ...

Cacheability

Data Cache Replacement Policy

Snoop Hits and Lock bits

Data Cache Consistency

Data Cache Diagnostics and Control

Data Cache Flash Clear

Data Cache Tags

Data Cache Data

4.9. Data Prefetching

4.10. Control Space Access

4.11. Memory Management Unit (MMU)

Address translation

Linear Mapping

Referenced and Modified bits

MMU R&M Updates

TLB Replacement Policy

Other Cached Entries (Root and Level2 PTP2 cache)
Hit Criteria

MMU Probe and Demap/Flush

MMU Probe

Demap/Flush

MMU Transparent Mode

Address Translation Modes

No-Fault Operation

MMU Registers

MMU Control Register (MCNTL)

Context Table Pointer Register (MCTP) and Context
Register (MC)

&

71
71
72
72
73
74
74
75
75
76
76
77
77
78
79
80
80
81
81

87
88
88

SRR ERS8SE8REESE

96

98



4.12.

4.13.

MMU Fault Status Register (MFSR)

Instruction access errors

Data access errors

Store buffer errors

Control Space Errors

Error Mode and Internal Errors

MFSR timing and operation

MFSR Register Description

Fault Address Register (MFAR)

MMU Shadow FSR Register (MSFSR)
MMU TLB (Page Descriptor Cache) direct access

Store Buffer

General Operation

Operation in CC Mode
Operation in MBUS Mode

Non-buffered (Synchronous) Operations

Store Buffer (Data Store) Exceptions

Store Buffer Disabled Operation- strong ordering
Store Buffer Tags

Store Buffer Data

Store Buffer Control

Traps

Exceptions and Program Counters

Error Mode

Fault Status Updates

Trap Details

Reset Trap

Data Store Error Trap

Instruction Access Exception Trap

Privileged Instruction Trap

Illegal Instruction Trap

Floating Point Disabled Trap

Coprocessor Disabled Trap

Window Overflow Trap

Window Underflow Trap

99

99
100
100
100
100
101
102
105
106
106
109
109
110
110
110
110
111
111
112
113
113
114
114
115
115
116
117
117
117
117
117
117
118
118



Memory Address Not Aligned Trap 118

Floating Point Exception Trap ..... 118
Data Access Exception Trap 118
Tagged Operation Overflow Trap 118
Integer Divide by Zero Trap 119
Trap Instructions (TICC) 119
Interrupts 119
Unsupported Trap Types 120
4.14. Software Debugging Facilities 120
Priorities of Debug Interrupt and Exception 120
Address Breakpoints - Code (Instruction) orData ......................... 121
Counter Breakpoints - Code (Instruction) or Cycle ... 121
Access to Debug Features 124
MMU Breakpoint control registers 124
Breakpoint Value Reg 125
Breakpoint Mask Reg 125
Breakpoint Control Register 126
Breakpoint Status Reg 127
Counter Breakpoint Value (CTRV) 127
Counter Breakpoint Control (CTRC) : 128
Counter Breakpoint Status (CTRS) } 128
Breakpoint ACTION Register - 129
External Monitors 130
PIPE[9:0] definition 130
4.15. JTAG and Emulation 131
Emulation Temporary Registers (MTMP[1-2]) 131
Emulation JTAG Data Input Register (MDIN) 132
Emulation JTAG Data Output Register (MDOUT) 132
Emulation Program Counters 132

4.16. ASI Map 133




[Blank Page]



C

4.1.. Viking Processor

4.2. CC or MBUS mode

4.3. Reset Operation

Viking Programmer’s Model

This chapter describes the Viking programming model. It explains the Viking
processor from a programmer’s point of view by discussing the processor’s com-
ponents, reset modes and how it affects Viking, ITAG, In-Circuit Emulation,
Diagnostics and BIST (Built In Self Test). The processor components included in
the descriptions are the two caches (instruction and data), the memory manage-
ment unit (MMU), the store buffer, and the Floating Point Unit. Every control
register involved in the operation of Viking is explained in the respective sec-
tions, along with comprehensive AsI descriptions which detail register bits and
fields. The same ASI Map also formally defines all of the ASIs that Viking sup-

ports.

Viking is a highly-integrated, super-scalar (multiple instructions per cycle) SPARC
processor for use in single- and multi- processor systems. It features physical
instruction and data caches, a Memory Management Unit (MMU), a Store Buffer,
and a Floating Point Unit (FPU), all on chip. Accesses to these and other com-
ponents within the chip are available through the use of ASI references, generally
used for control and diagnostic purposes. See the SPARC Architecture Manual for
more on ASIs.

Viking can operate in either of the two modes, CC or MBUS. In CC mode, Viking
assumes the existence of an external cache, and a cache controller (such as the
Mxcc, for example). In MBUS mode, Viking makes no such assumption, and con-
forms to level-2 MBUS protocol. The differences of the two modes in terms of
Viking operation will be compared and explained throughout this document.

Viking implements three forms of reset. Hardware reset, sometimes called
power-up reset is initiated external to the processor by asserting the RESET_ sig-
nal. There is no direct mechanism within Viking to assert hardware reset. This
function is typically implemented within the system logic. It is also possible to
cause a hardware reset in emulation mode.

Built in self test (BIST) generates a second type of reset, which is nearly identical
to the hardware reset. BIST operations can be requested either by software (with a
STA), or via the JTAG interface. When BIST is initiated through software using
STA, an internal reset is automatically generated. When BIST is initiated by JTAG.
however, the user needs to generate the reset. This can be done by entering the

@SUD Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



52 TMS390Z50 — Viking User Documentation

4.3.1. Hardware Reset

TAP reset state by either assertion of TMS for 5 consecutive TCK cycles or assert-
ing TRST_.

In addition to the hardware reset there is an internally-generated reset referred to
as a Watchdog Reset. This reset is caused by entry into error mode as described
in the SPARC Architecture Manual.

Several actions are taken following a hardware reset. A detailed description of
timing requirements on the reset signal is presented in section 10.2.2.6, in the
System Interface chapter. Once the reset has been requested, Viking spends
several hundred cycles initializing internal logic. In particular, during this time
the cache column redundancy repair circuits are configured. All chip outputs are
held inactive, or tri-stated during this time.

@Slll‘l Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

£



Chapter 4 — Viking Programmer's Model 53

The following table show what actions are taken by hardware reset.

State after hardware reset
Register/Bit Affected States After Reset
Floating Point Queue Invalidated
Boot Mode (MCNTLBT) 1 (indicating boot mode)
MMU Enable (MCNTL.EN) 0 (MMU disabled)
No Fault (MCNTL.NF) 0 (Faults enabled)
Data Cache Enable (MCNTL.DE) 0 (Data cache disabled)
Instruction Cache Enable (MCNTLIE) 0 (Instruction Cache disabled)
Store Buffer Enable (MCNTL.SB) 0 (Buffer Disabled)
MBUS/CC Mode (MCNTL.MB) 1/0, Depends on CCRDY_ pin
Parity Enable (MCNTL.PE) 0 (Even Parity Disabled)
Snoop Enable (MCNTL.SE) 0 (Snooping Disabled)
Partial Store Ordering (MCNTL.PSO) 0 (Tso/Strong Ordering)
Data Prefetcher (MCNTL.PF) 0 (Prefetcher Disabled)
Alternate Cacheable (MCNTL.AC) 0 (non-cacheable)
Table Walk Cacheable (MCNTL.TC) 0 (Non-cacheable)
Error Mode (MFSR.EM) 0 (Not an error mode, or watchdog reset)
TLB Lock Bits 0 (all TLB lock bits cleared)
Multiple Instruction Mode ACTIONMIX | O (Single Instruction Execution)
Breakpoints (MDIAG) 0 (All breakpoints disabled)
Program Counter 0 (pC = 0x0, NPC = 0x4)
BIST Status (BIST.STATUS-LONG) 0 (No BIST since reset)
Store Buffer Tags - Valid bits cleared
Store Buffer Control Pointers set to zero
Store Buffer Contents Uninitialized
Data Cache Contents Uninitialized
Instruction Cache Contents Uninitialized
Register File Contents Uninitialized
Processor Status Register (PSR) s=1, ET=0, EC=0, Ver=4, Impl=0
PSR.CWP Uninitialized
WIM (Window Invalid Mask) Uninitialized
MFSR Uninitialized (except for MFSR.EM bit)
MSFSR (Shadow FSR) Uninitialized
Emulation Facilities Disabled

All values shown as uninitialized are just that, not set to any guaranteed state
after hardware reset. They must be initialized before use.

Sun Microsystems Proprietary

Revision 2.00 of November 1, 1990




54  TMS390Z50 — Viking User Documentation

43.2. Watchdog Reset

r =
Important Note:
In order for Viking to properly reset, care must be taken in the system imple-
mentation. In particular, JTAG operation may affect Viking’s ability to reset
(the JTAG TAP controller should be in the reset state when hardware reset is
asserted).

The intemal phase locked loop (PLL) may take a long period of time to sta-
bilize at power on (approximately 100 miliseconds). This time must be
accounted for in the assertion of an external reset. Unpredictable operation
occurs if reset is deasserted before the PLL has locked.

\ J

After the above state has been set, Viking initializes all internal state, and take a
reset trap. This forces execution to begin at virtual address 0x0. Since boot mode
is set, physical address 0xff00000Q is used to fetch instructions from memory.
System software may distinguish hardware reset from watch dog reset by the
MFSR.EM (Error Mode) bit being cleared. Since the ACTION.MIX (multiple instruc-
tion execution) bit is cleared, Viking's superscalar execution is disabled, and a
maximum of one instruction may be executed in each cycle.

None of the entries in the Store buffer, data cache, Instruction cache, or TLB
(except lock bits) change. Software is responsible for initializing each resource
before enabling them.

Important Note:
System software is expected to examine the state of the BIST.STATUS register
after any reset to detenmine whether the reset trap occurred as a result of a
built in self test operation.

In addition to the hardware reset there is an internally-generated reset referred to
as a watchdog reset. This reset is caused by entry into error mode as described in
the SPARC Architecture Manual.

To allow recovery from many error mode conditions, as little state as possible is

-affected by watchdog reset. The only memory bit affected by a watchdog reset is

the MCNTL.BT (boot mode) bit. The MFSR.EM (Error Mode) bit is set to indicate
that this is a watchdog reset, as opposed to a hardware reset. Since the cache
redundancy logic has already been programmed (during hardware reset), it is not
done again. Breakpoints are cleared at watchdog reset.

In cC mode, Viking issues an error mode bus cycle causing the cache controller
(or external system logic) to record the occurence of error mode. The completion
of this bus cycle causes watchdog reset.

Once the above actions have been completed, a reset trap will be generated.

sun Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 55

43.3. Single Instruction
Execution

4.3.4. Boot Mode

43.5. Built-In Self Test (BIST)

4.3.5.1 Internal BIST operation

4.3.5.2 BIST coverage

4.3.5.3 Signature

At power-on reset, Viking will execute in single instruction execution mode.
Multiple instruction per cycle execution is enabled by setting the ACTION.MIX bit.
(See section 4.14.4.5 — Breakpoint ACTION Register ).

For a detailed description of boot mode, see section 4.11.11.1.

Boot mode is a special MMU bypass mode, where all instruction accesses (and
alternate spaces references through ASIs 0x08 and 0x09) pass their virtual address
in physical address bits 27 through 0, and the upper eight physical address bits
(35 through 28) are set to Oxff.

Boot mode is entered after any reset (either hardware or watchdog). It may be
disabled by clearing the MCNTLBT bit explicitly. Note that boot mode overrides
the MMU enable for instruction accesses. Boot mode does not affect data refer-
ences.

During boot mode, the MCNTL.AC bit is ignored for instruction references and
alternate space transactions through instruction space ASIs (0x08,0x09), making
these accesses to instruction space non-cacheable when BT=1. However, the AC
bit is still used for data references in this mode.

Viking has included Built-In Self Test (BIST) logic on chip. There are two types
of BIST, short and long versions. BIST is a quick check for device integrity, it is
not an exhaustive proof that the device is 100% comrect. Many types of device
faults will be detected by an incorrect signature value after a BIST. The long BIST
operation is a more exhaustive check of the logic than the short BIST. This sec-
tion describes how BIST operates, how to initiate BIST, how to use the results, and
warnings regarding BIST operation.

BIST uses intemnal logic scan paths to write in pseudo-random test pattems into
the chip logic (intemal states). One cycle of execution is then run, to let the
states assume their next states, then state of the logic is captured through the scan
path into a signature analyzer. The signature analyzer creates a signature value
based on the results from the logic and stores this value in the BISTSIGNATURE

register.

The BIST sequence checks all normally scannable logic, but does not check most
intemal memories. The TLB, store buffer, prefetch buffers, cache arrays, and
register files are not checked by BIST.

The correct signature value is known but is device stepping dependent. Correct
signature values for the device will be published. (Not yet known for this revi-
sion of the documentation).

Different signature values are generated for the long and short BIST operations.

»

Sll n Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



56  TMS390Z50 — Viking User Documentation

4.3.5.4 Initiating BIST

4.3.5.5 BIST ASI operation

To initiate BIST a STA to ASI 0x39 is issued. A ‘‘longBIST’’ is selected by writing
to virtual address 0x100, while a store to address O selects a ‘‘short BIST'". An
ASI 0x39 access to any address other than 0x100 or Ox0 will generate a
data_access_exception.

Internal logic controls the BIST operation once requested. An external reset
aborts the BIST operation. When the sequence completes, an internal reset is gen-
erated (see the hardware reset description above).

BIST may also be initiated through the JTAG interface. For details on JTAG ini-
tiated BIST, see chapter S — JTAG Serial Scan Interface

ASI=0x39 - BIST Diagnostics.

There are 2 memory mapped, Viking -specific, MMU resident diagnostic registers
used to support built-in self test (BIST). Any Byte, Halfword and Doubleword or
Swap access into any of these diagnostic registers are explicitly illegal and will
generate a data_access_exception. LDA/STA single only is allowed.

Table 4-2  BIST Diagnostic Registers within ASI 0x39
Address Load/Store | _DataFormat Description
0x00000000 | Store Don’t Care (should be zero) Start Short BIST
0x00000100 | Store Don’t Care (should be zero) Start Long BIST
0x00000000 | Load Signature[31:0] Read 31-bit signature
0x00000100 | Load Status{31:0] (see value below) | Read 2-bit BIST Status
The possible values of the status register are:
Table 4-3  BIST status register values

4.3.5.6 Wamings regarding
BIST operation

@sun

Short BIST run

0x00000002 Long BIST run

Hardware reset PIN will clear BIST.STATUS. These bits are not affected by watch-
dog reset.

After BIST finishes, Viking generates an internal reset. This internal reset behaves
similar to the hardware reset. One of the consequences of this reset is that
MCNTL gets initialized - in particular the MCNTL.PE bit gets reset so that Viking
starts generating inverted parity on the pins. This internally generated reset is not
seen by a cache controller such as the MXCC, so if the parity was enabled in the
MXCC before starting BIST - it is still enabled in the MXCC after BIST. This results
in a mismatch between what Viking and MXCC do and expect on writes. Software
should check the MXCC.PE bit after BIST has completed and adjust the Viking’s
MCNTL.PE bit before attempting any writes. To be safe - the following algorithm

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

8



Chapter 4 — Viking Programmer's Model 57

[

4.4. Instructions

4.4.1. Integer Multiply (IMUL)

4.4.2. Integer Divide (IDIV)

could be used:

(Before starting BIST)

Flush the store buffer (even though STA 0x39 does it too)

Check the MXCC status register and wait until nothing is pending
Start BIST

(After BIST finishes)

Read BIST status

Read BIST signature

Read MXCC control register

Set Viking’s MCNTL.PE bit if MXCC.PE bit is set
Continue

Even though the MXCC was mentioned as an example, any other system com-
ponent could have a similar problem since they do not see Viking’s intermnally
generated reset. Thus care has to be taken in recovering the system after BIST
finishes.

This section describes Viking instruction operation for those instructions which
require a more detailed description than is already provided in the SPARC Archi-
tecture Manual. The instructions described here include:

Instructions
IMUL

IDIV
WRPSR
FLUSH
STBAR
SIGM

Viking implements integer multiply in all its forms conforming to the SPARC
architecture specification. It is mentioned here only because the instruction is
new to the Version 8 SPARC architecture.

Integer multiply is implemented in the floating point unit of the processor. Nor-
mally, these operations will wait until the completion of any pending floating
point operations before execution (indicated by FP Queue empty). If the FPU is in
exception mode, integer multiply operations will proceed without waiting for the
floating point queue to empty. Integer multiply will not cause any deferred float-
ing point exceptions to be signalled.

For most numeric conditions, integer divide works exactly to the SPARC architec-
ture specification. Due to limitations in the hardware, there are certain numeric
cases that cannot be completed. In these cases, Viking will signal an
illegal_instruction trap (trap type 0x02). The case where this occurs is when the
64-bit value comprised of {Y,rs1} has numerically significant bits beyond bit 51.

'S"!l n Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



58  TMS390Z50 — Viking User Documentation

4.4.3. Write PSR (WRPSR)

4.4.4. Flush (IFLUSH)

In effect, Viking only implements a 52-bit by 32-bit integer divide, compared to
the 64-bit by 32-bit specification. This holds true for both positive and negative
numbers when the operations is a signed divide.

System software is expected to emulate these integer divide operations when
required.

Integer divide is implemented in the floating point unit of the processor. Nor-
mally, these operations will wait until the completion of any pending floating
point operations before execution. If the FPU is in exception mode, integer divide
operations will proceed without waiting for the floating point queue to empty.
Integer divide will not cause any deferred floating point exceptions to be sig-
nalled.

Viking implements the write PSR instruction according to the SPARC architecture
manual, with one qualification. Since no coprocessor port is provided on Viking,
system software is prevented from trying to enable coprocessor operations.

If a WRPSR instruction attempts to set the PSR.EC bit, an illegal_instruction trap
will be generated immediately. Since the EC bit can never be set, all coprocessor
instructions will generate cp_disabled traps (trap type 0x24).

The timing requirements of PSR write operations match the SPARC Architecture
Manual exactly. A three instruction (not cycle) delay is required between chang-
ing any PSR fields, and using the contents. Note also that when a IMPL/RETT
instruction pair is seen, Viking will use the PSR.PS (previous supervisor) bit to
check protections for the instruction fetch of the JMPL's target.

The PSRIMPL (mplememauon number) field of the PSR is always set to 0x4 The
PSR.VER (version number) field is set to 0x0.

Viking implements FLUSH slightly differently than the SPARC Architecture
Manual suggests. No cached information is explicitly flushed by the instruction.
The cache consistency mechanisms are used to ensure that caches always have
correct data (both instruction and data caches). The FLUSH operations simply
causes an exact synchronization of all pending activity.

When a FLUSH instruction is executed, it will cause Viking's store buffer to be
drained. This causes all pending bus activity to complete. Any cache coherency
transactions (for instance invalidation of instruction cache entries) will occur as
the store buffer clears. The internal processor pipeline and instruction buffer will
also be cleared. When the pipeline resumes execution after the FLUSH, it will
fetch data from the instruction cache which is guaranteed to be up to date with
respect to all prior processor activity. :

See also section 4.7.5 — Instruction Cache Consistency for further discussion of
FLUSH instruction implementation.

»

sun Sun Microsysiems Proprictary ~ Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 59

4.4.5. Store Barrier (STBAR)

4.4.6. Signal User Emulation
Request (SIGM)

'd N\
Important Note:
The FLUSH instruction affects only a single processor. No other processors
in a system will do a flush operation unless explicitly requested to do so (by
their own FLUSH).

This is not of concern to most applications, but is significant to certain

operations, such as dynamic linkers. These programs must be written care-

fully to ensure that all processors see a consistent view of program memory

under all circumstances. This may require modifying memory in a certain

order, and/or writing intermediate values to guard against temporary incon-
t sistencies. Note that cache coherence is maintained on double words.

The STBAR instruction forces store operations to be performed in order while in
PSO (partial store ordering) mode. Viking implements this functionality as
described in the SPARC Architecture Manual.

The instruction is implemented in the ‘‘RDASR’’ reserved instruction space. The
opcode is equivalent to RDASR 0x0f, %g0, the exact encoding is 0x8143c000.

The STBAR instruction sets the SBTAGS.SP in the last allocated (valid) entry. If no
entry is allocated, the STBAR instruction is remembered in the bus unit arbitration
logic. When the bit is set, the bus unit waits for the PEND_ input to go inactive
before issuing any stores after the one with the bit set. Without the STBAR, the
SBTAGS.SP bit will not get set, and the b_unit continues issuing stores as fast as
the external cache controller can buffer them. This would allow stores to be per-
formed out of order in the sytem.

All this happens only'in PSO mode. InTSO mode, the bus unit waits for PEND_ at
all times.

See section 4.5.1.3 — Partial Store Ordering (PS0O) for more details.

Viking implements a special, Viking-specific instruction called SIGM (Signal
Emulation), that is used in conjunction with the on chip JTAG based emulation
facilities provided by Viking.

The instruction is implemented in the ‘‘RDASR’’ implementation dependent
extended opcode space defined by the SPARC architecture. The opcode is
equivalent to RDASR Ox1f, %g0, which encodes to 0x8147c000.

The operation of this instruction is dependent on the state of the JTAG controlled
MCMD register. If the MCMDINITM bit is cleared, the SIGM instruction will be exe-
cuted as aNOP. If the MCMD.INITM bit is set, execution of SIGM will cause
immediate entry into emulation mode (See chapter 6 — Remote Emulation Sup-
port ) for details).

The MCMD.INITM is always-initialized to zero at JTAG Tap controller reset. In
order for the SIGM instruction to cause entry into emulation mode, the bit must be
explicitly set by a remote emulation processor using the JTAG. It is not possible to
set the MCMDINITM bit using the processor alone.

qun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



60  TMS390Z50 — Viking User Documentation

4.5. Memory Model

4.5.1. Three models of
memory: Strong
Ordering, TSO, PSO

4.5.1.1 Strong Ordering

4.5.1.2 Total Store Ordering
(TsO)

4.5.1.3 Partial Store Ordering
(PSO)

This section will describe the programmers view of memory in a Viking based
system. The exact view of memory is highly dependent on system implementa-
tion, some of the details below may not apply to certain system environments.

The SPARC Architecture defines three views of memory; the differences between
these models are described in detail in the SPARC Architecture Manual.

Viking allows the use of any of the three models at any time. Each of these
models places different requirements on the system as well. Certain systems
may be capable of implementing some or all of the models.

Strong ordering allows for maximum software compatibility, but can decrease
performance and increase system complexity. In this model of memory, all tran-
sactions are seen in the exact order that they were issued by all processors,
caches, and memories in the system. It allows for a very simple programmers
model.

If the system allows, Viking can implement strong ordering by disabling the
internal store buffer (MCNTL.SB bit). This will cause decreased performance in
most system environments, particularly when using CC mode, since all store
operations write through to external caches.

Total store ordering is similar to strong ordering, except that only the order of

store operations is guaranteed to be exact across the system. This memory model -
allows most multi-threaded applications to operate consistently with good perfor-
mance.

TSO mode is the nominal memory model of Viking based systems. For TSO mede,
the store buffer must be enabled (MCNTL.SB=1), and the MCNTL.PSO (partial store
ordering) bit must be zero.

Partial store ordering is the highest performing of the memory models. It elim-
inates most implicit ordering requirements and expects software to explicitly
enforce ordering when needed. This model requires the most careful use of
memory by applications.

This explicit ordering may be requested by use of the STBAR instruction. The
STBAR instruction will guarantee the order of store operations before and after the
STBAR instruction only. To achieve the equivalent of the TSO model, an STBAR
might need to be inserted prior to every store operation.

PSO is enabled by setting both the MCNTL.PSO and MCNTL.SB bits to one. Viking
implements PSO mode in cooperation with external cache and memory controll-
ers. The PEND_ signal is sampled in order to determine the completion of store
transactions.

sun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer's Model 61

[

4.5.2. Atomic Operations-
SWAPs and LDSTUB

4.5.2.1 Atomic Operations in
CC mode

4.5.2.2 Atomic Operations in
MBUS mode

4.5.2.3 Altemnate Space
Atomics

SWAP and LDSTUB instructions are used to implement semaphores and other
atomic operations in memory. In both uniprocessor and multiprocessor (MP) sys-
tems, it is important to maintain synchronization between processes which share
common memory.

Atomic operations force the store buffer to copy out before starting.

If an exception occurs during the store buffer copy-out caused by an atomic
operation, the operation is not completed. A data_store_error is taken, which dis-
ables the store buffer at once. The atomic operation may be restarted when the
CPU retumns from the store buffer exception handler (see section 4.12.5 — Srore
Buffer (Data Store) Exceptions ).

If the atomic operation itself encounters an exception on either the write or read
access, a data_access_exception will be reported. Viking guarantees that the des-
tination register will not be updated. The system is responsible for insuring that
the destination memory location is not modified (as in any store exception).

Atomic operations have traditionally been implemented as a locked sequence of
loads and stores (Read-Modify-Write). In order to support higher performance
packet-switched buses, Viking implements a true swap operation, whereby it sup-
plies the new data to be written along with the request for the current memory
data. This is done to ensure that Viking receives the current value of the ‘‘old"’
data. The system or external cache logic must be capable of accepting this tran-
saction. This is made possible by the definition of SPARCs atonuc operators- the
data to be written is independent of what is read. .

Since MBUS mode operates with a copy-back, write allocate cache protocol, the
operation of atomic transactions is simpler than in CC mode.

For cacheable references in MBUS mode, no special bus operations are done for
atomic transactions. They are implemented as a simple sequence of reads and
writes. Viking will read, and acquire ownership of the data being referenced, and
all operations will occur within the internal cache. (If the data is shared, acquir-
ing ownership implies issuing a CI as necessary).

Non-cacheable references in MBUS mode operate more traditionally. They will
appear on the bus as a locked read-write sequence. The LOCK bit within the MBUS
address field will be set, and bus arbitration will not be released between the read
and write.

The SWAPA/LDSTUBA are similar to the SWAP/LDSTUB operations, with some res-
trictions. Swap Alternates to ASI locations other than 0x08-0x0b, and 0x20-0x2f
will cause data_access_exceptions. Altemnate atomic operations to ASIs 0x08-
0x0b, and 0x20-0x2f are handled like ordinary atomic operations.

sun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990



62  TMS390Z50 — Viking User Documentation

4.5.3. Load and Store
Alternates

4.5.4. Non-Cacheable Loads
and Stores

45.5. Page Table Memory
Operations

4.5.5.1 Hardware use of page
tables

Loads and stores to altemnate address spaces are generally performed for low
level control of Viking, and the external system. A summary list of valid ASIs
can be found in section 4.16 — AS/ Map

All AsI operations are performed synchronously. Before starting execution of
any Asl operation, the store buffer is flushed (except for AsI 0x20-0x2F, Oxa-Oxb,
which are asynchronous and do not cause a store buffer copyout). This action
ensures that the processor state is consistent before the access begins. As an
example, context register writes cause the store buffer to copyout preventing the
store buffer from containing operations that ‘‘belong’’ to contexts other than the
current one. This allows data_store_exceptions to be associated with the faulting
process more easily.

If an exception occurs during the store buffer copy-out caused by an LDA/STA, the
operation is not completed. A data_store_exception is taken, which disable the
store buffer at once. The STA operation may be restarted when the CPU returns
from the store buffer trap handler.

Altemate space transactions through AsIs 0x8-0xb are treated as normal load and
store operations. They are translated by the MMU according to the definition of
the ASIs in the SPARC architecture manual.

Transactions through the pass-through ASI space (0x20-0x2f) are treated as nor-
mal loads and stores, except that they are not translated by the MMU. For these
operations, cacheability is determined by the MCNTL.AC (altemnate cacheable) bit.

The cacheability of memory references is determined as described in the instruc-

_ tion cache, data cache, and MMU sections of this manual.

Non-cacheable loads cause the contents of the Store Buffer to be copied out to
memory before proceeding. This is done to ensure proper memory ordering of
accesses to I/O space.

If an exception occurs on the store buffer copy-out caused by a non-cacheable
load, the load operation is nor completed. A data_store_exception is taken,
which disables the store buffer at once. The load operation may be restarted
when the CPU retumns from the store buffer exception handler.

Unlike loads, noncacheable stores do not normally force the Store Buffer to
copyout. They are simply placed in the store buffer, like cacheable stores.

As described above, normal system software access to the in-memory MMU page
tables must be done carefully. Conflicts may exist between software and
hardware use of these tables.

The MMU hardware must autonomously access the page tables to perform transla-
tions, and modify the page tables to keep referenced and modified statistic bits up
to date. >

When the Viking MMU table walk hardware accesses these page tables it willdo
so0 in a way that guarantees consistency between multiple processors. This is e
done primarily through the use of locked or atomic memory transactions

@Slln Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 63

whenever modifying page table R&M bits. As long as centain rules are followed in
system software, the entire table walk need not be done with a locked transaction,
only the updates.

4.5.5.2 System software use of System software must access page table to check statistics, and remap physical
page tables memory as required.

When only system software accesses page tables in memory, consistency is
guaranteed by the normal cache consistency mechanisms, as well as by standard
critical section mutual exclusion semaphores. Unfortunately, Vikings table walk
hardware has no way to recognize these software locking conventions. The fol-
lowing section describes how to deal with the consistency issues.

4.5.5.3 Hardware/Software Since both hardware and software generated references to the page tables may be
page table consistency in progress simultaneously, some algorithm must be used to guarantee that these
two sources (as well as multiple instances of both of them) will not interfere with
each other.

Inconsistency can occur in several ways. The most general is when software
changes (e.g. invalidates, etc.) a page mapping and the table walk hardware has
already read the table. In this situation, it is system softwares responsibility to do
a MMU flush (or DeMap) operation to force the page table to be re-read by the
' MMU. In a uniprocessor environment this is sufficient. In a multiprocessor
R ‘ environment, the flush operation must be done on every processor in the system.
-
Important Note:
Software must guarantee that only a single DeMap operation is in progress
any one time across the entire system. Inconsistent operation will result if
two DeMaps are received by a processor at any one time (including internal
DeMap requests).

\.

In cC mode, and only in systems that implement broadcast DeMap operations,
the local flush operations is automatically broadcast to all processors. There is no
need to interrupt remote processors to issue local flush transactions. In MBUS
mode, and in CC mode systems which do not broadcast DeMap, all processors

.must be interrupted and told to do their own local flush operation. This can take
considerable time to complete, but is generally not a performance bottleneck in
smaller systems. Broadcast DeMap capability is recommended for higher perfor-
mance, large multiprocessor systems.

A more difficult problem arises when the MMU hardware must re-write a page
table entry to set or clear the referenced of modified bits. The hardware must be
prevented from overwriting a modification that system software has just com-
pleted.

A general algorithm which prevents inconsistency in both situations is presented
in figure 4-1 below. The exact implementation of this code is system dependent.

The implementation of lock and unlock operations is memory model dependent,
see the SPARC Architecture Manual for proper sequences.

.S”!._l n Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



64  TMS390Z50 — Viking User Documentation

Figure 4-1
Lock

RM_Accum =0
Loop: Reg=0

Generalized safe page table update algorithm

/* Acquire exclusive page table access */
/* Any R+M updates will accumulate here */
/* Set PTE to zero temporarily */

Swap(TargetPTE,Reg) /* Write 0, read back current PTE */
FlushAlIMMUs(TargetPTE) /* Flush ALL reference to this PTE in system */
RM_Accum = RM_Accum OR Reg  /* Catch any late R+M Changes */

if (TargetPTE #

0) goto Loop /* Continue until it’s really zero */

TargetPTE = NewPTE /* Safe to write new value */

Unlock

4.5.6. Memory, Exceptions
and No-Fault operation

4

/* Release lock on page table access */

Operationally, the algorithm may take several iterations to complete. When used
with non-broadcast system wide DeMap, a single iteration should be sufficient.
The FlushAlIMMU s operator is a system dependent mechanism to execute a flush
operation on all MMUs in the system. System software should use the RM_Accum
value as the final value that was in the PTE entry before modification. This will
guarantee that no page table status information was lost.

All exceptions, including taken interrupts, invoke the SPARC trap handling
mechanism. This mechanism includes a store buffer copy-out.

‘When a SPARC CPU takes a trap, it disables further traps by setting PSR.ET=0.
This makes the CPU vulnerable; if a synchronous (i.e. non-interrupt) exception
occurs here, the CPU enters an undesirable ‘‘Error Mode’’. Error mode will ini-
tiate a watchdog reset.

Several steps are taken to avoid this second exception and error mode. Before
traps are disabled (PSR.ET is still 1) and before the exception handler is fetched,
the store buffer copies out all pending writes to memory. This prevents any
user-level faults caused by these writes from occurring at unexpected or unsafe
points within the trap handler. If an exception does occur on this copyout, a
data_store_exception is taken instead of the pending trap. The pending trap is
ignored, since its restartable. If the copy-out successfully completes, the normal
trap handling sequence continues, and PSR.ET is cleared.

Supervisor exceptions should be controlled by software. Once invoked, the trap
handler can immediately set the MCNTL.NF bit to 1. The NF (No Fault) bit dis-
ables reporting of data_access_exceptions to the CPU. Since the trap handler is
kemel code, most exceptions are fatal. Other errors, notably bus errors, are
always possible, and so are disabled by the NF bit.

The MCNTL.NF bit disables exception reporting for all operations except those to
ASI 0x09 (Supervisor Instruction Fetch), and actual instruction fetches to ASI
0x08 (User instruction fetch). Errors from LDA and STA transactions to ASI 0x08
will be masked by NF.

It is the responsibility of system software to ensure that the NF bit is never set PN
upon return to user code. Any load operation which receives an exception S
masked by the NF bit will load indeterminate data to the destination register. Any

sun Sun Microsysiems Proprietary ~ Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmex’s Model 65

4.5.7. Prefetch Exception
Handling

4.6. Floating Point Unit

store which receives an exception masked by NF will have no effect on registers
(guaranteed) or memory (system dependent).

An undesirable side effect of flushing the store buffer policy is a higher max-
imum interrupt latency. This latency is system dependent, based on the max-
imum time required to empty the store buffer. Every interrupt requires a copy-
out, which in the worst case involves 8 unbuffered writes to memory. This delay
may be unacceptable for real time applications. However, the copy-out require-
ment can be avoided by running with the store buffer disabled; in this case, the
store buffer is always empty. Fast interrupt response is guaranteed, although
overall performance is reduced by the resulting synchronous extemal stores.

For most cache misses on load or instruction fetch operations, Viking performs a
block read. This will load four double-words into the cache in a burst transaction
from memory. Viking will always request the word that it needs as the first word
of the burst, then read the rest of the four double words addressed modulo four. A
bus error may be encountered on any one of the double-word transfers.

Demand fetches are those required by the processor immediately. If a bus error
occurs on a demand fetch, an exception is generally reported to the pipeline,
causing an instruction_access_exception to occur.

Non-demand fetches are the remaining words in the burst, also called prefetches.
If a bus error occurs on prefetch data, it will not be reported to the pipeline. In
this case, the entire cache line referenced by this transaction will be invalidated.
The demand fetch will have been satisfied, but none of the additional prefetch
data is in the processor. If that data is required by the processor in the future
(very likely), it will be fetched again, as a demand fetch. If thezrmrat that loca-
tion persists, it will then be reported to the pipeline as an
instruction_access_exception.

Information about errors of this sort may be accumulated outside the processor
for repair, or gathering statistics. If desired, external controllers may raise an
interrupt to inform system software of the existence of these errors. System
software may initiate attempts to eliminate the error at this point before the data
is truly required (demapping pages, etc.).

The Viking Floating Point Unit operates in accordance with the SPARC Architec-
ture Manual, and this section describes in detail some of the operations.

All floating point operations are completed in their natural program order. No
out of order execution is done. All register dependencies are resolved in
hardware, causing pipeline delays wherever required. Floating point branch
operations will hold the processor pipeline until all pending floating point com-
pare operations have completed. No instruction delay is required between float-
ing point compare and floating point branch instructions. All floating point load
double and store double operations ignore the least significant register index bits,
and will use the naturally aligned register pair.

This section will concentrate on the floating point queue interface, special
numeric cases, and floating point exceptions.

"S”!..l n Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



66  TMS390Z50 — Viking User Documentation

4.6.1. FSR Version and
Implementation Fields

4.6.2. Special Numeric Cases

4.6.2.1 NaN — Integer
Conversion

4.6.2.2 NaN Output
Representation

Table 4-4

,4.6.2.3 Rounding Operations
and Underflow
Detection

4.6.2.4 FxTOIiR Not supported

4.6.2.5 Quad Precision

4.6.3. Floating Point Queue

Viking always sets both FSR.VER and FSR.IMPL fields to zero.

Viking handles all non-exceptional numeric cases directly in hardware. No
unfinished exceptions are generated. Completing execution of many of these
categories requires additional cycles.

When converting a number considered to be a NaN (Not A Number), Viking will
always produce the fixed representation of 0 in the destination register. This is
contrary to other implementations which may produce either 0x80000000 (-
NaN), or Ox7fFfffff (+NaN).

When Viking produces a NaN result, it is stored in one of the following fixed for-
mats:

NaN Output Representation Values

Single Precision: 0x7fc0_0000

Double Precision:  0x7ff8_0000_0000_0000

This differs from the IEEE standard, and other SPARC implementations. These
values will only be created in NaN reporting masked.

Viking detects underflow after the rounding operation. The IEEE Specification
allows either method, Viking’s implementation may differ from other SPARC
implementation.

Old descriptions of the SPARC Architecture described floating point conversion
with rounding to the rounding mode bits. These instructions have been removed
from the architecture, and are not implemented on Viking.

At Viking, FXTOi is always rounded to ZERO, while other convertions adheres to
FSR.RD mode bit.

Viking does not support quad precision operations.

Viking's floating point queue is 4 entries deep. All floating point operations are
written to the queue. Floating point memory references, FSR operations, and
queue operations are not written to the queue.

Storing the contents of the floating point queue should only be done when the
floating point unit is in exception mode. Store Floating Point Queue operations
when not in exception mode is implementation dependent. In these cases, Viking
will hold the processor pipeline until all floating point operations have com-
pleted, and store information the last completed floating point operation. The
floating point queue is not initialized at reset, storing queue contents before exe-
cuting floating point operations will store undefined values.

sun

Sun Microsysiems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer's Model 67

Table 4-5

4.6.4. Floating Point
Exception Details

4.6.5. No FAST (non-standard)
Mode

4.6.6. FsMULd

4.6.7. Integer Multiply

The user visible values in the floating point queue contain the virtual address of
the executing instructions, as well as the opcode being executed. A STD operation
on the floating point queue register will store these values for the operation at the
front of the queue to memory. The memory format is:

Floating Point Queue Format

Address+0x0:  32-bit virtual address program counter
Address+0x4:  32-bit opcode

Each time the floating point queue is read while in exception mode, the next
pending floating point operation in the queue will be stored. The FSR.QNE bit
should be checked before each store to identify the last valid queue entry.

Viking implements deferred floating point exceptions. Any floating point excep-
tion will remain pending until another floating point operation is requested, at
which point the pending exception will be reported.

If an exception occurs in exactly the same cycle in which a new floating point
instruction is being issued, the exception will remain pending until the next float-
ing point operations is issued. If the new floating point instruction created a
dependency with other instructions in the floating point queue, the exception will
be reported immediately. This situation will also add one additional cycle to the
execution time of the previous operation.

The presence of processor pipeline hold conditions (particularly from data cache
misses) can cause the acceptance of a floating point exception to be delayed.

Viking will report exceptions immediately to instructions which are dependant on
the result of the instruction which created the exception. Otherwise, the excep-
tion will be reported to a later floating point operation.

A Sequence_Error will be reported, and recorded in the FSR when a new floating
point request is issued while the FPU is in exception mode. The exception wil be
reported to the instruction causing the sequence error.

Viking ignores the non-standard mode bit in the FSR. The FSR.NS bit can be read
or written, but has no effect on floating point execution.

The FsMULd (Floating point multiply single, produce double result) operation is
fully supported by Viking.

Integer multiply operation is more completely defined in section 4.4.1 — Integer
Multiply (IMUL)

Since integer multiply uses floating point logic, execution of integer multiply
operations affects the timing of normal floating point operations. Integer multi-
ply operations will only start if the floating point queue is empty, or if the FPU is
in exception mode. Normal floating point operations will not resume until the

'Sb!'.l n Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



68  TMS390Z50 — Viking User Documentation

4.6.8. Integer Divide

4.7. Instruction Cache

4.7.1. Cacheability

integer multiply has completed. Functionally, integer multiply operations do not
affect floating point execution in any way.

Integer multiply operations cannot cause any exceptions.

Integer divide operation is more completely defined in section 4.4.2 — Integer
Divide (IDIV).

Since integer divide uses floating point logic, execution of integer divide opera-
tions affects the timing of normal floating point operations. Integer divide opera-
tions will only start if the floating point queue is empty, or if the FPU is in excep-
tion mode. Normal floating point operations will not resume until the integer
divide has completed. Functionally, integer divide operations do not affect float-
ing point execution in any way.

Integer divide operations can cause divide_by_zero and illegal_instruction
exceptions, but do not cause any floating point exceptions.

The Viking internal instruction cache is a 20 K-byte physical address cache. It is
organized as a S-way set-associative cache of 64 sets. The line size is 64 bytes,
divided in two half-lines of 32 bytes.

The Instruction Cache is physically addressed. Virtual addresses are translated by
the MMU before accessing the Instruction Cache. The requirements for a cache hit
are: bits [35:12] of the physical address must match the physical tag and the
Valid bit of the referenced half-lme must be set.

The cache is enabled by the IE bit of the MMU control register (see section
4.11.11.1). The cache is disabled at power-on reset (see section 4.3.1) and
remains disabled until the IE bit is set.

At power-on reset the contents of the instruction cache are undefined. It is the
responsibility of the software to initialize the Instruction Cache by resetting the
Valid bits (See section 4.7.6.1 — Instruction Cache Flash Clear ).

Most references are cacheable. This implies that they will be stored in the on-
chip caches after they are read in from external memory. The instruction cache
cacheability is determined as follows:

qun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

b



Chapter 4 — Viking Programmer’s Model

69

Table 4-6

4.7.2. Instruction Cache
Replacement Policy

4

Instruction Cache Cacheability

| Translation Mode | IE=0, AC=X IE=1, AC=0 IE=1, AC=1
Boot Mode
BT=1, EN=X Not Cached Not Cached Not Cached
MMU Disabled
BT=0, EN=0 Not Cached Not Cached Cached
MMU Enabled C=1:Cached C=1:Cached
BT=0, EN=1 Not Cached

C=0:Not Cached | C=0:Not Cached

BT is the Boot Mode bit of the MMU control register.

EN is the MMU Enable bit of the MMU control register.

IE is the Instruction Cache enable bit of the MMU control register.
AC is the Alternate Cacheable bit of the MMU control register.

C is the Cacheable bit kept in each Page Table Entry.

A limited history LRU (least recently used) algorithm with minimal complexity
and fair accuracy is used to determine which lines in the cache will be replaced
when necessary. The instruction cache maintains a history for each line in the
cache, and a lock bit for all but lineQ. These bits reside in the set tag. Whenever
a memory reference hits in the cache, the history bit is written to one. At the time
this bit is being written, all the other history bits are checked. If all the other his-
tory bits in the set, logically ORed with their respective lock bits are already
asserted, then they are all cleared. The result is that all five bits are never set at
the same time, and that the last used entry will always be set. When this transi-
tion occurs, the accumulation of history begins again. In this way, a limited
record of the most recently used members of a set can be kept.

When an instruction cache miss occurs, the required data is brought in from
external memory and forwarded to the instruction queue and pipeline. Simultane-
ously, the new instructions are placed in the cache. This requires that some old
information be displaced from the cache. Since the data cache is 5-way set asso-
ciative, there are five lines which may be chosen for replacement. :

The set tag is examined to evaluate the history and lock bits. The replacement
logic first examines the lock bits.

A line that is locked into the cache is never selected for replacement. Since line
0 cannot be locked, if all other entries are locked it will always be selected for
replacement, regardless of the state of the history bits.

If there is more than one unlocked line, the replacement logic uses the history
bits to determine which line should be replaced. If there is a line with a history
bit that is set to 0, it will be selected as the victim. The ordering of Viking cache
lines starts with the big-end, hence for the instruction cache it fills starting line 4,
3,2, 1, then .

sun

microsysiems

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



70  TMS390Z50 — Viking User Documentation

Figure 4-2

473. Snoop Hits and Lock
bits

4.7.4. Instruction Prefetching

Figure 4-2 provides two examples of the replacement scheme.

Example of Instruction Cache Replacement Policy

MRU Mask : 1 1 0 0 1
LCK Mask : 0 0 0 1

Composite Mask : 1 1.0 1 1
Line : 4 3 2 1 O
MRU Mask : 1 0 0 1 1
LCK Mask : 0 0 0 O

CompositeMask: |1 0 O 1 1
Line : 4 3 2 1 O

MRU = Most Recently Used - provides a limited history used bits. LCK = Lock
- provides locked lines information.

In the first example, based on the composite mask, line 2 is chosen for replace-
ment. In the second case, line 3 is chosen, since it is the rightmost available line.
Note again that line O can never be locked. This is to ensure that cacheable data
may always be stored in the cache (when the cache is enabled).

This section describes how snoop hits and lock bits may create an unrecom-
mended scenario. It also explains what happens to a locked line in the cache that
gets snoop hit. '

\
( A snoop hit 1o a locked line in Viking bus mode will cause the line to be
invalidated, without clearing the lock bits. A CRI, CI, or CWI in MBUS mode
will also cause the line to be invalidated, without clearing the lock bits. This
will prevent the addressed cache line from being reused. If that line happens
to be locked, the data will not be removed from the cache.
\. J

If a locked line gets invalidated by a snoop hit, that line will never be replaced

. (because it is locked), and it will never be a cache hit (because it has become

invalid), essentially reducing the number of active cache lines by one.

If a line is to be locked, the programmer must make sure that it will not get
snooped out.

Instruction prefetching supplies instructions to the Instruction Queue (1Q). The IQ
provides instructions for the pipeline to execute. The IQ comprises an 8 word
FIFO sequential instruction queue, and a 4-word target queue. The pipeline can
consume up to 3 instructions per cycle from the IQ. Instruction prefetching con-
tinuously tries to fill the IQ with the instructions in the execution stream, either

@ Sll n Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer's Model 71

4.7.5. Instruction Cache
Consistency

4.7.6. Instruction Cache
Diagnostics & Controls

st

from the instruction cache (on a hit) or from memory (on a miss). There is no
separate instruction prefetch buffer. When a CTI is encountered, prefetching
immediately retrieves the target instructions and places them in the target queue.

A demand fetch occurs when the processor needs instructions that are not
currently available in the IQ. This can occur during exceptions, traps, CTISs, their
combinations that may alter the execution stream, or straight line accross previ-
ously unreferenced code. Only a demand fetch can initiate an MMU table walk, or
cause an exception. Instruction prefetching can not initiate an MMU table walk,
nor can it cause an exception. If a required translation is not present in the TLB,
the MMU will wait for a demand fetch before starting a table walk.

Instruction prefetching is always enabled when the instruction cache is on. There
is no explicit control bit. Instruction prefetching works the same way in both CC
and MBUS modes. Errors may occur during prefetchmg. see section 4.5.7 for
details on prefetch exceptions.

Instruction cache consistency is maintained in hardware. This means that
modifications to instructions are reflected by invalidations in the instruction
cache. The invalidations are executed in a finite, deterministic (but system and
state dependent) amount of time, as long as MCNTL.SE (snoop enable) bit is
asserted.

To make sure that a modification to an instruction has been effectively performed
and is observable by the issuing processor, a FLUSH instruction must be executed
(See SPARC Architecture Manual). The FLUSH instruction forces the execution of
all the pending writes and will also flush the instruction prefetch buffer and pipe-
line. The FLUSH instruction executes synchronously, implying that the Viking
processor is stalled until all previous memory operations are completed. The
instruction which was modified prior to the FLUSH instruction is guaranteed to
execute properly after the FLUSH has been completed.

Cache consistency transactions use physical addresses, so the Ptags are consulted
for address comparison. The instruction cache does not allow writes, so it never
becomes an owner of data. Since the instruction cache never becomes an owner,
it never needs to transmit its contents back to the system bus. All instruction
cache snoop hits are handled by invalidating the appropriate cache entries. This
includes snoop hits generated by transactions generated by load and store opera-
tions on the same processor.

In MBUS mode, snoop hits caused by CR operations respond by asserting the MSH_
signal, and do not invalidate.

This section describes low level diagnostic and control interfaces to the instruc-
tion cache.

Su Sun Microsystems Proprictary  Revision 2.00 of November 1, 1990



72 TMS390Z50 — Viking User Documentation

4.7.6.1 Instruction Cache Flash
Clear

4.7.6.2 Instruction Cache Tags

A
)

ASI=0x36 - Instruction Cache Flash Clear.

The entire instruction cache can be invalidated, or all the Lock bits can be
cleared, by issuing a store alternate with the ASI value 0x36. The store must be a
word operation, all other data sizes provoke a data_access_exception. The data
issued by the store operation is ignored. The most significant bit of the address
determines the type of operation.

The Address format is:

[ Type | Reserved 1
31 30 0

MRU = Most Recently Used bit, indicates history. If Type=0, all Valid and MRUs
bits are cleared in the Ptags and Stags respectively. If Type=1 all Lock bits in the
Instruction Cache Stags are cleared. All reserved bits are ignored, but should be
set to zero. Flash clear operations should always be used before enabling the
instruction cache.

ASI=0x0c - Instruction Cache Tags

Instruction cache tags are accessible to read and write using ASI value Ox0c. This
direct access capability is provided mainly for diagnostic purposes.

A physical tag (Ptag) is associated with each cache line and the set tag, Stag, is
associated with each set. The Ptags and the Stags are accessed as double-words.
All other data sizes provoke a data_access_exception. The state of the cache tags
is not affected by watchdog or hardware reset.

The tags are addressed as pairs, since each instruction cache line has both a Ptag
and Set tag. The Address format is:

{ T |Rsvd| Line | Rsvd | Set | Rsvd | 000 |

3130 29 2826 25 12 11 6 S3 20

Rsvd Reserved. These bits are ignored.
Set Selects which of the instruction cache’s 64 sets is referenced..

Line Selects one of the 5 lines in a Set (04). Line 5-7 generate
‘ data_access_exception.
T Type of tag: Stag (T=1) and Prag (T=2), while T=0 or T=3 gen-
erate data_access_ exception. Tags may only be accessed as a dou-

ble word operation - all other data sizes will result in
data_access_exception.

The Ptag format is: :’Z

QS“I’I Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 73

[ Rsvd [ Vbits | Rsvd | Paddr |
63 58 5756 55 24 23 0

The various bit fields have the following meanings:
Paddr:  Physical Address bits [35:12].
Rsvd:  Reserved. Read as zero and ignored on a write.

Vbits:  Valid bits for the two half-lines. Bit 56 is the valid bit for the low-
order (A[4]=0) 32-byte half-line and bit 57 is the valid bit for the
high-order 32 byte half-line. These bits indicate if the correspond-
ing half-line is valid. When these bits are cleared, the contents of
the corresponding sub-block have no meaning. If at least one of
the two bits is set, the selected Ptag is valid. When they are both
cleared, the Ptag has no meaning. At power-on reset (see section
4.3.1) both valid bits are undefined.

The Stag format is:

Rsvd MRU | Rsvd | LCK
63 13 128 75 40

= The various bit fields have the following meanings:

Lock:  Lock bits. There is.one Lock bit per line which can be used to "pin" a
block inside the cache. The position of the bit determines to which line
it is associated with. Bit[0] is fixed to zero, and ignores write. Bit[1-4]}
lock Line[1-4] respectively. When a Lock bit is set to one, the
corresponding line will not be displaced by the replacement algorithm.

MRU:  Most Recently Used. This bit field indicates which line of the set has
been used the most recently. The position of the bit in the field deter-
mines to which line it is associated with. Bit[8-12] correspond to
Line[0-4] respectively. This bit field is updated by the hardware
replacement algorithm and is used to select a victim when necessary.

Rsvd:  Reserved. Read as zero and ignored on a write.

4.7.6.3 Instruction Cache Data ASI=0x0d - Instruction Cache Data.

Instruction cache data is accessible in read and write mode with the ASI value
0x0d. This direct access capability is provided mainly for diagnostic purposes.
The lines are only accessed as double-words. Other data sizes provoke a
data_access_exception. Instruction cache data is not affected by watchdog or
hardware reset. Flash clear does not affect instruction cache data. The Address

format is: .
sun Sun Mi i ision 2.00 of November 1, 1990
@ 3 un Microsystems Proprietary Revision of



74 TMS390Z50 — Viking User Documentation

[Rsvd | Line | Rsvd | Set [ Dblwrd | 000 |
3129 2826 25 12 11 6 S3 20

Rsvd Reserved. These bits are ignored.

Line Designates which of the instruction cache’s 5 lines (0-4) is refer-
enced. If line 5-7 is requested, a data_access_exception is gen-
erated.

Set Selects one of 64 sets of the cache.
DblWrd Selects the double word within the cache line.

4.8. Data Cache The Viking internal data cache is a 16 K-byte, physical address cache. It is organ-
ized as a 4-way set-associative cache of 128 sets. The line size is 32 bytes. There
is no sub-blocking.

The data cache is physically addressed. Virtual addresses are translated by the
MMU before accessing the data cache. The requirements for a cache hit are: bits
[35:12] of the physical address must match the physical tag bits [23:0] and the
valid bit must be set.

The cache’is enabled by the MCNTL.DE bit (See section 4.11.11.1). The cache is
disabled at power-on reset, and remains disabled until the DE bit is set.

At reset the contents of the data cache are undefined. It is the responsibility of the
- software to initialize the data cache by resetting the valid bits (using a flash
clear). After a Watchdog Reset the contents of the data cache are unmodified.

4.8.1. cC and MBUS Modes
(Write-Through and The MB bit in MMU Control register (MCNTLMB) is a read-only indicator of
Copy-Back) whether Viking is operating in CC or MBUS mode. (See section 4.11.11.1). This
bit is determined by the state of the CCRDY_ pin at reset. When Viking is in CC
mode, the data cache operates in a write-through fashion. In MBUS mode, the data
cache operates as a copy-back cache with write allocation.

In CC mode, all stores are immediately written to the store buffer, and the store
buffer will send them out to memory (written through) as soon as resources are
available, and the data cache does not write allocate. (A write miss does not
cause a read to occur before the write is completed.)

In MBUS mode, cache lines that have been modified by the processor are written
back to memory only when necessary (due to replacement or snoop reads). In
this mode, the data cache operates with write-allocation, when a store miss
occurs, the data cache will allocate a line, bring in the missing data from
memory, and write that data into the cache line.

0 sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



-

Chapter 4 — Viking Programmer’s Model 75

4.8.2. Cacheability

Data cacheability is determined according to table 4-7 below. Data returned from
MMU table walk references will never be cached internally, although they may
appear in the internal cache after having been referenced by page table manipula-
tion software. In this case, the coherence protocol will invalidate the intenal
copy. In MBUS mode, however, reads and writes initiated by the table walk
hardware do not snoop the data cache, hence software must never allow page
tables to be cacheable, to ensure consistency. See section 4.11.11.1 for descrip-
tion on page table cacheability, table walk access, etc.

( )
Important Note:
In MBUS mode, page tables must be accessed through non-cacheable
memory space to ensure consistency. In CC mode, page tables shoulci
be accessed using cacheable space, to improve performance.

In MBUS mode, the MCNTL.TC bit should be set to zero. In CC mode,
the MCNTL.TC bit should be set to one.

@sun

\. J/
Table 4-7  Data Cache Cacheability
Translation Mode | DE=0, AC=X DE=1, AC=0 DE=1, AC=1
MMU Disabled |
BT=X, EN=0 Not Cached Not Cached Cached
MMU Enabled C=1:Cached C=1:Cached
BT=X, EN=1 Not Cached .
C=0:Not Cached | C=0:Not Cached
MMU .
Transparent Not Cached Not Cached Cached
BT is the Boot Mode bit of the MMU control register.
EN is the MMU Enable bit of the MMU control register.
DE is the data cache enable bit of the MMU control register.
AC is the Alternate Cacheable bit of the MMU control register.
C is the Cacheable bit kept in each Page Table Entry. X is don’t care
Generally, references are non cacheable when the data cache is disabled. When
the cache is enabled, the C bit from the MMU controls cacheability. For ‘‘spe-
cial”’ accesses (like MMU passthrough/bypass transactions), which do not have a
corresponding C bit, the AC (alternate cacheable) bit is used to determine cachea-
bility. For MMU table walk references, the TC (table walk cacheable) bit will indi-
cate external cacheability, since table walk data is never cached intemally.
483. DataCache A limited history LRU algorithm is used 1o determine which lines in the data
Replacement Policy

cache will be replaced when necessary. The data cache maintains a history and
lock bit for each line in the cache. These bits reside in the set tag. Whenever a
memory reference hits in the cache, the history bit is written to one. At the time
this bit is being written, all the other history bits are checked. If all the other

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



76  TMS390Z50 — Viking User Documentation

4.8.4. Snoop Hits and Lock
bits

‘ 4.8.5. Data Cache Consistency

history bits, logically ORed with their respective lock bits are already asserted,
then they are all cleared. The result is that all four bits are never set at the same
time, and that the last used entry will always be set. When this transition occurs,
the accumulation of history begins again. In this way, a limited record of the
most recently used members of a set can be kept.

When a LD instruction demands data that is not in the data cache, that data is
brought in from external memory and forwarded to the instruction pipe. Simul-
taneously, the new data is placed in the cache. This requires that any old data be
displaced from the cache. Since the data cache is 4-way set associative, there
will be four choices for which line to replace.

The set tag is examined to evaluate the history and lock bits. The replacement
logic first examines the lock bits. Since line 0 cannot be locked, if all other
entries are locked it will always be selected for replacement, regardiess of the
state of the history bits.

If there is more than one unlocked line, the replacement logic uses the history
bits to determine which line should be replaced. If there is a line with a history
bit that is set to 0, it will be selected as the victim. The ordering of Viking cache
lines starts with the big-end, hence for the data cache it fills starting line 3, 2, 1,
then 0.

See section 4.7.3 — Snoop Hits and Lock bits

In a multiple processor system a mechanism must exist to keep local caches con-
sistent with each other and with main memory. The Viking processor uses a pro-
tocol that is implemented largely in hardware to achieve this. Part of this proto-
col involves snooping the Viking address bus. All addresses that are snooped are
compared with the cache tags in the instruction cache and the data cache. A
snoop hit occurs if the address presented on the bus matches the physical address
tag in the appropriate cache entries (and MCNTL.SE is enabled).

The action taken on a snoop hit depends on whether the data cache is operating in
MBUS or CC mode. The purpose of snooping is to make sure that the contents of
the data cache are consistent with external caches and main memory. In CC mode,
preserving this consistency is fairly simple. All that has to be done is to invali-
date an entry in the cache if some other processor writes to this location. In MBUS
mode, the actions taken on a snoop hit are more complicated, including respond-
ing to the bus transaction with the current cache contents. Both the data cache
and the store buffer snoop for incoming transactions that request data invalida-
tion. The data cache responses on external transactions are listed in the follow-
ing table:

sun Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990

W



Chapter 4 — Viking Programmer’s Model 77

Table 4-8  Data Cache Snoop Mechanism (MBUS mode)
External Transaction Being Snooped Response in Cache Resulting Action
R, W Don’t Care No action
CR,CRI,CI,CWI Miss No action
CR Hit, not owned, not shared | Set shared bit
CR Hit, not owned, shared No action
CR Hit, owned, not shared Copy out data, set shared bit
CR Hit, owned, shared Copy out data
CRI,CI,CWI Hit, not owned, not shared | Invalidate entry
CRI1,CI,CWI Hit, not owned, shared Invalidate entry
CRI Hit, owned, not shared Copy out data, invalidate entry
CWILCI Hit, owned, not shared invalidate entry
CRI Hit, owned, shared Copy out data, invalidate entry
CI,CWI Hit, owned, shared invalidate entry

4.8.6. Data Cache Diagnostics
and Control

4.8.6.1 Data Cache Flash Clear

4

CR=Coherent Read; W=WrTite (non-coherent);

CRI=Coherent Read and Invalidate; R= Read(non coherent)
CWI=Coherent Write and Invalidate; CI=Coherent Invalidate

(Refer to the SPARC MBUS Specification for definitions of these terms).

Table 4-8 shows the responses of the data cache to various MBUS transactions .
depending on the state of the line in the cache that is accessed. This status is held
in the cache tag in the shared and dirty bits (Note: the dirty bit being set indicates
ownership, dirzy bit is another name for owned bit). The shared bit is set in the
cache tag if the data is also present in another processor’s cache. The dirty bit is
set if the data has been modified by the processor, and the changes have not yet
been written out to memory. The dirty bit will only be set if the cache is in MBUS
mode.

This section describes low-level diagnostic and control operations for the data
cache.

ASI=0x37 - Data Cache Flash Clear.

The entire data cache can be invalidated (valid bits cleared), or all the Lock bits
can be cleared, by issuing a store alternate with the ASI value 0x37. The store
must be a word operation, all other data sizes cause a data_access_exception. The
data issued by the store operation is ignored. The most significant bit of the
address determines the type of operation.

The Address format is:
{ Type | Reserved |
31 30 0

M Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990



78  TMS390Z50 — Viking User Documentation

4.8.6.2 Data Cache Tags

e
If Type=0, all valid and MRU bits are cleared in the Ptags and Stags. If Type=1 all -
Lock bits in the data cache Stags are cleared. All reserved bits are ignored, but
should be zero.

ASI=0x0e - Data Cache Tags.

The data cache tags are accessible in read and write modes via the ASI value
Ox0e. This direct access capability is provided for diagnostic purposes.

The Ptags and Stags are accessed as double-words. Other data sizes generate a
data_access_exception. The state of the cache tags is not affected by watchdog or
hardware reset. Flash clear operations should always be used before enabling the
data cache.

A physical tag (Ptag) is associated with each line, and a set tag (Stag) is associ-
ated with each set. The Address format is:

"I'T JRsvd [ Line [ Rsvd | Set | Rsvd | 000 |

3130 2928 2726 25 12 11 5§ 43 20

T: Type of tag: Stag=1, Ptag=2. Type 0 and 3 generate
data_access_exception. Tags may only be accessed as a double
word operation - all other data sizes will result in
data_access_exception.

Rsvd:  Reserved. These bits are ignored.

Line: Selects which of the data cache’s four lines (0-3) is referenced.

Set: Indexes into the tag array of the cache to select one of the 128 sets.

The Ptag format is:

[ Rsvd | Valid | Rsvd | Dirty | Rsvd | Shared | Rsvd | Paddr |

63 57 56 5549 48 4741 40 3924 23 0

The various bit fields have the following meanings:

Rsvd: Reserved. Read as zero and ignored on a write.

Valid: Valid bit. This bit indicates that the line and its associated tag are
valid. When this bit is cleared, the tag and the data contained in
the line have no meaning. At reset valid bits are undefined.

Dirty:  Dirty. This bit indicates that the line has been modified by one or
more writes. If the cache is in write-back mode and this bit is set,
the line is copied back into main memory (or a second-level cache)
when it is displaced. ”

sun Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990



Chapler 4 — Viking Programmer’s Model 79

4.8.6.3 Data Cache Data

Shared: Shared. This bit indicates that the line is "shared" by the cache.
Thus, writes to this line must be propagated to memory.

Paddr:  Physical Address bits [35:12].
The Stag format is: o

[ Rsvd | MRU | Rsvd | Lck |
63 12 118 7 4 30

The various bit fields have the following meanings:

Lock: Lock bits. There is one Lock bit per line which can be used to
"pin" a block inside the cache. The position of the bit determines
the block it is associated with. Bit[0] is fixed to zero, and ignores
write. Bit[1-3] lock Line[1-3] respectively. When a Lock bit is set
to one the corresponding line will not be displaced by the replace-
ment algorithm.

MRU: Most Recently Used. This bit field indicates which line of the set
has been used the most recently. The position of the bit in the
field determines the block it is associated with. Bit[8-11]
correspond to Line[0-3] respectively. This bit field is updated by
the replacement algorithm and is used to select a victim when
necessary. In the usual mode, there is only one bit set to one.

Rsvd:  Reserved. Read as zero and ignored on a write.

ASI=0x0f - Data Cache Data.

Data in the data cache are accessible in read and write modes via the ASI value
O0xOf. This direct access capability is provided to assist diagnostics. Flash clear
does not affect cached data. The lines are accessed as double-words only Other
data sizes provoke a data access exception.

The Address format is:

{ Rsvd | Line | Rsvd | Set | Dblwrd | 000 |

31 28 2726 25 12 11 S 4 3 20

Rsvd  Reserved. These bits are ignored.

Line Designates which of the data cache’s four lines (0-3) is referenced.

Set Indexes into the data array of the cache to select a set.
DblWrd Selects the double word within the cache line.

sun Sun Microsystems Proprietary

Revision 2.00 of November 1, 1990



80  TMS390ZS0 — Viking User Documentation

4.9. Data Prefetching

4.10. Control Space Access

Viking supports data prefetching primarily to increase the performance of numer-
ical floating point intensive applications. Usually, these operate on large sequen-
tial data arrays, which easily overflow Viking’s 16 KByte on-chip data cache.
Prefetching from these arrays greatly reduces on-chip cache misses in these itera-
tive programs. This effect, when combined with store buffer block collection can
increase performance of certain applications significantly.

Prefetching is enabled in software, by setting the MCNTL.PF bit. The prefetcher
can be used only in CC mode. While in MBUS mode, the MCNTL.PF bit is ignored.

Once enabled, the Viking prefetcher monitors data cache load misses. Consecu-
tive load misses to two consecutive cache blocks will generate an additional read
access to prefetch the next block. The prefetch will not be issued until the store
buffer is empty. Prefetched data is stored in the 32-byte prefetch buffer. If subse-
quent loads hit the prefetch buffer, data is forwarded from the buffer with no
delay, and another prefetch is issued. The next prefetch is only issued when all
doublewords in the current buffer have been referenced (the order is not
significant). All prefetching is based on physical addressing.

In general, the prefetcher is effective when data is being referenced by a series of

LD or LDD instructions (nominally 4 LDDs), followed by a series of ST operations.
The series of store operations allows the prefetch to complete. The ST operations
accumulate in the buffer and become write-burst transactions on the bus, which
provides additional performance improvement.

Although all prefetched data is cacheable, it is not cached in Viking's data cache.
This can avoid cache thrashing and also simplifies operation. As a result, the pre-
fetch buffer maintains coherence of the fetched block. To accomplish this, the
prefetch buffer snoops Viking’s write misses as well as off-chip system writes. If
either hits the prefetched line, the line is invalidated. As a result, the prefetcher
cannot contain any modified information. In addition, prefetch addresses are
matched with the store buffer before being issued, as for all read accesses. The
data cache is also checked, to avoid prefetching data that’s already present on
Viking. :
Prefetches cannot cross page boundaries. Although large data arrays will prob-
ably appear as large contiguous memory blocks, this cannot be guaranteed in
physical memory. Inadvertent block prefetches from non-cacheable I/O space
must be prevented. However, the prefetcher will usually encounter only one
cache miss before resuming prefetching in this case, since it will have correctly
guessed the miss address when the pages are contiguous.

The prefetch buffer is not directly accessible through diagnostic ASI space.

ASI 0x02 allows access to the information in an extemal device, nominally an
external cache controller. The information may include cache controller (CC)
registers, the extemnal cache and jts directories. These accesses are non-
cacheable, regardiess of MCNTL.AC indication. Examples of address generation
and data accessed can be found in the Viking Cache Controller Specification
document.

o sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer's Model 81

4.11. Memory
Management Unit
(MMU)

4.11.1. Address translation

@

Data references to this control space access may be any size. External system
hardware is responsible for proper data alignment. Any faults will be reported as
data_access_exception.

The Viking processor implements a 64-entry fully-associative MMU compatible
with the SPARC Reference MMU (SRMMU or MMU) Specification. The set of 64
entries is called the Page Descriptor Cache (PDC) or Translation Lookaside
Buffer (TLB).

The MMU translates 32-bit virtual addresses into 36-bit physical addresses. The
mapping is done in units of 4 K-byte page, 256 K-byte segment, 16 Mbyte region
or 4 G-byte context.

This section briefly describes the software view of memory mapping using the
Viking MMU. For background, refer to the SPARC Reference MMU Specification in
the SPARC Architecture Manual.

Virtual and physical addresses are composed of an offset within the page and
respectively a Virtual Page Number (VPN) or a Physical Page Number (PPN).

The MMU translates 32-bit virtual addresses and 16-bit context numbers into 36-
bit physical addresses by accessing up to four levels of page tables in memory.
Nomally, this translation is cached in the on-chip 64-entry TLB. When the trans-
lation entry is missing from the TLB, the MMU table walk hardware automatically
retrieves the translation from the page tables in memory. Figure 4-3 describes the
full structure of these page tables. ‘

su Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

microsysiems



82  TMS390Z50 — Viking User Documentation

Figure 4-3  Address Translation Utilizing Four Levels of Page Tables

3 4 6
Virtual Address Xy
Virtual Page Number

Index 1 Index 2 Index 3 Offset
31 24 23 18 17 12 11 0
Context Table | Context Table
Painter  Regis -
Context Register Root_Pointer > Level 1 Table
- TP . Level 2 Table
- PP _ Level 3 Table
. PIE
Physical Address
v V
Physical Page Number Offset
35 1211 0

Each virtual address space is identified by a context number which is kept in the
Context register. Virtual addresses kept in the TLB are ‘‘tagged’’ with a 16-bit
Context Number. The effective size of the context register is variable between 10
and 16-bits. This allows the size of the page tables to be reduced. See section
4.11.11.2 — Context Table Pointer Register (MCTP) and Context Register (MC)
for further details.

The page tables can contain Page Table Pointers (PTP) or Page Table Entries
(PTE). A PTE is distinguished from a PTP by the two low order bits of the table
entry (see the ET field description below). A PTP contains the physical address of
the next page table level while a PTE contains the physical address of the page
with its access rights. '

QSUD Sun Microsysiems Proprietary ~ Revision 2.00 of November 1, 1990

microsystems



Chapter 4 — Viking Programmer's Model 83

4

The Page Table Pointer format is:

[ PTP {01

31 2 10

The value of 1 in the least significant two bits indicates that the entry type (ET) is
a page table pointer.

Important Note:
The page tables must be aligned on boundaries equal to their sizes.
Low onrder bits of the PTP field must be zero. PTPs must point to tables

aligned to their natural size.
The Page Table Entry format is:
{ PPN [C{M]|R]| acc| Er |
31 8 7 6 S 42 10

The various bit fields have the following meanings:

PPN: Physical Page Number. High order 24 bits of the 36-bit physical
address. If the PTE maps a 256 K-byte segment, 16 M-byte region, or 4
G-byte context, the lower 6, 12 or 20 bits respectively of the PPN are
ignored. :

C: Cacheable. If this bit is set to one, the page is cacheable in the Viking
internal (and external) caches. If it is zero, the page is not cacheable.
Viking asserts the CCHBL_ pin for transactions involving virtual

addresses with the C bit set.

M: Modified. When a page is accessed for writing, and the modified bit is
not set, the MMU sets the modified bit in both the TLB, and the in-
memory page table entry.

R: Referenced. This bit is set to one by the hardware when the page is

accessed (on a read or a write) and the PTE is missing from the Page
Descriptor Cache. Both copies are set.

( )
Important Note:
See section 4.11.3.1 — MMU R&M Updates and Section 4.11.3 —
Referenced and Modified bits for a description of the interaction
between hardware and software access to and modification of the refer-
ence and modified bits.
\. J

ACC:  Access Permissions. This bit field is encoded as follow:

Su Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990

microsysiems



84  TMS39%0Z50 — Viking User Documentation

4.11.2. Linear Mapping

@sun

Permissions
ACC User Supervisor
0 Read Only Read Only
1 Read/Write Read/Write
2 Read/Execute Read/Execute
3 Read/Write/Execute | Read/Write/Execute
4 Execute Only Execute Only
5 Read Only Read/Write
6 No Access Read/Execute
7 No Access Read/Write/Execute

The MMU checks if an access is authorized according to the mode in which the
instruction is executed (i.e. user or supervisor) and the type of access (instruction
or data reference). If there is a violation of the permissions a data or instruction
access exception is incurred. For more details on ACC vs AT (Access Permis-
sion and Access Type) refer to 4-12 — Access Permission vs Access Type.

ET: Entry Type. This field is used to distinguish a PTE from a PTP and to
indicate if a table entry is valid. The encoding is:

0 | Invalid

1 | Page Table Pointer |
2 | Page Table Entry:

3 | Reserved

The MMU supports mapping sizes larger than the page size. This is done by
configuring an entry in the Context Table, Level 1 Table or Level 2 Table as a
PTE (ET=2).

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 85

If a PTE is found in the Context Table, the virtual to physical mapping is done as
indicated below for a 4 Gigabyte context.

Figure 44  Address Translation With Maximum Page Size

Virtual Address

Offset

31 0
Cooiext Table |  Context Table
Pointer  Regis
Context  Register [~ P’Il

A4

\ Y
PPN Offset in 4 G-byte Context
335 323 Physical Address 0

sun Sun Microsystems Propri Revision 2.00 of November 1, 1990
0 un Microsys Proprietary evision of No



86  TMS390Z50 — Viking User Documentation

Figure 4-5

If a PTE is found in a Level 1 Table, the virtual to physical mapping is done for a
16 Megabyte region.

Address Translation With 16 MB Page

Virtual Address

Cantext Table
Pa .

{ - and

_ Context_Table

Comext  Regisier

Root Pointer

[ Index1 | Offset
31 24 23 0
- Level 1 Table
> PIE
v v
PPN Offset in 16 M-byte Region
5 B2 0

Physical Address

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer's Model 87

If a PTE is found in a Level 2 Table, the virtual to physical mapping is done for a
256 Kilobyte segment.

Figure 4-6  Address Translation With 256 KB Page
Virtual Address
Index 1 Index 2 Offset
31 24 23 18 17 0
Contet Table |  Context Table
Pointer gis ]
p—— Pai _ Level 1 Table
- PTP - Level 2 Table
> PTE
[\ ¥ \
PPN Offset in 256 K-bytes Segment|
18 17
?5 Physical Address 0

4.11.3. Referenced and
Modified bits

™

/
[

Whenever the MMU finds a PTE in an entry, it stops the table walk and stores the
translation in the TLB. The Viking MMU Page Descriptor Cache is implemented
by a CAM (content addressable memory) array which can simultaneously match
the address tag fields corresponding to the four mapping sizes defined by the
SPARC Reference MMU.

The referenced bit (R) of a PTE is set to one whenever its page is accessed by the
MMU during miss handling or when an entire probe is initiated. If the referenced
bit is already set, it is not set again.

The Modified bit is checked when the PTE is accessed as a result of the execution
of a store instruction. If the Modified bit is clear in the MMU entry, it is set to one
and the copy of the PTE in main memory is also set to one.

The Referenced and Modif;ed bit must be updated in main memory (e.g. shared
memory image) in a manner which guarantees their consistency in a multiproces-
sor environment. For a discussion of possible algorithms see section 4.5.5 —

"Su!‘l 41 Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



88  TMS390Z50 — Viking User Documentation

4.11.3.1 MMU R&M Updates

4.11.4. TLB Replacement
Policy

Page Table Memory Operations.

Occasionally, the MMU must modify a Page Table Entry (PTE) in memory, as
memory pages are referenced or modified by Viking. These writes are required
by the reference MMU architecture to be synchronous; thus, they block the execu-
tion pipeline. Also, they also force a Store Buffer copy-out, to preserve the
sequence of writes. This copy-out is initiated when the memory reference is
present at the EO stage of the execution pipeline.

If an exception occurs on the Store Buffer copy-out caused by an R&M update,
the R&M update operation is not completed. A data store exception is taken,
which disables the Store Buffer at once. The Load, Store, or fetch which caused
the R&M update, will be restarted when the CPU returns from the Store Buffer trap
handler; this in turn will eventually restart the R&M update.

The table walk hardware within Viking will use a standard write operation when
setting both referenced and modified bits in memory. If only the referenced bit
must be set, atomic memory transactions will be used to ensure that another pro-
cessor is not simultaneously attempting to set both bits. If the processor did not
use this protection, it would be possible to overwrite an PTE with both R and M
bits set, with another updated PTE with only the R bit set. This is clearly illegal
and is prevented by using SWAP transactions to do R-bit only updates. Note also
that the only combinations that Viking will ever write back to the PTE are
R=1M=0), and (R=1,M=1).

Using SWAP for R-bit updates is essentially the only page table consistency algo-
rithm implemented in hardware. All other cases of page table consistency must
be implemented in software as described in section 4.5.5 — Page Table Memory
Operations.

The Memory Management Unit has 64 TLB entries. The replacement logic is used
to select a TLB entry to replace when a new PTE is brought in to the MMU for a
TLB miss. If one or more of the 64 entries is invalid, then the replacemerit logic
selects this entry, starting its selection from entry "0’ and progressing to entry
'63’ in case of multiple invalid entries. When all the entries are valid the replace-
ment logic selects the entry to be replaced using the information available in the
used bits. The algorithm used is a limited history LRU policy.

Each TLB entry has a used bit. Initially when a demap-all operation is done to
invalidate all TLB entries all used bits get cleared. The used bit is then set for any
valid TLB entry which has a TLB hit. When all entries have their used bits set,
then all used bits, except the last one to be set and those which are locked, are
cleared. This is the case where all past history is lost. To select a entry to be
replaced (when all TLB entries are valid) the first entry starting from entry 0’ for
which the used bit is not set will be chosen. This represents the least recently
used entry (based on the limited history available, since a TLB hit causes the used
bit to be set). >

‘When a entry is invalidated or flushed from the TLB its corresponding used bit is
cleared. In addition to the used bits, the replacement policy also checks the

n Sun Mi : i ision 2.00 of November 1, 1
QSU un Microsystems Proprietary Revision of November 1, 1990



- Chapter 4 — Viking Programmer's Model 89

-~/ 4.11.5. Other Cached Entries
. (Root and Level2 PTP2
cache)

corresponding lock bit (one per TLB entry). If a lock bit for an entry is set, then
regardless of the used bits that entry will never be replaced. An invalid entry with
its lock bit set can still be replaced, and the newly written entry becomes locked,
since the lock bit remains set. If all entries have their lock bits set no replacement
takes place and the newly brought in PTE is not stored in the TLB. Since a transla-
tion finishes only after a table-walk operation has completed, this causes an
infinite table-walk loop. Thus one should never lock all the entries in the TLB.
s a
Important Notes:
Setting all lock bits in the TLB can lead to deadlock and is not recom-
mended.

Allowing the lock bit to be set for invalid entries is also not recom-
mended. It can lead to inconsistent operation. Since these entries
remain locked after a new entry is written into them by a table walk,
that entry will remain in the TLB, even after a DeMap operation which
should invalidate it.

It is recommended that lock bits be set only in conjunction with expli-
cit writes to that TLB entry by supervisor software. Note also that the
lock bits are cleared by hardware reset.

To reduce the time required for each table-walk to access the PTE’s, the Viking
MMU caches two special pointers, PTPO (PTP level 0) and PTP2 (PTP level 2).

PTPO is the root-pointer (level-0 pointer) for the process in execution. On every
context switch this cached entry is invalidated, and the first table-walk for the
new process will be used to cache in the new root pointer. Cacheing the root
pointer saves the MMU from performing a level of table walk for each TLB miss
for that particular context. If a context were to execute for a long time this could
mean a considerable saving of cycles. The root-pointer entry is qualified by a
valid bit and implicitly corresponds to the context in the Context register. The
valid bit for this entry is cleared on context register write, context table pointer
write, demap-all and demap for a context which matches the context register
value.

To optimize MMU table-walk, the Viking MMU also caches one level-2 PTP. A TLB
miss with this level-2 PTP would require just the new level3 PTE to be fetched
rather than the entire three level table-walk fetch operation. A second level PTP
requires a virtual tag and a valid bit for this cached entry. The context is impli-
citly assumed to be the value of the context register. This second level cached
PTP entry is used only for table-walks, R & M bit updates and probe-entire opera-
tions. Other operations still go through the three level table-walk mechanism.
The valid bit forthis entry is cleared on context register write, context table
pointer write, on a table-walk operation not using the cached PTP (in this case a
new entry will be writteh), demap-all, demap for a context which matches the
context register value, and level-1 and level-2 demaps for which this PTP has a
match. The PTP entry is cached on a new table-walk operauon and is not cached
if the level-2 entry is a PTE.

u Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990
mcrosysiems



90  TMS390Z50 — Viking User Documentation

4.11.6. Hit Criteria The criteria for a hit in the MMU are defined as follows:

Matching Criteria
V=1 and VAddr{31:12]_equal and (ACC=6-7 or Context_equal)

256 KB V=1 and VAddr{31:18]_equal and (ACC=6-7 or Context_equal)
16 MB V=1 and VAddr{31:24]_equal and (ACC=6-7 or Context_equal)
4GB V=1 and ACC=6-7 or Context_equal

VAddr{31:xx]_equal indicates that the corresponding bit fields of the virtual
address issued by the processor and the virtual address contained in an MMU
Vaddr tag entry match. ’

Context_equal means that the contents of the Context register and the Context -
field in the MMU entry match. Note that context is not compared for any page
classified as a supervisor page, by the ACC field being either 6 or 7. In this
manner, supervisor pages are present in all contexts simultaneously.

In all cases, the entry must be valid (V=1).

4.11.7. MMU Probe and The ASI value 0x03 is used to invalidate or probe entries in the MMU. An invali-
Demap/Flush dation of an MMU entry is also commonly called a flush or a demap. These three
terms are used indistinctly in this document.

A probe is done with a load alternate while a demap/flush is done with a store
altemate instruction. The data of the load or store alternate is ignored. The
address format for both cases is:

[ VvFPA | Rsvd | Type | Rsvd |
31 12 11 10 8 7 0

The various bit fields have the following meanings:

VFPA:  Virtual Flush or Probe Address. According to the type of flush or
probe not all 20 bits are significant.

Type:  This field specifies the extent of a demap (mapping size) or the level of '
the entry probed.

Rsvd:  Reserved. These bits are ignored. They should be zeros.

4.11.7.1 MMU Probe The different types of MMU probes which can be performed and the correspond-
ing returned data are:
@ ,%},1,,.!.1. Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 91

Type Probe Object Retumed Data
0 (Page 4 KB) Level 3Entry | Level 3PTEor 0O
1 (Segment 256 KB) | Level 2 Entry | Level 2 PTE/PTPor 0
2 (Region 16 MB) Level 1 Entry | Level 1 PTE/PTPOr 0
3 (Context 4 GB) Level 0Entry | Level O PTE/PTPOr 0
4 (Entire) Level nEntry | LevelnPTEor(Q
5-7 (Reserved) :

For all the probe operations the MMU (TLB) is accessed first and if a translation
which complies with the matching criteria is found, the cached PTE is returned.
The PTE is returned in the memory format with R=1 and ET=2 since only PTEs
are cached in the Viking MMU. The matching criteria for a successful probe in the
MMU are:

Type Matching Criterion
0 (Page 4 KB) V=1 & VAddr{31:12]_equal & Context_equal & LVL=3

1 (Segment 256 KB) | V=1 & VAddr{31:18]_equal & Context_equal & LVL=2

2 (Region 16 MB) V=1 & VAddr{31:24]_equal & Context_equal & LVL=1

3 (Context 4 GB) V=1 & Context_equal & LVL=0

) 4 (Entire) V=1 & Context_equal &
. ' ((VAddr{31:12)_equal & LVL=3)
| 1(VAddr{31:18]_equal & LVL=2)
| (VAddr{31:24]_equal & LVL=1)

| (LVL=0))

5-7 (Reserved)

VAddr{31:xx] _equal means that the corresponding bit fields of the virtual
address issued by the processor and the virtual address contained in an MMU
entry match.

Context_equal means that the contents of the Context register and the Context
field in the MMU entry match.

If the PTE is not found in the MMU, a table walk is initiated. In this case, the data
returned may not be a PTE. The retumed data can be a PTP or the value O if an
error occurs. The error cases are slightly different from the ones which may occur
during a regular table walk when the MMU is processing a miss. They are detailed
in the following paragraphs. If an error occurs during a probe table walk, no
exception is taken, but the AT field of the MMU status register is set to 1, the FT
field to 1 (Invalid Address) or 4 (Translation error) and the L field is set to the
table level where the error was detected.

For a page probe, the mardware does a table walk and returns the PTE found in the

Y level 3 table even if this level 3 entry is invalid (ET=0). If the table walk does not
complete correctly because the level 3 entry accessed is not a PTE (ET=1 or 3), an
intermediate level entry is not a PTP (ET = 1) or a hardware error occurs the value
0 is returned, and the FT is set to 4.

@ sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 19%



92  TMS390Z50 — Viking User Documentation

-

For a segment or region probe, a PTE (ET=2) or a PTP (ET=1) is returned from
respectively the level 2 or level 1 entry even if it is invalid (ET=0). If the table
walk does not complete because the entry accessed is reserved (ET=3), an inter-
mediate level is not a PTP (ET = 1) or an hardware error occurs the value O is
returned, and the FT is set to 4.

For a context probe the level O entry accessed is retumned if it is a PTE (ET=2) a
PTP (ET=1) or is invalid (ET=0). The value 0 is returned, and the FT is set to 4 if
the entry is reserved (ET=3) unless a hardware error occurs. .

For an entire probe, the hardware does a regular table walk and returns the valid
PTE found in whichever level table. If no PTE is found because an invalid (ET=0)
or reserved entry (ET=3) is accessed in an intermediate level, the level 3 entry
accessed is a PTP (ET=1) or an hardware error occurs, a 0 is returned. If an invalid
entry is accessed, the FT field is set to 1 in the MMU status register, in the other
cases the FT field is set to 4.

When an entire probe completes successfully, the PTE accessed is loaded in the
TLB and the R bit is updated if necessary. For all the other probe operations, the
TLB is left unchanged and the R bit is not updated.

Important
Viking generates data_access_exception on probe types 0x5-0x7, and
treats probe types Ox8-Oxf identical as types 0x0-0x7 respectively.

4.11.7.2 Demap/Flush The different types of demaps and the objects flushed from the MMU are:
T Flush Object
0 (Page 4 KB) Level 3 PTE

1 (Segment 256 KB) | Level 2 and 3 PTEs

2 (Region 16 MB) Level 1, 2, and 3 PTEs

3 (Context 4 GB) Level 0, 1, 2, and 3 PTEs
4 (Entire) All PTEs

5-7 (Reserved)

The hit criteria for an MMU flush are:

@ sun Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

§
i



Chapter 4 — Viking Programmer's Model 93

Type Matching Criteria

0 (Page 4 KB) LVL=3 & VAddr{31:12]_equal &
(Acc=6-7 or Context_equal)

1 (Segment 256 KB) | LVL=312 & VAddr{31:18]_equal &
(AcC=6-7 or Context_equal)

2 (Region 16 MB) LVL=3I12!1 & VAddr{31:24]_equal &
(ACC=6-7 or Context_equal)

3 (Context 4 GB) ACC=5-0 & Context_equal

4 (Entire) None

In a multiprocessor system, distinct processors can hold copies of the same PTE in
their MMUs. Therefore, when a portion of a virtual space is demapped, the flush
operation must be applied to all MMUs in the system.

Depending on the system implementation, demap operations may be broadcast
automatically to all processors, or may require explicit software intervention on
all processors to demap the required pages. Viking allows for automatic demap-
ping only when used in CC mode, whether or not this is implemented is system
dependent. For example, the Viking cache controller chip (MXCC) implements
system demaps in XBUS mode, but does not in MBUS mode. In direct MBUS
mode, all processors must be interrupted and requested to flush their own TLBs
whenever the page table is modified. ) ,

-

Important Note: ' )
Software must guarantee that only a single DeMap operation is in pro-
gress at any one time across the entire system. Inconsistent operation
will result if two DeMaps are received by a processor at any one time
(including intemal DeMap requests).

\. _/

When an MMU flush has been completed by all processors (either through
hardware or software), the following should be true:

All memory references conceming the virtual space(s) mapped by the
flushed PTE(s), that have been issued before the demap must have been
completed.

No MMU has a valid copy of the PTE(S).

All memory references to the PTE(s) itself (themselves) that were
issued before the demap have been completed.

Once the system has reached this state, page tables may safely be modified and
applications allowed to continue.

L3

sSsun Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 199



94  TMS390ZS50 — Viking User Documentation

4.11.8. MMU Transparent
Mode

4.11.9. Address Translation
Modes

4.11.10. No-Fault Operation

2

The ASI values 0x20-0x2f are used to bypass the MMU for data accesses. The
MMU does not translate the physical address through the Page Descriptor Cache.

The virtual address is translated as follow:

ASI[3:0] - Paddr({35:32], Vaddr{31:0] — Paddr{31:0].

Cacheability of these accesses is determined by MCNTL.AC bit. Since these tran-
sactions are completely based on physical memory addresses they can have no
effect on virtual memory components, such as the MMU R&M bits.

The following table summarizes the different translation modes used by the Vik-

ing processor.
Translation Instruction Fetch Data Access
Mode (ASI=0x08 or 0x09) ASI=0x0a or 0x0b)

Boot Mode PA[35:28]=0xff, EN=0 -> Disabled Mode

BT=1, EN=X PA[27:0]=VA[27.0]. | EN=1 -> Enabled Mode

MMU Disabled | PA[35:32]=0x0, PA[35:32]=0x0,

BT=0, EN=0 PA[31:0]=VA[31:0] | PA[31:0]=VA[31:0]

MMU Enabled PA[35:12] from PTE | PA[35:12] from PTE

BT=0, EN=1 PA[11:0]=VA[11:0] | PA[11:0]=VA[11:0]

MMU Not Applicable LDA and STA with

Transparent ASI=0x20-0x2f
PA[35:32]=AsI[3:0],
PA[31:0]=VA[31:0]

BT is the Boot Mode bit of the MMU control register.
EN is the MMU Enable bit of the MMU control register.
PA[bit range] are the bits of the physical address.
VA[bit range] are the bits of the virtual address.

The MCNTLNF bit, when enabled, turns on no-fault operation. In this mode, most
exceptions generally reported to the pipeline are disabled. This mode is intended
for use by system software during the processing of exceptions, and during sys-
tem diagnostic functions. The NF bit should never be set during user code execu-

ton.

Any transaction which has an error blocked by NF will complete. In the case of
load transactions, the destination register will be updated with indeterminate

information. In the case of stores, no registers will be updated, and the system is
responsible for not modifying memory.

When operating with NF set, the success or failure of every memory transaction
should be verified by explicitly reading the MFSR fault status register.

In general, all normal memory exceptions are disabled by NF. There are several
types of exceptions which are not disabled by NF. The exceptions types which
are not disabled are all considered fata!l errors which are generally not recover-

]

7]

u

ysioms

able and should induce error mode. The following exceptions are not disabled by

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990

A

.



Chapter 4 — Viking Programmer's Model 95

4.11.11. MMU Registers

Internal Error
Errors such as multiple tag matches from the caches are considered
fatal internal errors. See section 4.11.11.3.5 — Error Mode and Inter-
nal Errors.

Control Space Error
Errors reading or writing Viking ASI registers are considered fatal. See
section 4.11.11.3.4 — Control Space Errors

ASI 0x09 .
Supervisor instruction fetch errors cannot be disabled by NF, since the
processor effectively has received an error in the instructions it needs
to execute. There is no other source for instructions, an exception must
be generated.

ASI 0x08
True instruction fetches (explicitly not alternate space read and writes)
to ASI 0x08 (User Instruction space) will cause exceptions to be
reported. As above, without the exception no instructions could be
executed.
( )
Important Note:
System software is responsible for properly setting and clearing the NF
bit. Improper use of no fault mode can lead to undefined processor
operation.

In particular, the NF bit must never be set when returning to user code
execution. :

Q

3

ASI=0x04 - MMU Registers.

Accesses to this ASI read and write SPARC Reference MMU control registers.
These registers are all 32-bits wide, and are shown in the following table.
Attempts to access them with byte, Halfword, or Doubleword operations will
result in data_access_exception. Virtual address bits [12:8] are used to select
individual registers, all other bits are ignored and should be 0. Any access to
addresses other than defined in the table below causes a data_access_exception.

®w
=
=)

Sun Microsystems Proprietary Revision 2.00 of November 1, 19%



96  TMS390Z50 — Viking User Documentation

Table 4-9  MMU Registers

VA[12:8] | Description
0x00 Control Register MCNTL)
0x01 Context Table Pointer Register (MCTP)
0x02 Context Register (CONTEXT)
0x03 Fault Status Register (MFSR)
0x04 Fault Address Register (MFAR)
0x13 read/write Fault Status Register
0x14 read/write Fault Address Register
0x15 Shadow Fault Status Register (MSFSR)
4.11.11.1 MMU Control The control register contains the general MMU control and status flags. In addi-
Register (MCNTL) tion, it also contains the control flags for the instruction and data caches. The

MMU control register is defined as follows:

{Impl | Ver | Rsvd | PF [ Rsvd | TC | AC | SE | BT |

3128 2724

23 19 18 17 16 15 14 13

[ PE | MB |

SB_[IE] DE [ PSO [Rsvd [ NF[EN |

12 11

Impl

Ver

TC

AC

10 9 8 7 62 1 0 S

Implementation number of the Viking chip, it is hardwired and is read-
only. Viking fixes MCNTL.Impl = 0x0.

Version number of the Viking chip, typically a mask number. This field
is hardwired and is read-only. Viking fixes MCNTL.Ver = 0x0. Mask
revs are reflected only in PSR.

Reserved. These bits are ignored and read-only.

Data Prefetcher Enable. This bit when asserted indicates that the Data
Prefetcher is enabled. This is only meaningful in CC mode. This bit is
ignored in MBUS mode (Data Prefetcher is disabled in MBUS) mode).

Reserved. This bit is ignored and read-only.

Table walk Cacheable bit. When this bit is asserted, references from
MMU table walks are cached in the Viking external cache. When this bit
is deasserted, all table walk accesses are not cached in the Viking exter-
nal cache. Table walk references are never cached internally. For
MBUS mode, TC must be deasserted. :

Alternate Cacheable bit. This bit indicates whether an access is cache-
able or not in the absence of the C bit in the PTE due to the MMU being ,
disabled or in a mode where the PTE are not needed for translation. Thy
only exception to this case is the instruction fetches in boot mode ‘
which are always non-cacheable. When this bit is clear, all memory

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



Chapter 4 — Viking Programmer’s Model 97

SE

BT

SB

DE
PSO

2

-

accesses, except table walking accesses, for which the physical address
is not obtained through a PTE are not cached in the Viking internal
caches and the External cache. If this bit is set to one, those accesses
are cached.

Snoop Enable. This bit enables cache snooping on the Viking bus
when set to one. This bit must be set to enable the cache consistency
mechanisms. Assertion of this bit does not affect Store Buffer snoop-
ing nor Data Prefetcher snooping, which are always enabled.

In MBUS mode, both the instruction and data caches will snoop regard-
less of whether they are enabled. This is necessary for maintaining
consistency should any of the caches be disabled after they contain real
data. Therefore, initialization code should contain a flash clear for these
caches before enabling snoops at power-on reset, so that no garbage
data may reside in the snooping caches. Snooping is controlled by the
MCNTL.SE (snoop enable) bit.

Boot Mode. When not asserted indicates normal SPARC reference MMU
operation. When asserted, indicates boot mode, and the physical
address generated (for instruction fetches) is formed by adding the
address OxffO000000 to the lower 28 bits of the virtual address. BT is
asserted high (BT=1 is boot mode). Instruction accesses in boot mode
bypass the Viking internal cache. Data accesses are unaffected by the
boot mode. '

Parity Enable. If set, this bit enables parity checking (Even Parity) for

each byte of data brought into the chip.

MBUS Mode. This bit if set indicates that the data cache is in Copy
Back Mode, else the data cache is in write-through mode. This bit is
read-only, and it reflects the CCRDY_ pin.

Store Buffer Enable. This bit if set enables the store buffer operations.
Instruction Cache Enable. This bit if set enables the instruction cache.
Data Cache Enable. This bit if set enables the data cache.

Partial Store Ordering. When asserted, the memory model is in PSO
(Partial Store Ordering) mode. When deasserted, it is in TSO (Total
Store Ordering) mode.

Reserved. These bits are ignored.

No Fault Bit. When this bit is asserted, faults that occur are ignored
(not reported to the processor) for ASIs 0x08, 0x0a, 0xOb, 0x20-0x2f,
while the remaining AsIs including ASI 0x09, Viking internals and con-
trol space (ASI 0x02) will take the fault (These latter ASIs are said to
"ignore’ the NF bit). Note that regardless of whether/not the fault is
taken, the FSR is always updated.

MMU enable. This bit enables or disables the operations of the MMU.
The BT bit must be deasserted for the EN bit to indicate a MMU enable

Sun Microsystems Proprietary Revision 2.00 of November 1, 19%



98  TMS390Z50 — Viking User Documentation

or disable, thus the BT bit asserted over-rides the EN bit for instruction
fetches only. MMU Enable. When this bit is set to one the MMU is
enabled. When the EN=0 and BT indicates normal operation the 4 most
significant bits of the physical address are forced to zero and the 32

| least significant bits are the 32 bits of the virtual address. When EN=0
and BT indicates Boot Mode, instruction fetch physical addresses are
formed according to the rules given above for the BT bit, data fetch
physical addresses are formed as described before.

On power-on reset, all the control bits mentioned above (except BT) are cleared.

4.11.11.2 Context Table The Context Table Pointer (CTP) is a pointer to the Context Table in physical
Pointer Register memory. The Context Table contains the root page table pointers for all the con-
(McTP) and Context texts. The Context Register provides the offset into the Context Table to retrieve
Register (MC) the root page table pointer for that context. In Viking the Context Table Pointer is

a 24 bit register and the Context Register is a 16 bit register. The Physical
address used to retrieve the root page table pointer is formed as shown below :

Figure 4-7  Root Pointer Physical Address Generation

Context Table Poinier
3 ' 1413 8,7 0

Context Number

3 16,15 10,9 0
LD
v — \
CTP[31:14] CTP[13:8]orCTX[15:10]] CTX[9:0]
35 18 17 12 11 210

This address formation gives the kemel the freedom to trade-off number of con-
text bits against alignment restrictions on the context table. Note, if a context of
16 bits is desired the context table must be aligned to a 256K byte boundary.

The table shown below gives the alignment requirements for the context table for “
different widths for the context register.

@ sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990

mcrosysiems

B —



Chapter 4 — Viking Programmer's Model 99

4.11.11.3 MMU Fault Status
Register (MFSR)

4.11.11.3 Instruction access
eITors

Context bits | Alignment
<10 4K
11 8K
12 16K
13 32K
14 64K
15 128K
16 256K

The Context Table Pointer register has the following structure:

| Context Table Pointer | Rsvd |
31 8 7 0

The reserved field is ignored on a write and read as zero.

The Context register contains the displacement in the context table to access the
root pointer. It defines the current virtual address space.

The Context Register has the following structure:

{ Rsvd | Context Number |
31 16 15 0

The reserved field is ignored on a write and read as zero.

The Fault Status register provides information for Viking faults which associated
with the memory system, and other intemal error sources. The MFSR, along with
the reported trap type are used to distinguish between the various types of errors
and faults that can occur.

There are several general types of exceptions: instruction access faults, data
access faults, store buffer exceptions, and intemal errors.

Instruction access faults are signalled through the instruction_access_exception
trap. There are several possible sources for the exception. It may be created by
normal page faults reported by the MMU. MMU generated errors are distinguished
by the encoding of the MFSR.FT field, indicating the MMU fault type. The fault
may be extemnally generated, for bus timeouts, parity errors, etc. Externally gen-
erated faults are indicated by various bits in the MFSR that are tied to equivalent
error responses on the external busses. A final source of errors is from internally
detected inconsistencies. For example, a multiple tag match in the instruction
cache. In this case, an efror mode trap (watchdog reset) is generated, the MFSR.EM
bit will be set.

sun Sun Microsystems Proprietary Revision 2.00 of November 1, 199



100  TMS390Z50 — Viking User Documentation

4.11.11.3 Data access errors Data access faults are signalled through the data_access_exception trap. As with
instructions, there are several source for this exception. As above, page faults,
external bus errors, and internal errors may all cause exceptions. Additional
errors can be caused by erroneous accesses to internal ASI control spaces. These
are indicated by the MFSR.CS status bit.

4.11.11.3 Store buffer errors Store buffer errors are signalled as data_store_error traps. These errors are
deferred exceptions. They are reported after the apparent completion of the
instruction which caused them. When this type of error occurs, the MFSR.SB bit
will be asserted. The source of the error is generally a parity, timeout, or similar
error on the bus. These stores have already been successfully translated by the
MMU, or a data_access_exception would have been reported. The operation can
be recovered by reading the contents of the store buffer and explicitly completing
the transaction using transparent MMU physical address memory references or
other means. See section 4.12 — Store Buffer for a detailed description of store
buffer errors and operation.

4.11.11.3 Control Space Errors Any ASI operations which are known to be illegal by Viking will be reported as
control space errors. These errors will cause data_access_exceptions, and set the
MFSR.CS bit.

Any of three conditions can cause these errors:

References to an invalid ASI space.
References to a legal ASI space, but with an invalid data size.
An invalid virtual address field within a valid ASI space.

The MFSR.CS bit is not asserted for the following conditions: Bus error on ASI
0x08, 0x09, 0x0a, 0x0b, 0x20-0x2f (the standard and passthrough/bypass ASIs),
or errors on MMU probes. The contents of the Fault Address register is valid for
control space access errors.

4.11.11.3 Error Mode and If the processor enters error mode for any reason (such as an exception while
Internal Errors PSR.ET is deasserted), the MFSR.EM bit will be set. This bit should be examined
by the reset handler to distinguish software induced error conditions from
hardware reset.

Viking will also enter error mode if a detected intemal error occurs. An example
of this is detection of multiple tag matches within the instruction and data caches.
In these cases, the MFSR.FT field will be set to 6, indicating an internal error.

Important
When internal error occurs and watchdog reset is taken, only MFSR.EM
and MFSR.FT are meaningful. The state of the other MFSR bits are not

guaranteed. .

@ sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



.

Chapter 4 — Viking Programmer's Model 101

4.11.11.3 MFSR timing and
operation

The contents of the Fault Status register can be misleading if examined at an
arbitrary time. For example, an instruction fetch which is not a *‘demand’’ fetch
(not needed immediately for execution) may cause the Fault Status register to
indicate a fault which is never signalled as an actual exception. The MFSR is
guaranteed to be valid only after instruction, data, and store buffer
(data_store_error) exceptions.

The Fault Status register is read-only and is cleared on a read. Writes are ignored.
The standard virtual address is 0x00000300 using AsI 0x04. Viking provides a
specific address (ASI=0x04, VA=0x00001300) to allow read/write access to the
MFSR. For more on the standard features of MFSR, consult the SPARC Architec-
ture Manual.

The MFSR.SB (Store Buffer) error bit is sticky. In other words, once it is set, it will
not be overwritten by the occurence of any other exceptions. This is to ensure
that store buffer error events can never be lost. The SB bit will be cleared on any
read of the MFSR, and can also be cleared by writing explicitly to the read/write
version of the MFSR.

-
Important Note: '
Translation errors are considered to be high priority errors. The
occurence of a translation error can not be overwritten by any other
errors. Even if the exception associated with a translation error is not

" taken (due to other exceptions, prefetches, branches, etc.), the MFSR.FT
bit will continue to indicate the occurence of a translation error.

This implies that under certain circumstances, a trap may incorrectly
stated to be a translation error, when in fact it may have been caused by
other events. System software should be able to recover from this situa-
tion by using probe operations to test the validity of translations, and if
correct retrying the instruction which reported the exception. If the true
source of the exception continues to exist, it will be reported again.

Translation errors may be overwritten by other translation errors, in
which case the MFSR.OW (overwrite) bit will be set.

. J

General rules for overwriting the MFSR (and MFAR) are presented in table 4-10.
The MFSR.OW bit will always be set if an overwrite condition occurs.

sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 199(



102  TMS390Z50 — Viking User Documentation

Table 4-10  MFSR Overwrite Operations
Pending Error New Error OW Status Action Signalled
Translation Error Translation Error Set Translation Error
Translation Error Data Access Exception Unchanged | Data access Exception
Translation Error Instruction Access Exception | Unchanged | Instruction Access Exception
Data Access Exception Translation Error Clear Translation Error
Data Access Exception Data Access Exception Set Data access Exception
Data Access Exception Instruction Access Exception | Unchanged | Instruction access Exception
Instruction Access Exception | Translation Error Clear Translation Error
Instruction Access Exception | Data Access Exception Clear Data Access Exception
Instruction Access Exception | Instruction Access Exception | Set Instruction Access Exception
In all cases where simultaneous errors occur, Viking will choose the highest
priority error and update the status accordingly. The positional priority described
above must also be taken into account. The priority order is listed in the follow-
ing table, where priority 1 is the highest priority:
Table 4-11  MFSR Error Priority
Error Priori
Translation Error 1
Data Access Exceptions 2
Instruction Access Exceptions 3

4.11.11.3 MFSR Register
Description

[ Rsvd

|EM [ CS|{SB| P [ UD| UC | TO | BE |

| AT | FT | FAV | OW |

31 18 17 16

15 14 13 12 11

Rsvd
EM

10 9

Error Mode Reset has been taken.

CS

8§ 75 42 1 0

. Reserved. These bits are read-only zeroes.
Error Mode Reset Taken. This bit when asserted indicates that an

Control Space Access Error. This bit is asserted on the following con-
ditons: [1] invalid ASI space, [2] invalid ASI size, [3] invalid VA field i in_
valid AsI space including external control space (0x02) ASIs, or [4] bus

errors on ASI 0x02. This bit will not be asserted, however, for the fol-
lowing conditions: [1] bus error on AsI 0x08, 0x09, 0x0a, 0x0b, 0x20-

sun

Sun Microsystems Proprietary

Revision 2.00 of November 1, 1990



ﬁ

.y

Chapter 4 — Viking Programmer's Model 103

SB

ucC

TO

BE

AT

=
ig

Ox2f and [2] bus error on MMU Probe. Note that MFAR holds a valid
address on control space access (CS) errors.

Store Buffer Error. This bit when asserted indicates that a Store Buffer
error (data_store_error) has occurred.

Parity Error. This bit when asserted indicates that a Parity error has
occurred. Parity errors also set MFSR.UC bit.

Undefined Error. This bit is set for external bus errors when the exter-
nal system signals a retry operation and asserts data ready.
UD/UC/TO/BE errors are mutually exclusive.

Uncorrectable Error. This bit is set for external bus errors for which an
uncorrectable error occurred. Parity errors and ECC errors are also
reported as uncorrectable errors. UD/UC/TO/BE errors are mutually
exclusive.

Time-Out. When this bit is set, it indicates that a time-out error
occurred for a external bus transaction. UD/UC/TO/BE errors are mutu-
ally exclusive.

Bus Error. When this bit is set, it indicates that a bus error occurred on
a faulting access. This includes invalid bus transactions and errors for
which system registers need to be probed. UD/UC/TO/BE errors are
mutually exclusive.

The Level field is set to the page table level of the entry which caused
the fault. If an external bus error is encountered while fetching a page
table entry (either a PTE or PTP) the Level field records the page table
level for the entry. The field is defined as follows:

L Level

0 | Root pointer
1 | Level 1 entry
2 | Level 2 entry
3 | Level 3 entry

The Access Type field define the type of access which caused the fault.

It is defined as follows:

3

Access Type
Load from User Data Space
Load from Supervisor Data Space
Load/Execute from User Instruction Space
Load/Execute from Supervisor Instruction Space
Store to User Data Space
Store to Supervisor Data Space
Store.to User Instruction Space
Store to Supervisor Instruction Space

N AN ESEWINN=-=O

Sun Microsystems Proprietary Revision 2.00 of November 1, 1990



104  TMS390Z50 — Viking User Documentation

FT The Fault Type field defines the type of the current fault. It is defined

as follows:

FT Fault Type
0 None
1 Invalid address error
2 Protection error
3 | Privilege violation
4 Translation error
5 Access bus error
6 Intemal error
7 Reserved

Invalid address errors, protection errors and privilege violations are a
function of the Access Type and the ACC field of the corresponding
PTE. The errors are set as follows:

Table 4-12  Access Permission vs Access Type

FT Code

AT PTE[V]=1, PTE[ACC]=

PIEVIRO 1o 1 2 3 4 5 6 17
0 1 2 2 - - - 2 3 3
1 1 2 2 - - - 2 . .
2 1 - - - - 2 - 3°3
3 1 - - -2 - -
4 1 |2 - 2 - 2 2 3 3
5 1 2 - 2 - 2 - 2 -

The invalid address error code is set when an invalid PTE or PTP is
found while fetching an entry from the page table for a regular table-
walk or a probe operation. A translation error code is set when an
external bus error, reserved PTE or a level-3 PTP is found while fetching
an entry from a page table for a regular table-walk or a probe operation.
The'L field records the page table level at which the error occurred for
the above two error codes. The UD, TO, BE, and UC fields record the type
of bus error, if any. The protection error code is set if an access is
attempted that is inconsistent with the protection attributes of the
corresponding page table entry. The privilege error code is set when a
user program attempts to access a supervisor only page. A bus error
code is set when an external bus error occurs during memory access.
The internal error code is set when either cache detects an internal
inconsistency, like multiple matches for a particular request. When this
happens error mode is entered, requiring a system reset using watchdog
reset. See section4.11.11.3.5 — Error Mode and Internal Errors

FAV Fault Address Valid bit is asserted if the contents of the Fault Address
Register are valid. The Fault Address Register is not valid for instruc-
tion access faulits. X

@ sun Sun Microsystems Proprietary  Revision 2.00 of November 1, 1990



/
[

Chapter 4 — Viking Programmer's Model 105

4.11.11.4 Fault Address
Register (MFAR)

ow The Overwrite bit is asserted if the Fault Status Register has been writ-
ten more than once by faults of the same class since the last time it was
read. Programmer’s Note: A trap handler should consult this OW bit to
find out if the information in FSR reflects the current fault or not. OW
asserted indicates that the FSR has been updated since the last fault that
wasfis currently being taken. Multiple faults can occur before the trap
is taken by the processor and the fault status is read by the processor.
The Fault Status register records the cause of the latest and sets the OW
bit to indicate that a previous status has been lost.

The Fault Address register records the virtual address of the fault reported in the
Fault Status register. This register is overwritten according to the policy defined
for the MFSR. The MFAR is read-only according the the reference MMU
specification. For diagnostic purposed, Viking has added additional read/write -
access to the MFAR using virtual address 0x00001400 in ASI 0x04. The normal
read-only MFAR is at virtual address 0x00000400 in the same space.

Important Note:
Viking will never place instruction fault addresses in the FAR. The
"information is not needed, since it is saved as the faulting PC/NPC when
the trap occurs.

This register must be accessed as a word. Other data references provoke a-
data_access_exception. The structure of the Fault Address register is:

| Fault Virtual Address |
31 0
Su Sun Microsystems Proprietary ~ Revision 2.00 of November 1, 199

§

ysiems



106  TMS390Z50 — Viking User Documentation

4.11.11.5 MMU Shadow FSR
Register (MSFSR)

4.11.12. MMU TLB (Page
Descriptor Cache)
direct access

Sel values 0 through 3 are used to access TLB entries, value 4 is used to access the
level-0 pointer and values S and 6 are used to access the level-2 pointer entry.

sSun Sun Microsysiems Proprietary  Revision 2.00 of November 1, 1990
mcrosystems

:/m‘,\
-
( )
Important Note:

A rare scenario can occur when Viking is operating in MBUS mode with

the store buffer off (not normal operating conditions). If a memory

reference takes place, that causes a copy-back, and the copy-back

suffers a fault (memory fault), Viking responds by sending

data_access_exception to the processor pipeline. When this occurs, the

MFAR holds the virtual address that caused the copy-out. Note that this

is not the address that caused the fault to occur. In this situation, Viking

does not set MFAYV because it is misleading.

If such an error occurs (MBUS, data_access_exception, FAV deasserted,

store buffer disabled), system software can recover by manually forc-

ing any modified data in the four possible cache lines (based on the vir-

tual address) out to memory using transparent MMU references. Once

this data has been flushed, the appropriate valid bits should be cleared,

and the original operation may be retried.

This situation is not expected to occur during normal operation.

Y : ; J

This is identical to the FSR but is used to record memory system cﬁms while in

Emulation mode. This is done to avoid destroying the regular MFSR because of

emulation instructions. This register is not used for normal operation. Also see

section 4.15). -

The MMU enitries are accessible directly with the ASI value 0x06. This direct

access capability is provided for diagnostic purposes and also to lock TLB entries.

MMU entries are accessed as a 32-bit word. Other data sizes provoke a data access

exception.

The Address format is:

ASI=0x06: Reserved TLB Entry | Rsvd Sel Rsvd

31 18 17 12 11 108 7 0

The various bit fields have the following meanings:

Rsvd:  Reserved. All reserved bits are ignored (But should be zero).

Entry: Selects which of the 64 entries is referenced.

Sel: Select. Determines what part of the referenced entry is accessed. The
Sel fi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>